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Abstract—This work presents an equivalent circuit to model the
transmission/reflection of a plane wave that impinges obliquely on
a periodic arrangement of metallic rectangular dipoles embedded
between two dielectric slabs. The equivalent circuit takes advan-
tage of the periodicity of the structure to reformulate the orig-
inal problem as a certain equivalent waveguide scattering problem.
Equivalent transmission lines are used to simulate the wave prop-
agation whereas equivalent lumped circuit elements account for
presence of the metallic patches. The obtaining of the circuit pa-
rameters is carried out via a systematic procedure, which provides
a robust strategy that gives rise to surprisingly accurate results
even for rather complex situations. The proposed equivalent cir-
cuit model simplifies considerably the original complex electro-
magnetic problem and provides a valuable physical insight into
the parameters that are relevant in the phenomenon as well as
an in-depth understanding of the operation principles of the peri-
odic surface. Thus, the reported reduced-order model of the corre-
sponding scattering problem can be a very convenient and helpful
tool for the analysis and/or design of many practical devices.

Index Terms—Equivalent circuits, extraordinary transmission,
frequency-selective surfaces (FSSs).

I. INTRODUCTION

F OR many decades, microwave and antenna engineers
have dealt with the scattering of electromagnetic plane

waves by periodic arrays of metallic patches (or its dual
structure, periodic arrays of slots made in a thin metallic
surface) [1]–[7]. A similar work was also carried out in the
submillimeter and infrared regimes [8]–[11]. More recently,
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paradigmatic examples of the application of periodic distribu-
tions of metallic patches, dipoles, or slots can be found in the
frame of the so-called frequency-selective surfaces (FSSs) (see,
for instance, [12] and [13], and references therein). During
the last decade, the interest on periodic structures within the
microwave/millimeter wave domains has been focused on the
analysis of artificial magnetic conductors, hard and soft elec-
tromagnetic surfaces, partially reflecting surfaces, and other
structures conceived mainly for antenna applications [14], [15].
Multilayer stacked periodic structures for the implementation
of wideband canonical filters [16]–[19] have also received
considerable attention during the last few years. In the optical
regime, the interest on the behavior of diffraction gratings has
a longer tradition. Thus, in-depth studies of this problem can be
traced to the seminal works by Wood [20] and Rayleigh [21].
In recent years, the discovery of the phenomenon called extra-
ordinary optical transmission [22] has led to a renewed interest
on the modeling of this class of electromagnetic structures;
see [23]–[28] and references therein. In spite of some relevant
differences among the various frequency regimes due to the
different behavior of metals at different frequency regions, all
the above problems share a similar physical background. Thus,
it is apparent that the accurate modeling of the electromagnetic
response of periodic structures made of metal dipoles printed
on dielectric substrates (or holes made in a flat conducting
surface embedded in a layered dielectric medium) is a topic of
great interest for a wide technical and scientific community.
In this paper, we focus on the quasi-analytical modeling

of 2-D periodic distributions of rectangular perfect-conductor
dipoles or patches in a layered dielectric structure. Apart from
the scholarly interest that these periodic sheets may attract,
their accurate characterization is essential for many practical
applications that make use of their capability of controlling the
guidance, reflection, transmission, radiation, and absorption of
electromagnetic waves [12]–[19], [29]–[37]. The availability
of a quasi-analytical model is always a major advantage from
a practical point of view and essential for actual scientific
understanding. Thus, any further advance in the analysis of
these structures may significantly enhance the modeling and
synthesis techniques of many practical devices. Different
methods and numerical approaches have been proposed to
determine the scattering parameters of these structures. In
particular, the equivalent circuit technique has been used for a
long time [1]–[3], [6]–[13], [30], [38], [39]. As an interesting
and classical example of the application of equivalent-circuit
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methodology, it is worth mentioning that a recently popular
problem, the study of the propagation of electromagnetic waves
through the so-called wire medium (periodic array of metal
wires) [40], [41], was satisfactorily addressed using circuit
approaches in the 1950s [42]. More recent examples can be
found in [16]–[19], where the equivalent-circuit methodology
is employed to understand the behavior of stacked FSS-based
filters, or in [31]–[33], where it plays a key role in novel
leaky-wave antennas and absorbers.
A very interesting feature of the equivalent-circuit approach

is that it reduces the original problem to an equivalent one which
consists in the scattering of an incident guided wave by a trans-
verse discontinuity [2], [3] (here, the waveguide is associated
with the unit cell of the array). The main advantages of this
approach are, on the one hand, that it benefits from the great
deal of work carried out previously on waveguide discontinu-
ities [2], [43]–[45] and, on the other hand, that it allows for a
rephrasing of the original complex electromagnetic problem in
terms of an equivalent circuit network. This last feature means
that the potentially complicated wideband frequency response
of the system can be accounted for by a small number of param-
eters. These parameters can eventually be known in closed form
for some limited cases but, in general, they should be obtained
from just a few full-wave computations. In this way, it should
be understood that the equivalent-circuit methodology here pro-
posed is not a substitute of full-wave methods but a very conve-
nient complement that helps to reduce drastically the computa-
tional effort. An additional key feature of the equivalent-circuit
approach here employed is that it provides a simple and accurate
comprehension of the problem. It makes possible many impor-
tant predictions on the behavior and role of the different ele-
ments of the structure under study. This predictive nature can
be fundamental for many analysis and/or design applications.
Equivalent-circuit models are commonly limited to specific

and narrow frequency ranges. A typical restriction is to consider
the unit cell much smaller than the wavelength at the operation
frequency. This may not be an important drawback for some ap-
plications, but it precludes the use of the model to frequencies
where the unit-cell dimensions are close to the wavelength and
beyond. However, our proposed circuit model can account for
complex high-frequency effects such as extraordinary transmis-
sion. (Some of the authors have already reported a circuit-based
model [46] that gives a new perspective on the extraordinary
transmission phenomenon.) In this paper, the basic guidelines
in [46] are adapted to characterize the dual structure: periodic
structures formed by arrays of patches or dipoles. However, we
now extend significantly the scope of [46] to consider oblique
incidence, transverse electric/transverse magnetic (TE/TM) po-
larizations, and the presence of dielectric slabs. The introduc-
tion of oblique incidence as well as dielectric slabs can be car-
ried out in the equivalent-circuit network in a rather straightfor-
ward way [13]. Other physical features (losses and other geo-
metrical complexities) could be incorporated to the present cir-
cuit model by relatively simple modifications in its topology.
Simplified versions of the modeling technique here presented
have recently been proposed for 1-D metallic strips gratings
(or structures that are reducible to 1-D problems) including di-
electric slabs under normal incidence [47]–[50], and a prelim-

inary study that this paper considerably extends was reported
in [51]. It should be clarified that our proposed circuit model
works properly only when applied to single-resonant metallic
scatterers. In the derivation of the proposed transverse equiva-
lent network (TEN), it is implicitly assumed that the qualitative
shape of the current profile on the scatterers does not change
very much in the considered frequency range. To the authors’
knowledge, in the case of multiresonant scatterers, the most that
can be done is to devise certain ad hoc topology making use of
some a priori knowledge of the complete qualitative response
of the original structure in the frequency range of interest. In
our proposal, we do not use previous information to build the
topology of the TEN.
In the remaining sections, we propose appropriate topolo-

gies for the equivalent circuit network of a 2-D dipole array,
and we discuss a systematic procedure to extract the parame-
ters of the circuit from a few numerically generated full-wave
data. The analytical incorporation of the frequency dependence
of some of those parameters is a key feature of our procedure.
This is crucial to achieve robustness and accuracy over a wide
frequency band. The circuit model is valid not only around the
resonance frequency of the dipoles or patches, but over a wide
frequency band that includes effects such as Wood’s anomalies,
grating lobes, and extraordinary transmission/reflection (which
are not directly linked to the shape and geometry of the scat-
terers). Our relatively simple equivalent-circuit models can be
further combinedwith full-wave tools, or other sophisticated ap-
proaches [30], [37]–[39], to give an accurate analysis/synthesis
tool with a low computational cost. Also, the present technique
can easily be extended to characterize the complementary struc-
ture: metallic plates perforated by arrays of holes, thus comple-
menting [46].

II. CIRCUIT MODEL FOR ARBITRARY TE INCIDENCE

In order to present the basic rationale underlying our equiva-
lent-circuit model, we first consider a freestanding periodic sur-
face built from the periodic arrangement of conducting zero-
thickness metallic patches (dipoles) of dimension (see
Fig. 1). The array extends along the - and -axes, with period-
icities and , respectively. The periodic surface is located
at and a plane wave impinges on this surface from the
direction defined by . As can be seen in Fig. 1, the plane of
incidence is (with azimuthal angle 0 ), and the wave is
TE polarized (i.e., its electric field is directed along the -axis).
Therefore, in the scanned -plane, the impinging field is always
parallel to the metallic dipoles, having a strong interaction with
them. Due to periodicity, Floquet (space) harmonics are excited
by the incident plane wave as it reaches the array [13], [52].
These scattered waves can be either TE or TM polarized. The
wavenumbers in the - and -axes associated with the space
harmonics are given by

(1)

(2)

where , , and is the free-
space wavenumber, with being the frequency and the speed
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of light in vacuum. Each excited space harmonic is defined by
a pair of integers with the following associated complex
wavenumber along the -direction:

(3)

where is the cutoff frequency of the th harmonic,
namely, the frequency that satisfies

(4)

and that can be expressed as

(5)

The above cutoff frequency is determined by the array period-
icities ( and ), the angle of incidence , and the medium
dielectric constant , but it is independent on the dipole di-
mensions. For convenience, the cutoff frequency is here formu-
lated in the presence of a homogeneous dielectric medium with
permittivity . This fact is represented by the superscript ,
although free space is assumed in the present section
, which will be denoted by the superscript . Note that,

for the case of normal incidence , (5) reduces to the
well-known expression of themodal cutoff frequencies in a rect-
angular waveguide of dimensions .
At a given frequency, as (3) reveals, can be purely

imaginary or real, defining evanescent (slow) or grating (fast)
waves, respectively [13]. Specifically, each harmonic is an
evanescent wave that decays along the -direction below its
cutoff frequency . Above this frequency, is no
longer imaginary and the associated harmonic becomes a
(grating) plane wave that propagates along a direction parallel
to the vector . In our analysis,
the incident plane wave in Fig. 1 corresponds to the dominant

Floquet harmonic. This wave propagates at any given
frequency along the direction defined by (note that
is always real). In most microwave engineering and antenna
applications, the working frequencies are within the so-called
no grating lobes regime [13]; i.e., only the dominant Floquet
harmonic is propagating while the remaining harmonics are
evanescent.
In general, each Floquet harmonic can be either TE or

TM polarized, and has the following associated characteristic
impedance [13], [53]:

(6)

(7)

Fig. 1. Scheme of the freestanding array of metallic dipoles of zero thickness
under oblique incidence in -plane ( 5 mm, 0.5 mm).

Fig. 2. (a) Proposed TEN for Fig. 1. (b) Transmission line circuits involved in
the definition of and .

The above expressions tell us that, depending on the propagative
or evanescent nature of the harmonic, its associated impedance
is real or purely imaginary. In particular, inductive/capacitive
impedances correspond to TE/TM evanescent waves [13], [53].
Due to the assumed impinging TE polarization and plane of in-
cidence, the unit cell of the problem under consideration can be
seen as a transmission line formed by two parallel-to- -plane
electric walls separated by a distance and two parallel-to-
-plane Floquet walls separated by a distance (see Fig. 1). It
should be noted that the set of excited Floquet harmonics corre-
sponds to the modal solutions of this transmission line. TM
harmonics do not satisfy the specified boundary conditions and
are not excited in the structure under consideration.
According to the above discussion, the structure in Fig. 1 is

proposed to be modeled by the TEN shown in Fig. 2(a). The
propagation of the incident, reflected, and transmitted TE plane
wave is modeled by the infinite transmission lines placed at both
sides of the discontinuity. The characteristic impedance associ-
ated to these lines is real and corresponds to

(8)

The lumped elements in the series configuration shown in
Fig. 2(a) model the excitation of all other harmonics
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excited in the discontinuity [13, Ch. 5]. Specifically, the in-
ductive elements ( and ) account for the excitation of TE
harmonics, whereas the capacitive components ( and )
account for the TM contribution. The impedances

(9)

(10)

characterize the excitation of the TE and TM harmonics with
lowest cutoff frequencies ( and , respectively). In
these expressions, each considered harmonic is associated
with certain pair, and is a factor that accounts for
the relative degree of excitation of each TE/TM th harmonic.
In this work, we assume that these latter factors are indepen-
dent of frequency, a feature that is expected provided that the
current profile on the scatterers does not change significantly
with frequency. The contribution of each TE/TM wave in
(9)–(10) is proportional to the input impedance of its corre-
sponding equivalent transmission line, which here corresponds
to an infinite transmission line of impedance , as
shown in Fig. 2(b). The higher order TE and TM harmonics
that were not considered in (9)–(10) are highly evanescent
waves whose global effect can be accounted for by means of
a frequency-independent inductance and capacitance ,
respectively. This is possible because in (6) and (7) is
practically independent of frequency in this case.
Thus, we propose the following general procedure to model

the discontinuity effect for frequencies less than a given fre-
quency .
1) Determine the number of TE and TM harmonics above
cutoff at [this number depends on the angle of
incidence, as can be deduced from (5)].

2) Take the values of and as one plus the number
of TE and TM harmonics above cutoff, respectively.

3) Compute the values of the frequency-independent com-
ponents ( and ) and the excitation coefficients
( ) from a few full-wave values of the reflection
coefficient .
It should be considered that the parameter in Fig. 2(a)
can be related to the lumped-element parameters in this
circuit in the following way:

(11)

If the above equation is written for a set of frequency
values, we obtain a linear system of equations whose solu-
tion is the set of unknown parameters of our equivalent cir-
cuit model. The number of full-wave computations of the

parameter is determined by the number of unknowns,

namely, (typically no more than four or
five for freestanding periodic surfaces). The solution to the
system of equations is, in general, sensitive to the chosen
set of frequency points. However, according to our numer-
ical experience, very stable and physically meaningful so-
lutions are found if two of the evaluated frequency points
are taken in the low-frequency regime (these points mostly
influence the characterization of the two frequency-inde-
pendent parameters). In particular, we have used values
of frequencies that are 0.01 and 0.03 times the onset fre-
quency of the grating lobe regime. The rest of frequency
points (which have more influence in the characterization
of the excitation coefficient) are taken as 0.95 times the
onset frequency of the and harmonics, respec-
tively. If TM and TE harmonics have the same onset fre-
quency, the respective sampling frequencies are taken as
0.95 and 0.98 times this onset frequency.

Following the Fabry–Pérot condition, every zero-thickness
metallic dipole in the array resonates at a frequency where its
length is roughly half a wavelength [1] (the fringing fields make
the Fabry–Pérot condition only approximate). If this condition
occurs at a frequency below the grating lobe regime, the array
only presents total reflection at this frequency. However, if the
Fabry–Pérot dipole resonance does take place in the grating
lobe regime, an extraordinary total reflection is still expected to
occur before the onset of the first grating lobe (as was reported
in [22] for total transmission in a dual structure). Moreover,
the extraordinary reflection can be related to the appearance of
Fano resonances [54], i.e., a peak of total reflection/transmis-
sion which precedes a very close null of reflection/transmis-
sion. Therefore, depending on the length of the dipoles, the pe-
riodic surface can present either conventional or extraordinary
reflection; or, in other words, either Fabry–Pérot- or Fano-type
resonance.
Thus, in order to check the validity of our proposed equiv-

alent circuit, the dipole array described in Fig. 1 with
2 mm is studied in Fig. 3(a). This figure shows the reflectivity
under plane wave oblique incidence ( 20 ) computed with a
full-wave method-of-moments approach [34] and with the pro-
posed TEN of Fig. 2. Fig. 3(a) shows an extraordinary reso-
nance (total reflection ) at approximately 44.5 GHz
(the expected dipole Fabry–Pérot resonance should be around
75 GHz). Three nulls can also be observed in the reflection co-
efficient at approximately 44.7, 63.9, and 70 GHz. These nulls
can be associatedwithWood’s anomalies that appear at the onset
of higher order harmonics [46]. Specifically, at the cutoff fre-
quency of TE harmonics, their associated TE impedance di-
verges to infinity [see (6)], which causes to behave as an
open circuit in Fig. 2. Therefore, perfect impedance matching is
experienced by the incident wave at these TE cutoff
frequencies [13], [46].
The above fact is illustrated in Fig. 3(b), where the higher

order harmonic cutoff frequencies for the considered array are
plotted as a function of the angle of incidence. These frequen-
cies are computed using (5), and are identical for both TE and
TM polarization. As mentioned above, no TM harmonic can
be excited. The squares in Fig. 3(b) point out the onset of the
first harmonics when 20 , which occur at 44.7, 63.9, and
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Fig. 3. (a) Magnitude of the reflection coefficient for the structure in Fig. 1
under 20 incidence and dipoles with 2 mm. (b) Cutoff frequencies as-
sociated with the higher order th harmonics excited in the structure as a
function of the angle of incidence.

70 GHz (harmonics , , and , respec-
tively) and correspond to the reflectivity nulls in Fig. 3(a). If
only the frequency-independent elements and are con-
sidered in the circuit model [curve , in
Fig. 3(a)], the array response is accurately predicted only for
low frequencies and the aforementioned reflectivity nulls are
not obtained. These lumped elements predict a conventional
total reflection (Fabry–Pérot-type resonance) at 71 GHz. When
the impedance of the first higher order TE harmonic is consid-
ered in the TEN [curve , in Fig. 3(a)],
both the total reflection peak at 44.5 GHz and the first null at
44.7 GHz are accurately obtained. It can then be concluded
that the peak at 44.5 GHz is mainly caused by the inductive
impedance associated with the first TE higher harmonic in the
circuit model . This impedance quickly diverges to in-
finity close and below the onset of the mode, thus providing the
needed inductance to resonate with the capacitance (
since ). This resonance makes the equivalent cir-
cuit behave as a short circuit, causing the appearance of total
reflection ( ). Wood’s anomaly associated with the
onset of this harmonic (null at 44.7 GHz) is also accurately pre-
dicted. Successive incorporations of the second and third TE
harmonics [with respective resonances at 63.9 and 70 GHz in
Fig. 3(b)] provide accurate description of the second and third
nulls.
It should be noted that the higher order impedances become

real after the onset of their corresponding harmonics, resulting
in radiation losses in the TEN of Fig. 2(a). The onset of the first

Fig. 4. Magnitude of the reflection coefficient for the structure in Fig. 1 under
different angles of incidence. (a) 2 mm. (b) 3.5 mm.

higher order harmonic determines the beginning of the grating
lobe regime. Therefore, above the frequency of the first reflec-
tivity null (44.7 GHz), total reflectivity peaks ( ; i.e.,
perfect mirror reflectance) cannot occur anymore. Nevertheless,
it can be observed in Fig. 3(a) that local maxima appear be-
tween every two consecutive nulls. The capacitive impedances
associated with TM higher order harmonics are also required to
accurately predict the array response. Their inclusion is neces-
sary although they do not produce nulls in the reflection coef-
ficient [since their characteristic impedance does not diverge at
their cutoff frequency; see (7)]. In the case treated in Fig. 3(a),
the number of higher order harmonics needed to accurately ob-
tain the array response until 70 GHz is and

. The above results make evident that the reflectivity
response provided by the simple circuit model perfectly matches
the full-wave results, and that it gives a good physical insight
into this complicated response, even in the grating lobe region
(diffraction regime). These results also prove the important re-
duction of computational effort that our approach provides. In
the case of Fig. 3(a), around 500 full-wave points were needed
to obtain the complete spectrum (red curve), whereas only seven
simulations were performed when applying our equivalent-cir-
cuit approach (blue curve).
The effect of the angle of incidence can also be modeled and

interpreted by the proposed circuit model. The reflectivity of
the dipole array previously considered is now shown in Fig. 4
for three different angles of incidence ( 0 , 40 , 80 ). In
order to characterize our structure up to 60 GHz, it is necessary
to select the appropriate values of and for each
angle of incidence. This can be done by looking at Fig. 3(b),
where we can see that is required to obtain
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Fig. 5. Scheme of the TE-polarized wave excitation in -plane of the dipole
array in Fig. 1 when sandwiched between dielectric slabs.

Fig. 6. (a) Equivalent circuit for the scattering of an obliquely incident plane
wave in the periodic array shown in Fig. 5. (b) Transmission line circuits in-
volved in the definition of and .

the 0 curve in Fig. 4, whereas and
are needed to obtain the curves corresponding to 40 and

80 . Fig. 4(a) shows the extraordinary reflection peaks
produced by dipoles of less-than-half wavelength compared to
the array periodicity ( 2 mm, with Fabry–Pérot resonance
around 75 GHz), whereas conventional resonances are shown
in Fig. 4(b) for the case of longer dipoles ( 3.5 mm,
with Fabry–Pérot resonance around 40 GHz). Again, excellent
agreement is obtained between full-wave results and the circuit
model.

III. DIPOLE ARRAY IN STRATIFIED MEDIUM

Once we have discussed the basis of our model for the simpler
case of a freestanding dipole-based periodic surface, in this sec-
tion, we characterize this surface when sandwiched between di-
electric slabs (see Fig. 5). The incident wave impinges obliquely
on the array in the plane ( -plane) with an angle . Fol-
lowing the guidelines reported in Section II, the TEN in Fig. 6
is proposed in order to model this structure, where we can ob-
serve important changes with respect to the TEN in Fig. 2. First,
the propagation of the incident, reflected, and transmitted TE
plane wave inside the dielectric slabs is modeled in Fig. 6(a)
by the transmission lines of finite length and , which are
placed at both sides of the discontinuity. The characteristic im-
pedances associated with these lines are and , re-
spectively, and can be obtained using (8). In order to account for
the excitation of higher order harmonics at the discontinuity, it

is necessary to introduce the following impedances defined in
Fig. 6(b):

(12)

(13)

In similarity to the rationale followed in [13, Ch. 5], the contri-
bution of each TE/TM th harmonic to the total impedance

or is accounted for by the parallel connection
between and , which can be
written as

(14)

(15)

Looking at the above expressions, the combined influence of
both dielectrics in the response of the array can be observed.
Specifically, the cutoff of higher order harmonics in the dielec-
tric mediums (onset of the so-called “trapped” surface waves
[13, Ch. 5]) plays an important and intricate role in the appear-
ance of singularities in and as well as in the subsequent
generation of reflectivity resonances and nulls. Here, the cap-
ital relevance of setting up the appropriate connections between
the different elements in order to make the equivalent network
physically meaningful should be emphasized. Otherwise, the
TEN would be no more than a numerical fitting procedure valid
in a certain frequency region. From the proposed TEN, the fol-
lowing identity can be written:

(16)

where is the reflection coefficient at the reference plane
, as shown in Fig. 6(a). This coefficient can readily be

expressed in terms of the reflection coefficient at
[53], which is the coefficient that can directly be obtained from
full-wave simulations [34]. Thus, the parameters , , and

can be obtained after solving the system of equations
resulting from particularizing (16) at a few values of frequency.
Similar to the case of freestanding dipoles, as many full-wave
data points as the number of unknowns are needed. The choice
of the evaluated frequency values basically follows the same
general rules reported in the previous section. However, in the
present case, we propose to take the high-frequency points near
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and below the onset of the higher order harmonics in the denser
dielectric medium.
The cutoff frequency of higher order harmonics is lower in-

side a dielectric medium than in free space. Thus, the frequency
range satisfying corresponds to the ex-
istence of harmonics that are propagative in the dielectric slab
but that are still evanescent in free space. Hence, in this range,
trapped surface waves appear below the grating lobe regime
[13]. [The grating lobe regime is still determined by the fre-
quency at which the first higher order harmonic becomes prop-
agative in free space; 60 GHz in the present case for normal
incidence, as shown in Fig. 3(b)]. As a consequence, the total
amount of higher order harmonics that should be considered in
the TEN increases with respect to the freestanding case. Since
(14) and (15) show that the dielectric slabs contribute as a whole
[13], the proposed number of higher order harmonics ( and

) is now one plus the number of launched trapped surface
waves in the denser slab. This rule should be modified to two
plus the number of launched trapped surface waves in the denser
slab when the thickness of the slab is similar to or larger than
the slab wavelength.

A. Identical Slabs

The generation of trapped surface waves due to the presence
of the dielectric slabs considerably increases the complexity of
the situation [13] with respect to the freestanding case. Thus,
the case of identical slabs is first considered in order to reach
gradually the most complex case. This scenario corresponds to

and in Figs. 5 and 6. Note that the
input impedances defined in (12) and (13), which are associated
with the excitation of higher order harmonics at each side of the
discontinuity, are equal in the case of identical dielectric slabs.
Therefore, the following input impedance can now be defined:

(17)

which makes the analogy between this situation and the one pre-
sented in Section II clearer. Fig. 7 shows the cutoff frequency
chart versus the angle of incidence in a dielectric medium with

, and the same array periodicity as in previous exam-
ples ( 5 mm). For normal incidence, the onset of
the trapped surface waves occurs at 35 and 49 GHz, well below
the starting frequency of the grating lobe regime (60 GHz).
As a result, two singularities appear at approximately 47.3 and
62.5 GHz in , where the denominator of (17)
is zero (more specifically, at 47.3 and 62.5 GHz for the TE
and TE harmonics, respectively). At these frequencies, di-
verges, causing an open circuit in the branch of series elements
that account for the effect of the dipoles in Fig. 6(a). Since this
open circuit makes this branch irrelevant, the complete structure
should behave as if the dipoles were not present.

Fig. 7. Cutoff frequency of higher order harmonics for .

Fig. 8. (a) Magnitude of the full-wave reflection coefficient at normal inci-
dence for the structure in Fig. 5 with , 0.5 mm,

5 mm, and 0.5 mm. (b) For the case of the red dotted line
in Fig. 8(a), comparison between full-wave and circuit model results (configu-
rations: , , and ,
respectively).

The above fact is corroborated in Fig. 8(a) at 47.3 and
62.5 GHz where the dashed blue curve (which shows the
behavior of the structure without dipoles) crosses with the
dotted red curve (with dipoles). Fig. 8(a) shows two reflectivity
resonances below the grating lobe regime for the dielectric
sandwiched array with dipole length 2 mm. These two
resonances are of Fano type, in similarity with the freestanding
case. However, in this latter case, the solid back line in Fig. 8(a)
shows that only one Fano resonance can occur below the
grating lobe regime. Once within the grating lobe regime,
leakage to secondary grating lobes prevent the appearance of
additional total reflection peaks [see Fig. 8(a) above 60 GHz].
The reflection nulls in the dashed red line in Fig. 8(a) do not
appear at the cutoff frequencies of the trapped surface waves
(35 and 49 GHz), as happened in the freestanding case. In
the presence of dielectrics, the impedance matching condition
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Fig. 9. Magnitude of the reflection coefficient for the structure in Fig. 5 with
0.5 mm, and 2 mm (unit cell:
5 mm and 0.5 mm). (a) Different angles of incidence.

(b) Details of the appearance of grating lobes.

[46] responsible for the reflection nulls requires that the input
impedance at equals that of the incident transmission
line. Although this condition is not easily expressible in closed
form, it can be observed that it does not only depend on the
unit-cell dimensions but also on the characteristics of the
dielectric slab as well as on the dipole geometry. (This latter
dependence comes through the excitation parameters
appearing in and .)
In order to investigate the role played by the dielectric-slab

higher order harmonics on the behavior of the array reflectivity,
Fig. 8(b) shows the results obtained using different numbers of
harmonics. If only the first TE and TM higher order harmonics
(TE and TM ) are considered, the subplot
in Fig. 8(b) shows that the reflectivity response is accurately
modeled up to the frequency of the first resonance and subse-
quent null ( 39 GHz). The addition of extra harmonics is
needed to retrieve the following nulls and associated maxima.
The addition of the second TE and TM harmonic (TE and
TM ) implies that the second trapped surface wave inside the
dielectric is now considered. The effect of these additional har-
monics is depicted in the subplot , which
shows now a good agreement for the two Fano resonances. Fi-
nally, the subplot in Fig. 8(b) shows the
effect of the addition of the third TE and TM harmonic (TE
and TM ). It can be seen that this addition helps to accurately
reproduce the reflectivity local maximum at 66 GHz, which fails
to be total reflection within the grating lobe regime.
In Fig. 9(a), the effect of increasing the angle of incidence is

shown. At normal incidence, we can observe two extraordinary
total reflection peaks but only one of these peaks remains for the
other incidence angles here considered (which do show several
nontotal reflection peaks). As can be seen in the cutoff chart for
the dielectric medium with (Fig. 7), the cutoff of the

first higher order TE harmonic decreases from 35 to 25 GHz as
increases from 0 to 40 . Related to this fact, the lowest res-

onance frequency also decreases in Fig. 9(a) from 38 GHz at
normal incidence to 32 GHz at 40 . However, it should
also be observed that the grating lobe frequency [shown in the
free-space cutoff chart in Fig. 3(b)] also decreases from 60 GHz
at 0 to 36.52 GHz at 40 . Consequently, no additional
total-reflection peaks are observed in Fig. 9(a) for 40 .
At the onset of the grating lobes, an inflection in the reflec-
tivity response is observed. This detail is amplified in the sub-
plot 40 of Fig. 9(b). The reflectivity response for 80
bears some similarities to that observed for 40 . Thus, the

80 curve in Fig. 9(a) shows a single extraordinary reflec-
tion peak that is shifted to lower frequencies ( 27.5 GHz), fol-
lowed by a closer grating lobe onset now located at 30 GHz [see
Fig. 3(b)]. A similar inflection point is also observed at 30 GHz
in the subplot 80 of Fig. 9(b). It should be highlighted
that the circuit-model approach perfectly matches the compli-
cated spectrum given by the full-wave method, including all the
fine details of very sharp resonances, inflection points, partial
maxima and minima, etc.

B. Different Slabs

Once the symmetric scenario has been analyzed, we can now
use the experience gained in this case for the analysis of a dipole
array sandwiched between arbitrary dielectric slabs. In this sit-
uation, the cutoff of higher order harmonics in both dielectric
slabs is again related to the appearance of singularities in
and . Therefore, the same discussion about the launch of
trapped surface waves in the symmetric case can now be ap-
plied. One particular scenario of great practical interest is found
when the metallic arrays of dipoles are printed on a dielectric
slab [12], [14], [30], [34]–[36], [38], [39], [49]. In order to vali-
date our TEN in this particular situation, the same unit cell pre-
viously studied and described in the caption of Fig. 1 is now
modeled when printed on a thin supporting substrate. For this
purpose, it is assumed that the upper dielectric in Fig. 5 is free
space whereas the lower supporting substrate has

0.5 mm, . As an example study of this struc-
ture, Fig. 10 shows the reflectivity under plane wave oblique
incidence ( 40 ) for both electrically small and long dipoles
( 2 mm and 3.5 mm, respectively). Apart from the
excellent agreement again observed between our equivalent cir-
cuit approach and the full-wave simulations, some physical ex-
planations for these results are once more given by the circuit
model. In Fig. 9(a), we can observe that only one total reflec-
tion peak is found in both curves below the grating
lobe regime. This regime is reached at 36.53 GHz in both cases,
which is clearly manifested as an inflection in the curves.
However, instead of the reflectivity nulls below the grating lobe
regime in Fig. 9(a), only local minima are found in Fig. 10. In
fact, total transmission is not expected to occur
easily when the dielectric slabs are not identical (the condi-
tions to have impedance matching at are now much
harder to obtain owing to the parallel connection of the “left”
and “right” impedances). The same cutoff frequency chart of
Fig. 7 is now employed to set the values of the significant TE
and TM harmonics. In particular, the results plotted in Fig. 10
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Fig. 10. Magnitude of the reflection coefficient under 40 incidence for the
structure of Fig. 5 with , , 0 mm, 0.5 mm,

5 mm, and 0.5 mm.

Fig. 11. (a) TM-polarized wave excitation in -plane of a dipole array sand-
wiched between dielectric slabs. (b) Proposed circuit model.

have been obtained with and , which are
equal to one plus the number of TE and TM harmonics above
cutoff in the dielectric below 60 GHz, respectively.

IV. DIPOLE ARRAY UNDER TM INCIDENCE

The methodology previously used in the study of the TE in-
cidence case can equally be applied when the exciting plane
wave is TM polarized or it impinges in other planes. In prac-
tice, partially reflecting sheet arrays are normally illuminated by
a single central feed [1], [12], [14], [30], [34]–[36], [38], [39],
[48], with the feeding element oriented so that the excited po-
larized electric field has a strong interaction with the dipoles.
Therefore, the characterization of the periodic array under TM
polarization becomes relevant when the scan plane of incidence
is ( -plane). An equivalent network can also be proposed for
TE polarization in -plane or TM in -plane, although these
cases are less relevant from a practical point of view. Thus, in
this section, the incidence of a TM-polarized plane wave in the
-plane of a dipole array [illustrated in Fig. 11(a)] is modeled

by the circuit model shown in Fig. 11(b). The only difference
between this TEN and the one in Fig. 6(a) is in the transmis-
sion lines at both sides of the discontinuity. The transmission
lines now model the propagation of the incident, reflected, and

Fig. 12. Higher order harmonic cutoff frequency in free space (unit cell with
periodicities 5 mm).

transmitted TM harmonic. As a consequence, the same pro-
cedure explained in Section III can here be employed. The im-
pedances and in Fig. 11(b) are again defined by (14)
and (15). Equation (16) can also be solved for the unknown
values of , , and considering that is the re-
flection coefficient plotted in Fig. 11(b). Due to the change in
the plane of incidence, the excited harmonics now propagate
along the - and -axis with the following wavenumbers ( ,

):

(18)

(19)

The cutoff frequencies associated with higher order harmonics
can be computed as

(20)

The periodic problem under consideration can be reduced to
a single unit-cell problem with magnetic walls parallel to the
-plane and Floquet walls (periodic boundary conditions) par-

allel to the -plane. Therefore, TE harmonics do not satisfy
the boundary conditions, and are not excited by the TM polar-
ized impinging wave. This fact is illustrated in Fig. 12, which
shows the higher order cutoff frequencies computed for free
space in a unit cell with periodicities 5 mm. In
contrast to Fig. 3(b), the first grating lobe is now produced by
the harmonic TM , instead of TE .
Our first study for TM incidence is the freestanding case

shown in Fig. 13(a), where the reflectivity of a dipole array with
dimensions 5 mm, 0.5 mm, and 2 mm is
shown. Normal TE incidence in -plane and TM incidence in
-plane are equal and, therefore, the 0 curves in Figs. 4(a)

and 13(a) are identical. As was explained in Section III, for
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Fig. 13. Magnitude of the reflection coefficient for the structure described in
Fig. 1 under oblique -plane TM incidence. (a) Dipole length 2 mm.
(b) 3.5 mm.

normal incidence, an extraordinary transmission peak appears
at 56.7 GHz, before the onset of the first TE harmonic. For
each angle of incidence, Wood’s anomalies (reflection nulls)
found in Fig. 13(a) exactly appear at the onset of TE harmonics,
analytically predicted in Fig. 12. Specifically, the reflectivity
null associated to the onset of the harmonic TE increases
from 60 GHz at 0 to 63.9 GHz at 20 and 78.4 GHz at 40 (as
marked with black circles in Fig. 12). In contrast, the onset of
the harmonic TE decreases from 85 GHz at 0 to 70 GHz
at 20 , and 63.1 GHz at 40 (marked with black squares in
Fig. 12). It should be recalled that the beginning of the grating
lobes regime is now set by a TM harmonic (see TM curve
in Fig. 12), which does not diverge at its cutoff, and therefore,
it does not produce a singularity in the reflection coefficient.
The consequence of this is the suppression of the extraordinary
total reflection for oblique incidence, as shown in Fig. 13(a).
The divergence of the first TE harmonic occurs in the grating
lobes regime, where (as was explained in Section II), no total
reflection can be produced. Yet, a peak of maximum reflectivity
can still be found before the onset of the first TE harmonic,
whose level decreases as increases. Fig. 13(b) also shows
the reflectivity response of the previous unit cell when
3.5 mm. The 0 curve again coincides with the one in
Fig. 4(b), and as was explained in Section II, conventional
total reflection appears at 40 GHz. This resonance may also be
suppressed when the onset of the TM harmonic is lower
that the quasi-static resonance of the dipole, as is illustrated

Fig. 14. Magnitude of the reflection coefficient under 40 TM incidence
on -plane for the structure of Fig. 11 with 5 mm, 0.5 mm,

, , 0 mm, and 0.5 mm. (a) Dipole length
2 mm; (b) 3.5 mm.

by curve 40 in Fig. 13(b) (TM cutoff frequency is
36.53 GHz, lower than 40 GHz). In this case, the onset of the
first TE harmonic is not directly responsible for the appearance
of the conventional reflection peak. Therefore, in contrast to
what happens in Fig. 13(a), the resonance does not disappear
for every incidence greater than zero. For example, Fig. 13(b)
shows that total reflection still occurs when 20 , due to
the fact that the onset of the TM harmonic is above 40 GHz
(45 GHz as shown in Fig. 12). In Fig. 13(b), an inflection in the
reflectivity response can be observed at the onset of the grating
lobes.
The practical design studied in Section III of a dipole array

printed on a thin dielectric substrate can again be modeled under
TM incidence in -plane using the TEN proposed in Fig. 11(b).
Fig. 14 shows the reflection coefficient presented by this printed
structure under oblique incidence ( 40 ) for electrically
small [Fig. 14(a)] and long dipoles [Fig. 14(b)]. The onset of
the grating lobe regime causes again an inflection at 36.53 GHz,
which has been zoomed in on each figure. The existence of a
trapped wave inside the dielectric slab gives rise to a short cir-
cuit in the branch of series impedances in Fig. 11(b) at a fre-
quency close to the onset of the grating harmonic TM . After
this reflection peak, there quickly appears a reflection dip that
causes an extraordinary (Fano) resonance before 36.53 GHz
(see Fig. 14). In addition, the conventional resonance peak has
not been suppressed in Fig. 14(b) since it now appears at a
frequency below the onset of the first grating lobe. The cir-
cuit-model results shown in Fig. 14 have been obtained using

and in (14) and (15) according to the gen-
eral rules previously reported.
Before finishing our study we would like to highlight that

our equivalent-circuit model can also be used to characterize
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Fig. 15. Magnitude of the reflection coefficient under TM normal incidence
for periodic arrangements ( 5 mm) of circular rings ( 3 mm,

0.5 mm) and cross dipoles ( 2 mm, 3.5 mm, and
0.5 mm). The arrays are printed on a substrate of , 1 mm.

structures with more complicated geometries of the scatterers,
with the condition that their current profile does not change sig-
nificantly with frequency. This includes many cases of prac-
tical interest, such as those recently reported in [56]–[58]. As
representative examples, next we study two arrays of different
printed elements (i.e., a cross dipole and a symmetric ring) under
TM normal incidence in Fig. 15. In the cross-dipole case, the
reflectivity response has been studied when the exciting TM
plane wave impinges either in the -plane or the -plane (i.e.,
the electric field is polarized along the - or -axis, respec-
tively). The cross-dipole scatterers are sensitive to both polar-
izations since they have long metallization along both the -
and -directions. As can be inferred from the previous analysis
with simple metallic dipoles, the total reflection peaks found
at 48.5 GHz in the -plane and 34 GHz in the -plane are
mainly related to the dimensions and , respectively. When
dealing with a symmetric ring structure, the same results are ob-
tained in both planes for normal incidence. The total reflection
peak at 28.6 GHz in Fig. 15 appears when the wavelength is
approximately the perimeter of the ring [55]. The good agree-
ment with full-wave simulations proves the versatility of our
approach.

V. CONCLUSION

A systematic approach to the circuit modeling of the reflec-
tion/transmission features of 2-D arrays of printed/free standing
conducting dipoles has been described in this paper. This ap-
proach is based on the physical modal decomposition of the
electromagnetic fields around the scatterers (printed dipoles
in our case). The contribution of the infinite number of very
high-order modes scattered by the printed surface can be rep-
resented by a simple inductor and a simple capacitor. Only TE
and TM modes with cutoff frequencies in the region of interest
must be treated explicitly. After setting up the appropriate con-
nection characteristics of the proposed equivalent network, the
specific contribution of these few modes can be extracted by
solving a small linear system of equations whose coefficients
come from a few full-wave numerical simulations carried out
at certain specific frequency points. The accuracy of the cir-
cuit model predictions has been demonstrated for two different

polarizations and a wide range of frequencies and incidence
angles. The availability of a circuit model not only reduces
the overall computational effort but, even more importantly, it
also provides a theoretical frame for understanding the quali-
tative performance of the patterned surface and to design de-
vices based on such structures. In particular, the extraordinary
reflection behavior that has given place to various and contro-
versial theories in the past is very simply accounted for by our
model.
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