PHYSICAL REVIEW E 71, 011101(2005

Theory of frequency and phase synchronization in a rocked bistable stochastic system
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We investigate the role of noise in the phenomenon of stochastic synchronization of switching events in a
rocked, overdamped bistable potential driven by white Gaussian noise, the archetype description of stochastic
resonance. We present an approach to the stochastic counting process of noise-induced switching events:
starting from the Markovian dynamics of the nonstationary, continuous particle dynamics, one finds upon
contraction onto two states a non-Markovian renewal dynamics. A proper definition of an output discrete phase
is given, and the time rate of change of its noise average determines the corresponding output frequency. The
phenomenon of noise-assisted phase synchronization is investigated in terms of an effective, instantaneous
phase diffusion. The theory is applied to rectangular-shaped rocking signals versus increasing input-noise
strengths. In this case, for an appropriate choice of the parameter values, the system exhibits a noise-induced
frequency locking accompanied by a very pronounced suppression of the phase diffusion of the output signal.
Precise numerical simulations corroborate very favorably our analytical results. The novel theoretical findings
are also compared with prior ones.
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I. INTRODUCTION Ref. [15]. A recently proposed method for measuring the
average phase velocity or frequency which is based on the
The theme of synchronization has widespread applicageneralization of a Rice rate formula for threshold crossings
tions, covering a plenitude of phenomefda-4]. Some char- s consequently not a suitable methfitb]. An alternative
acteristic examples are the entrainment of a system by exteapproach is based on the so-called “Hilbert phase” dynamics,
nal, time-dependent forcing, or the generalization of theas pioneered by Gab$t7] for deterministicsystems. In the
synchronization concept for systems that exhibit a chaotipresent work, we shall take a closer look at the synchroniza-
dynamics[5], lag synchronizatiorj6], and also phase syn- tion phenomenon in a periodically driven bistable system.
chronization7]. Synchronization phenomena play not only a Then it is advantageous to introduce a discrete phase dynam-
key role for diverse technological applications, but increasics, as recently proposed by Schimansky-Geier and collabo-
ingly as well for the description, the control, and even for therators [4,14,18,19. In order to extract this discrete phase
therapy of selected medical disord¢es. dynamics from the underlying continuous process, we shall
Due to the interaction with a surrounding environment Orcor_15|der the stochastic counting process of the noise-induced
with internal degrees of freedom, noise is present in man vyltches petween the two potential minima. It turns out that
physical systems. This being so, its role cannot be ignored!iS counting process is in fact a nonstationary renewal pro-
when investigating synchronization phenomena. In recen‘fessrgzo]' i f th Ki foll -
years, s trmed out that noise can acualy lay a cory T1® SUITe o8 i Present work s 2 folows: P e
structive role in many physical situations. In particular, NOISe . ctic process by filtering out the fluctuations around the
epotential minima. This dichotomic process possesses a clear
interpretation in terms of a discrete phase. By contrast to the
underlying stochastic process, this two-state process, how-
%ver, is no longer Markovian. Subsequently, in Sec. Ill, we
analyze in detail the statistical properties of the random
switching times associated to the dichotomic process. The
"bne-time statistical properties of the discrete phase are then
Qudied in Sec. IV. Based on these results, exact analytical
@xpressions for the instantaneous output frequency and the
aﬁﬁase diffusion are derived. Approximate expressions, valid
in the weak-noise limit and for a slow external driving, are
then obtained. Finally, our analytical findings will be applied
to the case of a symmetric bistable potential driven by a
*Email address: jcasado@us.es; http:/numerix.us.es periodic rectangular input signal. To corroborate our analyti-
TPresent address: Department firr Physik und Astronomie, Univereal results, we compare them with those obtained from a
sitat Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland. numerical simulation of the original stochastic process.

phenomenon of stochastic resonaf@ein an ample number
of metastable physical and biological systefh6,11. Fur-
thermore, noise enables Brownian motors to do work again
external load force$12], or to induce phase transitions far
away from thermal equilibriunji13,14.

Our focus here is on the role of phase synchronization i
stochastic overdamped systems driven by white Gaussi
noise. In these cases, the velocity of the dynamics is not
measurable quantity because the stochastic trajectories
neither differentiable nor of finite variation, see, e.g
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II. DESCRIPTION OF THE MODEL AND DEFINITION OF
THE DISCRETE PHASE

To start, we consider a stochastic dynamics characterized —0.25
by a single degree of freedorit), whose dynamicsin di-

mensionless unijss described by the stochastic differential 1
equation 2 o} ;
w1} 1

X(t) = = U (x(1),t) + &), (1)
1 I - —_— —_— p——
where &(t) is a Gaussian white noise of zero mean with au- :.S
tocorrelation{ &(t)&(s))=2D 8(t—s), andU’ (x, t) is the deriva- = -1 -_—
tive with respect tox of the bistable quartic potential, o 7 2r 3  ar
X2 t
ux,t) = 27" F(H)x, 2 FIG. 1. lllustration of the procedure used to define the stochastic

processy*o'(t) in the particular case of a rectangular sigfste

. . . ) . Eq. (65) and text beloy with amplitudeA=0.25 and frequenc§)

F(t) representing a periodic forcing with peridd Our focus  —5/T=0.01, and a noise streng®=0.02. The initial instant of

is on subthreshold signals; more preCISeJx, we will assum@me has been chosen to hg=0, and the system has been initially
that, for any instant of timgF(t) | <A,=2/127, whereAyis  placed atg,(0), so thatap=+1. In the upper panel, we have
the static threshold valughe dynamical threshold value al- sketched the rectangular periodic sigRél), whereas in the middle
ways exceeds this adiabatic threshélg). In this case, the and lower panels, we have depicted a random trajectory of the
potential possesses two minimacat(t) <0 andq,,(t) >0,  stochastic process™9t) and the corresponding realization of the
and a maximum afy(t). Introducing the functiony(t)  processy*-t), respectively.

=arcco$F(t)/ Ay, with arccosy being the principal value of

the arc cosine of (i.e., the value in the interv4D,]), and Teoto = min[t:t > 7% and xeol(t) = qan(t)]’ (4)
2 () + 270 where 7g0'0=t, and a,,=(-1)"ay. Thus, if we introduce the
7n(t) = B9 3 | (3)  stochastic process
V

Nao,to(t) = ma){n:’]go’to = t:|, (5)

which counts the number of switches of state in the interval
(t,t], then the two-state stochastic procgge'o(t) can be
expressed as

then 7,(t) yields the location of the minimum to the right of
the barriefi.e., q.1(t) = 70(t)], 7:(t) yields the location of the
minimum to the left of the barriefi.e., q_1(t)=#4(t)], and
7,(t) yields the location of the maximufine., qy(t) = 7(1)].
From now on, we will assume that at an initial instant of time x“o'lo(t) = a cod mN0o(t) ] (6)

to the system is placed at one of the minima of the potential _ _ . _ _
Oeg(to), With ap=+1 or —1. The long-time behavior of the By analogy with the case of a sinusoidal signal, we will

1 i ,t i ithe@ost
guantities of interest can be obtained by taking the limit asdef'ne the discrete phage®o'o(t) associated witlx*'o(1) as

t,— - at the end of the calculations. Henceforth, we will (€ Stochastic process

make explicit the dependence of all the quantities on the polo(t) = FNeolo(t). (7)
initial preparation by the superscript, to; see also the dis- ) ) ) ) )
cussion after Eq(26) ThUS, for instance, we will write |n Flg 1, we illustrate the prOC.edUre jUSt described in the
x@olo(t) instead ofx(t), meaning thak®o'o(ty)=q,, (to). particular case of a rectangular sigfis¢e Eq(65) and text

%

To analyze the synchronization phenomenon in this stoP€lowl with amplitude A=0.25 and frequencyw=2m/T
chastic bistable system, it is convenient to introduce a dis=0-01, and a noise strengfh=0.02. The initial instant of
crete phase associated to the continuous stochastic procdé8€ has been chosen to bg=0, and the system has been
xolo(t). In order to do so, first we will proceed to filter out iNitially placed atq,1(0), so thatag=+1. In the upper panel,

the fluctuations around the minima of the stochastic proces¥® have sketched the rectangular periodic sigha),
xeolo(t) to obtain a two-state stochastic procegio(t) whereas in the middle and lower panels, we have depicted a

which only takes the values1 or —1. The procedure used is fandom trajectory of the stochastic proces$%t) and the
as follows: At the initial instant of time, we sety*t(t,) ~ corresponding realization of the procegs™At), respec-
= a. A switch of state from #y to ¥ a, occurs whenever the — tively.

system, having started in one of the minima, reaches the , "qrariSTICAL CHARACTERIZATION OF THE

other minimum for the first time. The instant of time at SWITCHING TIMES 7@t

which thenth switch of state takes place is a random variable n
which will be denoted by7ee', with n=1,2,... . Formally, According to Eqs(5) and(7), the statistical properties of
these random variables can be defined recursively as the discrete phasg®'o(t) are closely related to those of the
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random switching timeg?o'. The aim of this section is to casen=1 by making use of three integral equations. To ob-
provide a detailed description of the statistical characterizatain the first integral equation, let us consider the consistency
tion of these random variables previous to the analysis o€ondition

@°olo(t), which will be postponed to the next section. The oo

connection between the statistical properties of the switching Gﬁi”{o(t) = dt’ prodjﬁgio > t|7§o¢o = tf]ggoloa/).
times and the original stochastic proce&s®o(t) will be also -

analyzed in this section. (15)

Following the approach presented in RE20], the ran- o S _
dom variable7?°'% can be characterized statistically by its By use of the definition of the switching times in Ed), as
probability densityfunction well as the Markovian character of the original stochastic
processkeolo(t), it is straightforward to verify that

Prolft < 7200 < t+ At]

gno(t) = lim (®) Prol 72010 > t}720% = t'] = gant' (1), (16)

+ At
At—0
Besides this probability distribution function, it is also con- Inserting the rzbtgve expressmr) into Ef‘?) and taking into
venient to introduce thécumulativg distribution function account thaGy™" (t)=1 for t<t’ and gi>o(t)=0 for t<t,,
we obtain

t
G2o'o(t) = Pro 7000 < t] = f dt'geot’), (9 t ,
) " o Groo(t) = Gpo'o(t) + f dt'git (hgrotet’)  (17)
t
as well as its complementary, . ) ° . ] .
. . . for n=1. The interpretation of this result is straightforward:
Gao0(t) = Pro 7,00 > t] = 1 - Goo(t). (10)  The probability that thén+1)th switch of state occurs after
the timet is equal to the probability that theth switch

In the particular casa=1, these functions can be directl ; X .
determingd from the solution of the Fokker-Planck equati)é)noccurs after that instant of time plus the probability that the
(FPB nth switch has happened at any titridoeforet with the next

switch taking place aftet. Similar interpretations hold for

%P(x,t) _ ;_X[Dj_x . U’(x,t)]P(x,t), (11) the integral equations; |;e., |
with initial condition Groa') = Jto de' Gy (Ogho"), (18)
P(X,to) = 8(X— Gy (to)), (12 :
and absorbing boundary conditionat, (1), i.e., gho(t) = fto dt'gfn" (Hgao'e(t'), (19
P[q_ao(t),t]:O forall t=t. (13 which are obtained from Eq.17) by using Eq.(10) and

Denoting byP®o(x, t) the solution of the above problem, it g2o'(t)=-G2ol(t), respectively.

follows from the definition ofgge'a(t) in Eq. (10), with n A formal solution forg,‘fo'to(tn) is obtained by solving it-
=1, that eratively the integral equatiof19). The result is
ap,t, +°C 1t t tn 2 i it
G1O70(t) = Sy 41 dx P*o(x,t) geoto(ty) = | dtyg-- | dull Pttt (20
a-1(t) ty to j=0
Geal® for n=2. Thus, the probability distributi i
1t =2, , probability distribution corresponding to
* 5%,—1 f . dx P(x ), (14) the first switch of stategi‘o’to(t), which can be obtained from

the solution of the FPELL) with Egs.(12) and(13), deter-
for t=t,, andG{o'o(t)=1 for t<t,. The functionG{®®™(t) is  mines completely the statistical properties of the rest of the
the conditional survival probability of the discrete stalg  switching times.
The functionG{o'o(t) is then given by Eq(10) with n=1,

: . . .. IV. ONE-TIME STATISTICAL PROPERTIES OF THE
whereasg;o'o(t) =-Gjo'o(t) is the corresponding conditional

DISCRETE PHASE: THE OUTPUT FREQUENCY AND THE

rfesid_ence_ time distributic_)(RTD). The dot indicatesf the de- PHASE DISPERSION
rivative with respect to timé. The knowledge of either the . o _ _
conditional survival probabilitiengrtO(t), or (equivalently The one-time statistical properties of the discrete phase

the conditional RTDg"(t), is sufficient to specify a driven ¢“*(t) can be evaluated by making use of the probability

two-state non-Markovian renewal procqgg_]_ These func- distribution of the number of switches of state

tions can be found from the underlying continuous-state aplo(+) — aglo(t) =

Markovian dynamics by solving Eqél1)—(14). pn” ) Prot[N ® n], 21
Forn> 1, the functiongz2o'o(t), G2o'%(t), andge'o(t) can  with n=0, 1, 2,... . From the definition oN®0(t) in Eq. (5)

be obtained iteratively from the ones corresponding to thet follows that
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Prof Neo'o(t) = n] = G20'o(t), (22) ploto(t) = [éofo(t) ptoro(t) — Teoo(t)ploto(t)  (30)
with Ggo'o(t)=1. Consequently, the probability distribution for n=1, and
of the number of switches of state and its derivative with - aglofs) — _ Tapt apt
respect tat can be expressed, respectively, as po” (1) = =g (g™ (1), (3D

- . . . . ao’to
ploto(t) = Gloto(t) — Geofo(t) = Geolo(t) — gooto(t), (23) \ivglc;h must be solved with the initial conditiop®(to)
=dho

and We will also introduce the conditional probability for

et . . x°o'o(t) to take the valugB==+1 at timet, provided that it

PR o) = g2 (1) — gr%s°(t), (24)  took the valuea, with probability 1 at the initial instant of
with Ggo'o(t)=gge'o(t)=0. The average of an arbitrary one- time to,
time function ofN@olo(t), K[N@'(t)], is obviously given by pEoo(t) = Prot xo'o(t) = B]. (32

* . Noting that after an even number of switches of state the
(K[Noto(t) ]) = > K(n)ppo'ot). (25 system ends up in the same state as it was initially, whereas
n=0 for an odd number of switches the system ends up in the
Equations(23) and (24) can be written in a more trans- Other state, it is clear that the evenfig®'(t)=ao} and

parent form by introducing the probability of an almost im- {x“*"(t)=-aq} are, respectively, equivalent to the events
mediate switch of state after switches, {Neolo(t) is every and{N®'o(t) is odd, and consequently

Prolt < 77¢fo < t + At|N@olo(t) = n
reoto) = lim L= Tt N =]

PR = 8, g2 PIIO(D) + By 52 PIUID.  (33)
At—0* At e

n=0
(26) Besides the probability distribution of the number of
switches of state, later we will also use the probability dis-

tribution of the number of switches of state conditioned to
the value ofy®oo(t),

Note that if the procesg®'o(t) were Markovian, these prob-
abilities could only depend on the statg. The explicit de-
pendence on the number of jumpsnd on the initial prepa-
ration «y at timet, is a consequence of the non-Markovian po'o(t| B) = ProlfNeo'o(t) = n|y2o'o(t) = B]. (34
character of the process. Another fingerprint of the non- L ) )

Markovian nature of the dichotomic process is the fact thafultiplying and dcj"t'd'”g the right-hand side of the above
these probabilities depend on the titneven in the absence €XPression by pg?(t) and takln? into - account  that
of the external driving. In order to clarify this point, let us ProdN“®(t)=n andy*(t)=Bl=pi0(t) 3, 4 it results
consider, e.g., the particular case0. Then, while initially, ~ that

right after the particle has been prepared at one of the aolo(t)
minima, the distribution functionPe'o(x,t) is still very pﬁo"O(tLB):p’;t o B (35
sharply peaked arounmao(to), it becomes smeared out Pg” KU

around the minimum after the intrawell relaxation time. Con-The average of an arbitrary one-time function Nfolo(t),
sequently, the probability of an immediate switch will be k[ Newoto(t)], conditioned to the evenfy®olo(t)=8} will be
different before and after this relaxation time, even withoutyenoted be[Nao,to(t)DB, with 8= +1 or -1, and it is given
an external driving. by

Multiplying and dividing the right-hand side of the above
expression b)pﬁo*to(t) and taking into account that

(KIN“09(t)]) 5= 2 K(m)ppo™a(t]B)
Prol{t < T < t+ At andNeo'o(t) = n] n=0

lim = gagio(), .
A-0* At " s S k(PR
(27) = 22 K oty
)
it is readily seen that o poolo(t)
G9%(1) +Oaop2 KD G (36
e = B 28) o
Pn

From the above expression and E25), it follows that

t (KEN0'o(t)]) = (K[N“0'o(0)]).,1pg (1)

pﬁOvtO(t) = f dt'gfn,t’(t)rﬁgﬁt_o(t’)ﬁ)ﬁgio(t,) (29) + <K[Nao,to(t)p_lpiy%to(t). (37)
to

Another interesting quantity which will be useful later is
for n=1, with pd°(t) =G{o'o(t). Analogously, Eq(24) leads  the probability of an almost immediate switch from stg@te
to the following hierarchy of differential equations: defined as

Then, it follows from Eqs(17), (23), and(28) that
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Proft < 7009 = <t+At|y*o'o(t) = N I, ., d
,ygo,to(t) — lim t{ Neolo(t)+1 ool B] Qolo(t) = E«P olo(t)) = 775<N olo(t)). (41)

At—0* At .

(39) Multiplying Eqg. (30) by n, summing up the series
> nptolo(t), and taking into account E@25), it is easy to

Notice that in the Markovian limit, these probabilities are obtain that
independent of the initial preparatien at timety, and cannot J
be distinguished from the probabilities defined in E2g). —(N@oto(t)) :<r§g§go(t)(t)>‘ (42)
Multiplying and dividing the right-hand side of the above at
expression bypgo'to(t) and taking into account the equiva- Consequently, from Eqg37), (39), and(41), it results
lence of the event {y®(t)=g8} with the event ot o T
{Neo'o(t) is evend,, z+{N“"(t) is 0ddd_, 5 as well as Qo °(t) =l Yo pE (L) + ¥ o(H)pigom].  (43)

Egs.(26) and(36), it is easy to see that This finding for the averaged frequency of the discrete phase
ap apl dynamics constitutes a first main finding of this work.
Y5700 = (TR ) (39)

Differentiating Eq.(33) with respect tat and taking into
account Eqs(30), (36), and (39), it is straightforward to
obtain that

B. The instantaneous phase diffusion

Let us now proceed to the evaluation of the instantaneous
phase diffusiorD2o(t), which can be defined 48]

out

PE1O(D) = = Y52 O(OPEOM) + ¥25R()Pgt)  (40) Dgio(t) = %{<[¢ao’to<t>]2> = (got(t)?}

for B=1 and—1. Equation(40) is a non-Markovian master K
equation for the conditional probabilitigg™(t). It is of the =’ 5{<[N“°'t°(t)]2> —(No'o(t))?}.  (44)
time-convolutionless form[22,23. The rate parameters

Y§'(t) entering this equation are time-dependent quantitie§/ultiplying Eq. (30) by n_2, summing up the series
even in the absence of time-dependent driving. Such a tim&ni"’pp2(t), and taking into account Eq(25), it is
dependence reflects primarily a nonexponential distributiorstraightforward to see that

of the residence times of the renewal two-state non- P

Markovian procesf20,24, which results from the projection ([ Noo(t)]2) = 2<N“0v10(t)1“§9;$90(t)(t)> + <F§gs§go(t)(t)>.

of a continuous-state Markovian stochastic dynamics onto at

the two discrete state8=+1. A time-dependent driving in- (45)
troduces an additional time dependence i‘pﬁ@)to(t) which is
present also in thdriven Markovian case. In this latter case,
ygo'to(t) becomes a time-dependent rate and this rate depen

Replacing the above expression into E4¢) and taking into
ggcount Eqs(41) and(42), it results that

neither onay nor ont, (see below Two other forms are Dofo(t) = wQ89'o(t) + 2ﬂ2[<N“O*‘O(t)l“ﬁ?;ﬁf%o(t)(t»
possible to describe the evolution of conditional probabilities .
pie'o(t). One is given by the generalized master equations —<N“O’t‘)(t»(Fﬁfc’z’o?o(t)(t)ﬂ- (46)

(GMEs) with the memory kernels expressed via the corre- , . .
sponding RTDs. In the driven case, the kemels of correEdUation(46) can be expressed in a more convenient form

sponding GMEs will become functionals of the driving and Y Writing all the averages ) in terms of the conditional
will depend on both time arguments. Alternatively, integral a\{?faqei"?g, according to Eq(37). Then, after some sim-
equations for the conditional probabilitip§®'°(t) can be de-  Plifications one obtains

rived for the driven two-state renewal process in terms of De0to(t) = rL500(t) + 272A yolo(t)Wolo(t)
(conditiona) RTDs ggo'o(t) [21]. Such integral equations out out

present a generalization of the integral renewal equations of +2m >, Cgo‘to(t) pj;o‘to(t), (47)
Ref. [20] to the driven case. We apply in this worktiane- B=x1

convolutionless description of non-Markovian dynamics
[22,23 to the synchronization problem.

After these rather formal considerations, we shall now Ayolo(t) = 590(t) = y2o(t), (48)
apply these results to the evaluation of two important quan-
tities in the study of the synchronization phenomenon: The — Wweoto(t) = [(N@0o(t)),; — (N“0to(t))_; Jp2lo(t)p2go(t),
instantaneous output frequency and phase diffusion.

where

(49
A. The instantaneous output frequency and we have introduced the conditional covariance
~ The instantaneous output frequency is defined as the de- Cho(t) = <[N“°’t°(t) = (N0o(t)) ]
ir.|;}/fa}t|ve with respect td of the averaged discrete phd4é], x[T2e sgo(t) - (F‘.S%‘ ggo(t)(t)>ﬁ]>ﬁ- (50
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Making use of Eqs(30) and(40) and after some lengthy =./|U"[qu(t),t]]=y1-3qu(t)]2 Furthermore, from Egs.
calculations, it is possible to prove thdito'o(t) satisfies the  (17), (19), (23), and(28) it follows that, within this approxi-

differential equation mation, we also have that>'o(t) ~ V;(t) for n=1 and, con-
- . sequently,ygo'to(t)z V;(t) and Cgo'to(t)xo. In this case, the
Weolo(t) = — yrolo(t) wao'o(t) conditional survival propabilities and the residence time dis-
-3 B[Cgo,to(t) + ygo,to(t) pgo,to(t)]pgo,to(t), tributions in staten, read
B=+1
t
(51) gilo,to(t) = ex{_f ));O(t/)dt’:| (57)
where fo
YOO(t) = ¥{90(t) + ¥29(0). (52 and

Equation(51) can be formally solved taking into account

that, as it follows from the definitiot49), ¥o'o(ty)=0. The N t -
result is ° gioo(t) = V;O(t)exp - Vio(t )dt’ |, (58)
t
. 0
ap,t — _ ’ ag,torsr aotor+ 1\ maotor+r
Weot(t) = zflﬁ . dt [Cﬁo )+ Vg’ ot )pﬁo ot )] respectively. This corresponds to a two-state Markovian pro-
e 0 cess with ratesyS(t). In this Markovian limit for the re-
><pgoio(tf)e—f:rdt"y%’to(t”)_ (53)  duced, two-state dynamics, the instantaneous output fre-
) o ) quency and phase diffusion become
Replacing the above expression into E4j7), one obtains
Dgdio(t) = m Qgio(t) + QUo'o(t) — 2 Ay o'o(t) Qo = a] Y0P + Y4 0pgem] (59
t
t [T "
x 2 B dtyge)[pgte) e e, and
B=t1 Jt,
(54) Dgo(t) = mQa%(t)
where all the dependence on the conditional covariance t ot 5
Ci'9(t) has been included in the function -2 () X B dt'%(t')[pﬁo' ot ]
B=%1 1)
an,t — ap,t ap,t _ an,t
QUoto(t) = zﬁgﬂ CEoR(pgo(t) - 2 Ay oto(t) ¢ It (60
t
x> gl ar Cao’to(t')paoio(t')e—fi/dt"y%‘to(t")_ respectively. Here, y<(t)=v5,(0)+9/5,(1), AY<(0)=+51)
B B K ap,t H . .
B=x1 Jtg =411, andpg®(t) is obtained by solving the master equa-
(55) tion
The expression54) for the instantaneous phase diffusion ot ant ant
presents a second main result of this work. PEC(t) = = Ye(DpEo(0) + YS,(0OpZgR), (61)
C. The weak-noise and low-frequency limit with initial condition pgo'to(to)zé% B

Throughout the following, we will assume that the noise In ord_er to (_)btain expressions indep(_an(_jent of the initial
strengthD is sufficiently small so that the intrawell relax- pégpar%tlgg, Ilt |sthr]e?e§fq{y to tt;':lker:he I"lt‘%'{_;;;o C;f E‘f
ation time scale is negligible compared with the time scale§1 )an_ I( ). In leo,tc:ml A gag . S— lc_)wn aDao?o D e
associated to the interwell transitions and, as well, the driv= OU_t(t)f 1Moo 2out (t) an ou ) =limy _.DGG(t) are
ing time scaleT. In this case, fot—t, much larger than the periodic functions of the timeé. Then, one can perform a

characteristic intrawell relaxation time, the probability of an Ycle average and define the averaged output frequency
almost immediate switch of state after O switchﬁg’,to(t),

can be approximated by the Kramers rate of es¢apgefrom 1(" w7
Qo= | dtQaui®) == | dt[¥50pa® + Y5 0pa0],

the stateg at timet, i.e., T . T/,
t t
g = i = 24 20 62
o

U t),t] = U[gu(t),t where pg(t) is the periodic long-time solution,pg(t)
xexp{— LG () ]D LR ]}, (56)  =limy . ..pge'(t), of Eq. (61). After some lengthy calcula-
tions, it is also possible to show from E®O) that the aver-

where  wg(t)=\U"Tau(1),t]=y3[qe)]>~1 and wy(t)  aged phase diffusion is given by
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(" w? Eall T
Dout= —J dtDyy(t) = mQoui— —CSC?‘(’YK—> 4 tanl’(%)

T 0 T 2 Qout:? 1_[Apeq(o)]2 1- ) (70)
T T vl
X > B i dt fo dt' A (1) Y5(t) [pg(t) TP and
B=+1
_ ¢ 277 T\ |3
% eXp|: Sgl’(t _ tr)? _ f dt”’))<(t")‘| , (63) Dout: 7TQout_ T[Apeo(O)]“[tam(%)}
v
with - 71—Z[Apf>°(0)]2{1 —[Apeﬂ(O)]Z}(lz tanr<7—T>
) 2T 4
«_1 2
T )

In the next section we will consider the case of a rectangulaf, the next subsection, we will compare these analytical re-
mpu_t signal. _In this case, explicit analytlca! evaluations ofgits for the averaged output frequency and phase diffusion
the integrals in Eqs(62) and(63) can be carried out. with results obtained from a numerical solution of the sto-
chastic differential equatio(i).
V. PERIODIC RECTANGULAR INPUT SIGNAL

As an example of the use of Eq§2) and (63) which is Comparison with numerical results

amenable to analytical treatment, we will consider the case Following the algorithm developed by Greenside and Hel-
of the periodic rectangular driving force fand [27,28 (consult also the Appendix in Ref29]), we
o \n() have integrated Eql) for a large number of noise realiza-

FO=(=1D™A, (65) tions, M, starting from one of the minime,ao(O). From the
wheren(t)=|2t/T], | z] being the floor function of, i.e., the initial instant of time, which we set equal to zero, we start
greatest integer less than or equaktdn other wordsF(t) monitoring the switches of states and recording the instants
=A[F(t)=-A] if t€[nT/2,(n+1)T/2] with n even (odd). of time at which those switches occur, according to &g.
Because the potential fulfills the symmetry property\We will denote bytyo? the instant of time of theth switch

U(x,t+T/2)=U(-x,1), we haveqgy(t)=(-1)"Vqy(0), and of state in theith trajectory. From the switching timetﬁ?*o,
the realization oN“0(t) corresponding to thih trajectory,
a,(0) :ﬁAQ(O) (- 1)n(t)QM_(O) (66) NeoO(t), can be easily calculated using E§), and the cor-

A 2 2 responding realization of the discrete phas%’;o(t), by Eq.

where Aq(0)=q.1(0)~q.4(0). Here, we have taken into ac- (7). The noise-averaged phase is then obtained by

count Vieta's formulag, 4(t) +g_4(t) +qy(t) =0. 1M o
According to the above mentioned symmetry property of (@*00(t)) = ME @ (), (72)
the potential,g);(t) can be expressed in the form i=1

and the phase variance by

Y50 =211~ (- 1" BAp0)], (67) e
v 0(t) = ([@0%1)2) — (@“0(1)2 = — > [ (D)2
where y=¥5(0)+¥%,(0), and Ape(0)=p$(0)-p°}(0), Miz
pz(0) being the equilibrium population of the staecorre- M 2
sponding to the rates taken at time=0, i.e., p3{(0) _1 > 00 73
: B > o) | . (73)
=[85-1 ¥1(0)+ 851 ¥,(0)]/ y. Notice that for the rectangu- M=[ 3

lar input signal in Eq(65), ¥*(t)=7"=7. We can also write After a sufficiently long number of periods for the system

A1) = yfl(t) - yfl(t) =-(-1)"YyAp®40). (69 to “forget” the initial preparation, the averaged output fre-

) ) . quency is calculated from the expression
As shown in Ref[26], the long-time probabilitiep.4(t) are

iven b (@ T(L + T]) = (¢ ULT))
gren sy Qou= = . (78
p-1(t) = 3[1 - (- D"VAP*{0)]
=[N T/2]} and the averaged phase diffusion from
— 1)NOA e -
POV T (89 _ oL+ DT] - oL (79
out™ .
T
andp,4(t) =1-p_4(t).
Replacing the above expressions into E§®) and (63), Figures 2—4 show the results of the numerical solution
one obtains after some lengthy simplifications that just described for a periodic rectangular input signal with
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FIG. 2. Averaged output frequengypper paneland averaged FIG. 4. Like Fig. 2 but for a driving amplitudé=0.30.

phase diffusionlower panel as a function of the noise strength
for a periodic rectangular input signg@ee Eq(65) and text below
with amplitude A=0.14 and angular frequenc2=27/T=0.01.  estimates for the frequency synchronization is moderate only,

Solid line: Analytical results obtained from E(0) (upper pangl  our prediction for the phase diffusion is strongly improved.
and Eq.(71) (lower pane), respectively. Dashed line: Theoretical

result from Ref.[18]. Crosses: Precise numerical results. In the
upper panel, a horizontal dotted line indicates the frequency of the

input signal. VI. CONCLUSIONS

With this work, we have investigated in detail the phe-
nomenon of frequency and phase synchronization in bistable,
periodically driven stochastic systems. This objective is not

Ref. [18] and observed experimentally in R¢80], for high only of foremost interest for the well known phenomenon of
enough, but still subthreshold, driving amplitudes, thestochastic resonan¢®,1q and the topic of rocked Brownian

present system exhibits a noise-induced frequency locking"0tors[12], but also carries great potential for the study of
i.e., starting from a nonzero value of the noise strefjtthe driven stochastic neuronal dynamics and driven excitable
frequency of the output signal matches the frequency of théytems per s¢31]. Our approach takes a new look at this
input signal, until, for strong noise, the output signal be-Prominent problem. Starting out from a driven, Markovian
comes desynchronized again. This effect is accompanied B§ontinuous dynamics, we derived in great detail the stochas-
a very pronounced suppression of the phase diffusion of thtic renewal dynamics of the noise-induced switching events.
output signal, i.e., a noise-induced phase locking. For thdhis contraction of the full Markovian dynamics in state
relevant values of the noise strenddh our analytical esti- space onto the discrete counting process of subsequent
mates Eq(70) and Eq.(71) agree very well with the results switches between the metastable states implies a non-
obtained from the numerical solution. Only for rather strongMarkovian dynamics for the switching times and the corre-
noise can a noticeable deviation be observed. In this regimgponding phase dynamics whose explicit time evolution de-
the Kramers rate¢56) are no longer valid. We have also pends on initial preparation effects. The resulting non-
plotted the results of the previous work8], using the rates \arkovian expressions still contain the full information of
(56). We note that while the improvement of our analytical the driven dynamics in the relevant state space and thus are
not readily accessible for analytical estimates.

angular frequency)=2=/T=0.01 and three different values
of the driving amplitudeA=0.14 (see Fig. 2, A=0.25(see
Fig. 3), and A=0.3 (see Fig. 4. As reported previously in

0.08 In contrast, for weak noise and slow external driving, the
0.06| dynamics of the underlying process simplifies considerably.
N Consequently, in the long time limit the phase dynamics now
o 0.04¢ assumes again a Markovian nature. In this regime, we put
0.02} forward new results for the phase diffusion and the fre-

ol & : : : quency synchronization. In doing so, we have employed
rectangular-shaped periodic driving signals. This choice en-
tails two distinct advantages, namgly it allows a conve-
nient analytic analysis of the corresponding synchronization
gquantities and(ii) its two-state character is also known to
optimize the efficiency for the synchronization features. The
same optimization feature holds true for related effects such
as the achievements of optimizing the gain for stochastic
resonancg32] or the enhancements of energy transduction
FIG. 3. Like Fig. 2 but for a driving amplituda=0.25. in driven chemical reactioni33].

2t

I°g10Doul

0 0.05 0.1 0.15 0.2
D
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Our analysis is in the spirit of prior workgl8,19; our  driving will prove useful for modeling and interpreting sto-
novel estimates, however, quantitatively supersede in accuhastic synchronization phenomena in driven metastable and
racy those prior results, cf. the detailed comparison perexcitable dynamics.
formed above. While the improvement for the frequency
synchronization is moderate only, the novel estimates present
a sizable improvement for the role of the phase diffusion. In
the weak-noise regime and for slow external driving, the We acknowledge the support of the Direccion General de
Markovian theory provides a very good agreement with nuEnsefianza Superior of SpaiBFM2002-03822, the Junta
merical precise simulations. This being so, we are confidende Andalucia, the DAAD program “Acciones Integradas”
that the new insight gained into the complexity of non-(P.H., M.M), the Sonderforschungsbereich 48project
Markovian, driven switching time dynamics together with its A10) of the Deutsche Forschungsgemeinschaft, and the
Markovian simplification obtained at weak noise and slowVolkswagen-StiftungP.H) under Grant No. I/77 217.
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