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Analytical Wideband Model for Strip/Slit
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Abstract—This paper presents a fully analytical model to de-
termine the transmission and reflection properties of planar 1-D
distributions of metal strips or slits made in thin metal screens.
In contrast with other analytical or quasi-analytical approaches,
the formulation incorporates the presence of dielectric slabs and
is valid over a wide frequency band, from the long wavelength
limit to the grating lobes operation. The model has been adapted
to the case where two 1-D planar grids are stacked or a single
grid is printed on a grounded substrate. In these cases, the model
rigorously takes into account higher order mode interaction
between the two stacked arrays of strips/slits or with the ground
plane. Oblique incidence and both TE and TM polarizations have
been considered. The analytical results show a good agreement
with those computed by high-performance numerical methods,
accounting for very fine details of extremely complicated trans-
mission/reflection spectra. These results are of straightforward
application to a variety of practical situations from microwaves
to the terahertz regime. The present methodology can still be
useful at higher frequencies provided that adequate models of
the planar conductors are incorporated. In general, the model
provides physical insight on the nature of the expected spectra and
facilitates the design of devices based on planar metallic gratings.

Index Terms—Diffraction gratings, equivalent-circuit model, ex-
traordinary and conventional transmission/reflection, impedance
matching.

I. INTRODUCTION

HE ANALYSIS of the electromagnetic response of

periodic distributions of metallic planar scatterers (or
planar apertures made in a metallic flat surface) has been
a topic of interest for decades. This type of structure finds
applications at very different frequency ranges, from the
microwave and millimeter-wave bands (frequency-selective
surfaces [1], polarizers [2], [3], artificial magnetic conductors
[4], high-impedance surfaces [5], or partially reflective surfaces
[6], just to mention a few examples) to the optical regime
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Fig. 1. Schematic representation of the problems under study. TM and TE
polarizations and oblique incidence of the impinging wave are considered.
(a) Slit-like 1-D planar grating with a stratified dielectric medium. (b) Strip-like
1-D planar grating in the same stratified environment.

[7]-9], including infrared [10], [11] and terahertz applications
[12], [13]. Apart from the technological interest of the practical
applications of those structures, scientific curiosity has also
triggered a lot of research on periodic planar or quasi-planar
structures since the advent of extraordinary optical transmission
[14]-[16].

The simplest geometry of the kind discussed above consists
of an infinite 1-D periodic array of planar metal strips. As
shown in Fig. 1, the strips could be embedded in a multilayered
dielectric environment. In spite of its simplicity, this structure
has been employed in different applications and frequency
ranges, even in very recent studies [6], [9], [17]-[21]. Due to
its geometrical simplicity, the structure can be analyzed with
numerical methods allowing for a high degree of analytical
preprocessing [22]. Under certain restrictions, it is possible
to develop analytical or quasi-analytical methods, such as
those found in [23]-[25]. Some of the authors of this paper
have recently introduced an equivalent-circuit model involving
lumped elements and transmission lines that removes many
of the limitations encountered by previously developed an-
alytical approaches [26], [27]. The same kind of model has
also been used to explain an interesting phenomenon exhib-
ited by strip-like structures under TE illumination [28], [29]
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(anomalous extraordinary transmission) or to design a terahertz
polarizer [30]. The model is based on the idea of considering
each unit cell of the periodic structure as a virtual parallel-plate
waveguide discontinuity problem. This point of view is ex-
plicitly used in [31] and [32] to generate the numerical model
and, to the authors’ knowledge, the first wideband circuit
model approach is fully developed in [33]. In that paper, a
few parameters (such as the values of lumped capacitors and
inductors) were numerically obtained from full-wave solutions
at a reduced number of frequency points. The approach in [27]
for strip-like structures loaded with dielectric slabs took a step
further in the analytical path, but still needed the numerical
computation of one lumped component. The formulation in
[27] started with a simplified mode matching scheme where
a number of reasonable approximations were included. Our
first aim in this paper is to eliminate the need for any kind
of numerical simulations and to extend the scope of the work
previously presented in [34]. This is done by starting with an
integral-equation formulation for the electric field along the
slits or for the electric current supported by the metal strips.
If a reasonable assumption for those quantities is done, the
proposed procedure leads to a fully analytical model (readily
cast in the form of an equivalent circuit), where all the parame-
ters are known in closed form. In contrast with other intuitive
circuit-like approaches, lumped capacitors (inductors) do not
necessarily coincide with the electrostatic (magnetostatic)
values since frequency-dependent information associated with
the lowest order scattered TE/TM modes is explicitly extracted
out. This procedure leads to a very wideband equivalent circuit
that is valid from zero frequency up to frequencies above the
onset of the first few grating lobes. This is true for any angle
of incidence provided the slits or the strips are electrically
narrow. Apart from its fully analytical nature, another signifi-
cant advantage of the formulation presented in this paper (with
respect to the most closely related previous development in
[27] and [34]) lies on its ability to deal with conductor backed
strip/slit-like structures or with two stacked identical gratings.
The interaction between two closely spaced gratings or the
interaction of a single grating with a ground plane is accurately
incorporated to the model. This has been done by considering
all the relevant modes involved in the interaction, and not only
the fundamental mode as it has been commonly done (see,
e.g., [35]). A number of examples will illustrate the accuracy
and wideband behavior of the proposed analytical model. The
analytical results will be compared with a highly accurate and
numerically efficient integral-equation formulation using full
domain basis functions that incorporate the actual physical
edge behavior.

II. DERIVATION OF THE ANALYTICAL MODEL

The derivation of the equivalent-circuit models here proposed
follows a rationale similar to [27], but is based on an integral-
equation approach instead of a mode-matching scheme. First
we derive the circuit model for a single grating placed between
two different dielectric half spaces and later the presence of di-
electric layers (see Fig. 1) is incorporated in the model by cas-
cading transmission line sections, each of which corresponds to
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Fig. 2. (top) Unit cell corresponding to a periodic structure consisting of a pe-
riodic array of electrically narrow slits. (bottom) Circuit model to account for
the scattering coefficients of the impinging electromagnetic wave.

a dielectric layer. Thus, if we consider the structure depicted
in Fig. 2, and assume an implicit time—harmonic dependence
of the type exp(—jwt), the transverse electric field at the screen
(2 = 0) can be expanded in a Floquet series of spatial harmonics
as

E(z) = (1+R)e ™+ Y Eyeritth)r (1)

n#0

where the amplitude of the impinging wave has been normalized
to unity, I is the reflection coefficient of the zeroth harmonic,
ky is the tangential-to-the-grating component of the wave vector
of the obliquely incident plane wave (in the present case, k; =
kisind, with k1 = w/e1fi), and k,, = 27an/a. In the fol-
lowing, we will suppress the range of the index » in the sum-
mation if it is from —oo to co. Since the electric field is contin-
uous across the dielectric interface and zero on the perfect con-
ducting screen, the same expansion coefficients are valid at both
sides of the grating, which implicitly implies 1 4+ 2 = T with
T being the transmission coefficient. The transverse magnetic
field at both sides of the grating [H " (x) = H(x,z = 0~) and
H®)(x) = H(x,z = 0)] is then given by

HO (@) =¥V (1 = Rje #e =3 YW E, e ilketkade (2
n#£0

H(Z)(TL‘) :YO<2)(1 + R)efjktm_i_z Yn(VZ)El"’efj(kt—Q—kn)m 3)
n#0

where

p
: TE harmonics
e )
we; .
- TM harmonics.
e

Y =

is the transverse (with respect to z) wave admittance of the nth
harmonic in the +th medium with

B = Vwleipo — (ki + k)2 )

being its propagation wavenumber along z. Next we consider
separately the cases of slit and strip gratings.
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A. Slit Gratings

If we denote the transverse electric field at the slit aperture as
E.(x), the coefficients of the electric field expansion in (1) can
be obtained by standard Fourier analysis as

1 w/? ik, ® L=
1+R== Ey(x)e " da = — (k) (6)
a., —w/2 a
1 -w/2 . 1=~
E, =~ / E(a)e B TF0rqy = — B (ky + kn) (7)
a., —w/2 a

where the tilde over the slit field denotes Fourier transform.
From the above equations, we can write
E(ky + kn
E,=(1+ R)M (8)
Es (lﬁ?t)

which relates the coefficient of every spatial harmonic with the
reflection coefficient. Now the continuity of the magnetic field
through the slit is projected over the electric field at the aperture
to obtain

w/2
| E@EP@ - 1@k =0 O
—w/2

where the asterisk indicates the complex conjugate. Introducing
the expansions of the magnetic field in (2) and (3) into (9), we
find the following expression for the reflection coefficient:

B Yo(l) _ YO(Z) — Yo

R = (10)
Y[)(l) + YO(Z) + qu
where
. 2
E (ks + k) .
Yoo = AU I GO N 4O 11
2q 7;) Eb(]%t) ( n n ) ( )

is identified as the global admittance of the equivalent circuit
in Fig. 2. This admittance indicates that the equivalent circuit
consists of a parallel connection of the wave admittances of
the higher order spatial harmonics at both sides of the metallic
grating, multiplied by a factor related to the spatial spectrum of
the field profile at the slit (this factor could be interpreted as a
transformer ratio). Unlike [27], these factors can now incorpo-
rate the a priori knowledge of the approximated field profile in
the aperture (in [27] these factors were independent of . as well
as the incidence angle). Although (11) is a rigorous expression
that is valid at any given frequency and for any slit width, in
principle it is of little practical use unless the electric field at the
slit aperture is known. Fortunately, for electrically narrow slits,
we can make the reasonable assumption that the aperture field
is given by

Ey(z) = Af(x) (12)

where A is a frequency-dependent complex amplitude. This as-
sumption implies that the spatial profile of the aperture field re-
mains invariant in the frequency range of interest (in our experi-
ence, this condition is well satisfied up to the limit w < 0.15\¢;
no specific restrictions are imposed on the period and the angle
ofincidence). Note that A does not appear in the final expression
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of the equivalent circuit admittance (11) since this admittance
only depends on the ratio of Es(k,t + kn) to Es(kt). It is inter-
esting to note that this procedure to find the equivalent admit-
tance could be viewed, after using (12) in (9), as a method-of-
moments solution (with a Galerkin testing scheme) of the mag-
netic field integral equation for the slit aperture when using one
single basis function, f(z), for the unknown magnetic current
(electric field) at the slit.

For TM polarization, a suitable choice for the field profile is

2]~ 1/2
fla) o ll— (zi) ] (k) o Jo (%‘“) (13)

and for TE polarization,

kw

(14)

where J,,(-) represents the Bessel function of the first kind and
order n. These field profiles incorporate the proper (singular or
zero) behavior of the field at the slit edges in each case.

In the quasi-static limit, it is important to realize that the
equivalent-circuit admittance in (11) can be conveniently ap-
proximated as

. 2
N f(kn) .
qu ~ Z [m] (Yrg,lq)s + KSZCEB)

n#0

(15)

where it has been assumed that k; < k,,. This allows us to write

kt :t kn ~ kn (16)
B~ = |k (17)
and also [taking into account (4)]
—] kn 1 .
% = o TE harmonics
i =8 Mk (8)
o we;g _ jwsg .
——— = *—— TM harmonics.
—=ilknl o

The above derivation implies that the equivalent quasi-static ad-
mittance can be expressed in terms of a lumped inductance/ca-
pacitance (for TE/TM harmonics) given by the following fre-
quency-independent series:

1 4 — [y ]2
S —— f(er) kn (19)
qu o [f(kt):r ; [ i|
- 2
Cqs — 2(‘?1 + 52) i [f(kn):| . (20)

kn

2
[f(kt)] n=1
Thus, (19) and (20) provide analytical expressions of the
quasi-static inductance/capacitance of a narrow-slit grating
under TE/TM incidence. These lumped quasi-static elements
can be used in simple models for dense gratings where the
period is much smaller than the wavelength (see, e.g., [5]).
However, as frequency increases, it is clear that the contribution
of the first harmonics to the equivalent admittance of the grating
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Fig. 3. Proposed equivalent network for the slit grating in Fig. 2. (a) TM po-
larization. (b) TE polarization. (0) (1) (0)
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starts to deviate from its quasi-static behavior. Therefore, in
order to improve the above approximation so that it can be
employed beyond the quasi-static limit, we propose to express
the equivalent admittance as follows (see Fig. 3):

N P 2

v 3 |HEEE gy
n=—N f(l"t)
n#0

TM polarization

ey

jwcho
+ { 1

- TE polarization.
Jw L ho

The first series in (21) explicitly takes into account the fre-
quency dependence of the dominant harmonics, whereas the
last term in (21) is an admittance that incorporates the effect
of all the scattered harmonics of order |n| > N in the form
of a lumped frequency-independent inductance/capacitance
(Lho/Cho). This “high-order” inductance/capcitance is given
by the same series as in (19) and (20), but now the sum starts
from n = N 4+ 1. In our experience, the approximation (21)
provides sufficiently accurate values if N is taken as 1 plus the
number of propagative harmonics in the medium with highest
permittivity. In most practical cases, it implies that N is rarely
greater than 3 or 4.

The presence of dielectric slabs in the structure under study is
taken into account by introducing the corresponding transmis-
sion-line sections. The wave admittances in (11) and elsewhere
should then be replaced by the input admittances to the corre-
sponding cascade of transmission lines seen from the grating
to the left and right (Y, ,, and Y;},). In order to clarify this
point, Fig. 4 shows an example of the circuit model for a printed
slit grating under TM incidence (¢, = &,&¢), with the above-
mentioned input admittances schematically represented at the
bottom. The parameters of this equivalent network are given by

A, = J ke + kn) (22)
f(ke)
Y, =Y (23)
O | oy D)
Y]f}{ = erl) YT‘I + JY’n tdn(,ﬁn d) (24)

YD v tan(8 d)

d

Fig. 4. Equivalent network for a TM wave impinging obliquely from the left
(ky = ko sin @) on a printed slit grating, £1 = <g=...
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Fig. 5. Unit cell corresponding to a periodic structure consisting of a periodic
array of electrically narrow strips.

280

(k)] nives
1+ &, tanh (k,d)
er + tanh (k,d) |~

Cho —

X {1 +e, (25)

Note that (24) is the resulting transformed admittance when the
“load” admittance corresponding to the nth harmonic of the
right-most transmission line, Yrso), is viewed through a length
d of transmission line characterized by Y,ED and ﬂ,(Ll). The ex-
pression of the high-order capacitance in (25) can be readily ob-
tained after introducing the approximations (16) and (17) in the
expressions of the input admittances of the harmonics of order
higher than V.

B. Strip Gratings

In the situation shown in Fig. 5, we start by considering the
surface current on the strips, which is denoted as .Js(z). This
surface current must equal the discontinuity of the transverse
magnetic field, namely,

HY () — H?(z) = J,(2). (26)
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Using the magnetic field expansions (2) and (3), the above ex-
pression can be written as

e L
i (1= R) = Y (L B) = (), @7)
(1) @ 1
_Yn E., — Yn E, = _JS(kt + kn) (28)
a
from which it is obtained that
. 1 2 1 2
ikt R B (YO( '+ )) BACARACN (29)
AT v 4 y®
Using the electric field integral equation,
w/2
/ JHz)E(r)dz =0 (30)
—w/2

and after making the same assumption as in (12), but now for
Js(x), we finally find that

N

>

n=—N

n#0

2

f(kt + kn)

S k)

1
VARINE 'a )

]"UL ho
+ 1
jU-)Cho
where the high-order inductance and capacitance are now given
by

Leq =

TE polarization

€2))

TM polarization.

= [f)]
" [f(kt)} : ":%’:H Fn 32)
ct(, = Ly [Fk)] ko 33)

(e1+&2) [f(l.t)} n=N+1

It should be noted that now the surface current profile f(z) is
given by (14) for TM polarization and (13) for TE polarization
of the impinging wave.

The inclusion of dielectric layers can be done in a parallel
way as that explained for the slit case. As an example, we can
consider the case of a TM wave impinging on a printed strip
shown in Fig. 6 (21 = &gz, ). The equivalent network is also
shown in the figure. The network parameters A,,, YL, and
Y} are given by the same expressions in (22)—(24), fespec—
tively, although with appropriate profile f (). The high-order
capacitance is given by

oo

1 2 N 2
=— f(kn)| Fn
SR TR

1+ ¢, tanh (k,d) ] '
1+e, . (G4
X { e gy + tanh (k,d) } 34

III. MODEL FOR COUPLED GRATINGS

In this section, we extend the previous circuit models to study
the case of symmetric coupled gratings. The structures under
consideration are sketched in Fig. 7, which also illustrates the
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Fig. 6. Equivalent network for a TM wave impinging obliquely from the left
(k: = ko sin @) on a printed strip grating, £ = &,
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Fig. 7. Schematic representation of the coupled slit and strip gratings under
analysis. The TE and TM oblique incidences are also represented on top. The op-
tional electric wall condition at the middle plane accounts for the grating printed
on a grounded slab, and also corresponds to the odd excitation of the coupled
slit/strip gratings. The magnetic wall condition corresponds to the even excita-
tion.

two cases of TE and TM oblique incidence. The structure shown
at the top represents a pair of 1-D periodic array of slits made
in an infinitely thin metallic screen printed on both sides of a
dielectric slab (this structure can also be seen as a pair of cou-
pled wide-strip gratings). The quasi-complementary problem
involving strip gratings is shown at the bottom. The structures
under study show a symmetry plane at the middle of the slab.
This symmetry plane allows us to decompose the impinging ex-
citation as the superposition of even (¢) plus odd (0) excitations.
Under even/odd excitation, this symmetry plane behaves as a
magnetic/electric wall. The scattering parameters of the coupled
structures can readily be found from the scattering parameters
of the structures with even/odd excitations as

1

Su = ;(5181 + 5101) (35)
1, . )

So1 = 5(5161 - ST1)~ (36)

4

The case of a grating printed on a grounded slab is implicitly
considered in this analysis since it is equivalent to the electric
wall boundary condition at the middle plane of the dielectric
slab.

Next we present in some detail the derivation of the circuit
model for the particular case of a strip grating printed on a
grounded dielectric slab under TE incidence. The derivation for
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Fig. 8. Equivalent network to model the slit grating printed on a grounded slab
under TE polarization. The short-circuit termination accounts for the presence
of the ground plane. The shunt impedance Z. is the global impedance of the
equivalent circuit that models the effect of the periodic grating.

TM incidence and for the slit grating under TE/TM incidence
can be carried out along similar lines and will not be explicitly
shown. Thus, we consider the strip grating in Fig. 7 with the
electric wall condition (ground plane) at the middle. Following
the approach discussed in Section II, the equivalent-circuit
model of this structure is that depicted in Fig. 8. The transmis-
sion lines to the left and right of Z., account for the propagation
of the zeroth-order harmonic (incident and reflected wave) in
free space and inside the dielectric, respectively. The short-cir-
cuit termination accounts for the presence of the ground plane,
and the shunt impedance Z., represents the global impedance
of the equivalent circuit that models the periodic screen, which
is given by

~ 2
f(kt + kn) 1

n=—N }Z(kt) Y1§0) + KE n
n#0 ’
jwlLp, TE polarization
+ - TM polarization G7
chho
where
d
Vi, = =¥,V cot ((35”5) : (38)

In the particular case that N = 1 and normal TE incidence,
we find that the equivalent circuit reduces to that shown in
Fig. 9, where it has been taken into account that k; = 0, and
therefore, the admittances of the n = 1 and n = —1 harmonics
are identical and can be included in a single series element. The
Aj coefficient in Fig. 9 corresponds to (22) with k&, = 0, and
the Ly, inductance is given by

_ 2“0 = fQ(kn) . kn(l -t
Lho—fz)(o)z . [1+coth( 5 )] . (39

For the case of a magnetic wall boundary condition, the
derivation is completely analogous, but an open circuit should
be considered instead of the short circuit in Fig. 8, and there-
fore, cot(-) should be replaced with — tan(-) in (38). Also, in
the particular case of the inductance in (39), coth(-) should be
replaced with tanh(-).
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Fig. 9. Equivalent network for a strip grating printed on a grounded slab under
normal TE incidence. Only the first element is explicitly taken into account with
its complete frequency dependence (N = 1).
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Fig. 10. Magnitude of the transmission coefficient under TM oblique incidence
of a slit grating (« = 0.1a) embedded between two dielectric layers withs, =
2.2¢p,22 = 10.25,d1 = 0.4a, d2 = 0.2a. Both dielectric layers are lossy
with tané = 0.001. (a) Circuit model results. (b) MoM results. Normalized
frequency a/Ag.

IV. NUMERICAL RESULTS AND DISCUSSION

The analytical model proposed in this paper has been de-
veloped on the basis of a certain number of assumptions con-
cerning the width of slits (or strips) and the field distribution
(current distribution) on those slits (strips). Moreover, some de-
cisions have to be taken before generating numerical results
concerning the number of TE/TM harmonics of relatively low
order that must be explicitly retained in the formulation (the in-
formation of the remaining infinite higher order modes is sum-
marized by the lumped elements). However, these issues have
been treated in detail in our previous paper on the same topic
[27]. One of the main differences between this paper and [27]
lies in the development of a fully analytical circuit-like model
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Fig. 11. Magnitude of the transmission coefficient under TE oblique incidence
of a slit grating (w = 0.2e) embedded between two dielectric layers with
g1 = 2.280,82 = 10.2¢0,d, = 0.4a, and d2 = 0.2a. Both dielectric layers
are lossy with tan & = 0.001. (a) Circuit model results. (b) MoM results. Nor-
malized frequency: a/Ao.

(the lumped parameters in [27] were extracted from a numer-
ical calculation for a single frequency point). In this paper, we
have provided analytical formulas for all the relevant param-
eters, and it is necessary to check the accuracy of such for-
mulas. However, the physical considerations about the number
of modes that have to be retained to account for the (possibly)
complex frequency-dependent behavior of the discontinuities
are exactly the same as in [27]. The criterion here is to re-
tain all the TE/TM harmonics that are above cutoff inside the
highest dielectric constant slab plus the first evanescent higher
order mode. Since the cutoff frequencies of the TE/TM har-
monics are known in advance, this task can readily be imple-
mented in the computer code. It should be noted that the rela-
tive weights of the modes calculated in [27] and in this paper are
slightly different, with the ones in this paper being more accu-
rate. As a validation of our present approach, we have recalcu-
lated with the new analytical formulation all the results already
reported in [27] with an excellent agreement (these comparisons
will not be explicitly shown). For further validation purposes,
our results have also been compared with numerically gener-
ated data. A method of moments (MoM) in the spectral domain
has been used to solve for the electric-field/surface-current in-
tegral equations for the slits/strips arrays. A sufficient number
of entire-domain quasi-orthogonal basis functions that include
the edge singularities have been employed to ensure high accu-
racy and fast convergence. The numerical results thus obtained
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Fig. 12. Phase of the reflection coefficient for a strip grating printed on a loss-
less grounded slab under normal TE incidence. Structure parameters: w =
0.1a,2, =10.2,d/2 =026. @) N =0.b) N =1.(c) N = 2.

for the scattering coefficients are accurate within 4-5 signifi-
cant figures at least. Differences between analytical and numer-
ical data cannot be appreciated in the plots provided the width
of the slits/strips is small in comparison with the wavelength
(roughly w/Aq < 0.15). A very relevant fact is that the ana-
lytical model perfectly captures all the details of the transmis-
sion/reflection spectra: no peaks/dips are lost even for extremely
complicated spectra exhibiting a large number of peaks/dips. In
contrast with a model based on the excitation of surface waves
[16], not only the frequency position of the peaks is almost ex-
actly reproduced, but also the amplitude and phase at the peaks
and at any other frequency over a very wide band.
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Fig. 13. Phase of the reflection coefficient for a strip grating under TE incidence and a slit grating under TM incidence, both printed on a grounded dielectric slab
(electric wall at the middle plane in Fig. 7). Solid lines: results provided by a MoM numerical code. Circles and squares: results obtained with our circuit model.
Structure parameters: w = 0.1a, d/2 = 0.3a, &1 = 4. (a) Incidence angle # = 0. (b) Incidence angle 8 = 30°. (c) Incidence angle 8 = 60°. (d) Incidence

angle # = 80°.

In order to have a global idea about the performance of the
model (although more detailed evidences can be found in [27]),
we have included in Figs. 10 and 11 several illustrative color
maps. These maps show the magnitude of the transmission coef-
ficient for a couple of example structures as a function of the nor-
malized frequency (a/ o) and the angle of incidence. Fig. 10(a)
has been generated with the analytical model in this paper, and
corresponds to TM wave incidence on a grating of narrow slits
sandwiched between two different slightly lossy dielectric slabs.
The numerically generated (MoM) results have been plotted
in Figs. 10(b). The two plots are almost identical. The spec-
trum for high frequencies (a/Ag > 0.4) is very complex due
to the presence of the dielectric slabs. Note that these kinds of
plots are closely related to the Brillouin dispersion curves of the
quasi-bound modes supported by the dielectric slabs periodi-
cally loaded with metal strips. It is worth mentioning that the
explanation of the transmission peaks and zeros has been given,
especially within the optics community, in terms of the interac-
tion of the impinging TEM wave with the aforementioned quasi-
bound modes (these modes were called spoof surface plasmons
[36] due to their resemblance with the genuine surface plasmons
supported by dielectric/solid plasma interfaces). The computa-

tion of these Brillouin dispersion curves is usually carried out
by numerically solving an eigenvalue problem that demands a
lot of computational effort. In contrast, the plot in Fig. 10(a)
was generated in seconds thanks to the analytical nature of the
model. Similar plots for a TE illuminated slit-like planar metal
grating are shown in Fig. 11. A wider slit is considered here in
order to enhance the high transmission frequency regions. Once
again, the agreement between the numerical results and the an-
alytical data is very good. In these figures, a narrow high trans-
mission peak in the frequency range going from a/ Ay & 0.47 to
a/Xp = 0.6 (depending on the angle of incidence) can be clearly
appreciated. Immediately after this peak, a transmission zero
appears (Fano-like resonance). This is the so-called anomalous
extraordinary transmission [28], [29]. For this polarization and
grating geometry, low transmission regions rather than trans-
mission peaks should be expected in the absence of electrically
thick dielectric layers. It is the presence of dense dielectric slabs
what introduces the possibility of having transmission peaks in
an otherwise mostly opaque screen. The qualitative explanation
for this phenomenon was discussed in [27].

Previously we have considered structures similar to those
studied in [27] with the difference of using the new analytical
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for all the layers.

tool. Now we consider conductor-backed or double-side struc-
tures for which no model was reported in [27]. This kind of
structure can be studied in an approximate manner by using
a lumped circuit component to account for the grating capac-
itance (TM case) or inductance (TE case) and a transmission-
line section (with a short-circuit or an open-circuit termina-
tion) representing the grounded dielectric slab or the dielec-
tric slab with a magnetic wall (symmetrical double-sided struc-
tures under even excitation conditions). This approach can be
found, for instance, in [5] and [35]. Note that this transmis-
sion-line model only accounts for the fundamental TEM-like
mode propagating inside the dielectric slab, and moreover, it
does not consider the influence of the ground plane on the value
of the lumped component. Thus, this representation ignores the
possibility of higher order mode interaction of the grating with
the ground plane (conductor-backed geometries) or with one
adjacent identical grating (two-sided structures). At low fre-
quencies, the higher order mode interaction can be ignored in
practice if the dielectric slab is relatively thick or the value
of w is extremely small. However, significant differences be-
tween the analytical model and exact numerical calculations
can be found in other cases. Furthermore, if the operation fre-
quency is close or higher than the cutoff frequency of the first
high-order harmonic inside the dielectric slab, then the cou-
pling through this harmonic can strongly change the response

of the structure. Certainly, this effect cannot be taken into ac-
count by simple quasi-static models. As was explained earlier,
our model incorporates all the interactions by splitting the dis-
continuity (grating) influence into two contributions: the fre-
quency-dependent contribution linked to the scattered low order
TE/TM modes and the frequency-independent contribution of
the high-order modes. If we make V = 0 in our formulation,
our model reduces to a quasi-static model similar to the above
mentioned simpler approach [5], [35]. Actually, with N = 0, we
still keep the influence of the ground plane (or adjacent grating)
on the quasi-static parameters characterizing the discontinuity,
but this cannot account for the coupling through propagative
harmonics at higher frequencies. To clarify this point, we com-
pare the results obtained for an specific structure (strip grating
printed on a grounded lossless slab) under normal TE illumi-
nation for several values of V. Since the amplitude of the re-
flection coefficient is unity, we only plot the phase of the reflec-
tion coefficient in Fig. 12. Although the quasi-static (N = 0)
model gives accurate results up to a/Ag = 0.3, noticeable dif-
ferences can be appreciated above that frequency. Indeed, the
results provided by the quasi-static model are qualitatively in-
correct fora/Ag > 0.6. However, if the first two relevant higher
order modes are explicitly taken into account (i.e., they are not
considered as part of the higher order lumped contribution), the
analytical model perfectly captures the details of the phase be-
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havior up to the frequency of the onset of the first grating lobe.
The model is still valid above that frequency but, in such a case,
the magnitude of the specular reflection coefficient is not unity
(depending on the operation frequency, parameter NV could need
to be increased).

Next, Fig. 13 shows the phase of the reflection coefficient
versus normalized frequency for strip/slit gratings printed on a
grounded dielectric slab (see the caption for the structure pa-
rameters). The MoM numerical results are also shown, and the
comparison with the analytical results shows an excellent agree-
ment for all the cases. It is well known that, as frequency in-
creases, these structures present a near-zero phase for the re-
flection coefficient (artificial magnetic conductor) in a given
frequency range. In the normal incidence cases considered in
Fig. 13(a), this behavior occurs around a/Ay ~ 0.52 for the
strip grating under TE illumination and around a/A\q = 0.16
for the slit grating under TM illumination. These values remain
approximately the same for the oblique incidence results shown
in Figs. 13(b)—13(d). For the high-frequency portion of the spec-
trum, the phase exhibits a faster and more complicated variation
with frequency, especially for oblique incidence.

As a final example, we have computed the transmission
coefficient through a pair of symmetric coupled gratings
printed on a thick substrate and sandwiched between two
thinner dielectric slabs. The analytical and numerical results
are compared in Fig. 14 for four different situations. The plots
in Fig. 14(a) and (b) correspond to a pair of coupled slit-like
(narrow slits) gratings under oblique (# = 45°) TE and TM il-
luminations. The plots in Fig. 14(c) and (d) correspond to a pair
of coupled strip-like (narrow strips) gratings under TE and TM
illuminations. We can observe a very good agreement between
numerical and analytical results in spite of the complexity of
the transmission spectra. It is worth mentioning that simple
circuit models that substitute the central dielectric slab with
a TEM transmission line cannot be used when the operation
frequency is close or above the cutoff frequencies of some of
the first higher order TE or TM harmonics in the dielectric
region. However, this is not an issue for our procedure. Finally,
we should mention that, for wider strips, the results are slightly
worse in the high-frequency part of the spectrum, but still
acceptable for most practical purposes.

V. CONCLUSIONS

We have reported a fully analytical method to compute the
transmission and reflection characteristics of strip- and slit-like
diffraction gratings over a very wide frequency band (provided
the strip/slit width is electrically small). The topology of the
equivalent-circuit model and the values of their parameters
(lumped capacitors/inductors and transmission lines) are ex-
tracted from a rigorous integral-equation formulation provided
some reasonable approximations are employed. The proposed
equivalent-circuit model can be seen as an alternative form
of the integral-equation problem with the advantage that it
provides more physical insight than the direct mathematical
equations. Although other circuit-like models are available in
the literature, the model here proposed systematically takes
into account dynamic effects that are not usually accounted
for. These effects are relevant at high frequencies, as well as
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when the metal gratings are close to a ground plane or strongly
coupled to another identical grating, cases that have been
specifically considered in this paper. The proposed model is
useful to accurately characterize this kind of structures in clas-
sical microwave/millimeter-wave applications and to explain
exotic phenomena recently reported in the optics and terahertz
domains.
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