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Thermal segregation of intruders in the Fourier state of a granular gas
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A low density binary mixture of granular gases is considered within the Boltzmann kinetic theory. One
component, the intruders, is taken to be dilute with respect to the other, and thermal segregation of the
two species is described for a special solution to the Boltzmann equation. This solution has a macroscopic
hydrodynamic representation with a constant temperature gradient and is referred to as the Fourier state. The
thermal diffusion factor characterizing conditions for segregation is calculated without the usual restriction
to Navier-Stokes hydrodynamics. Integral equations for the coefficients in this hydrodynamic description are
calculated approximately within a Sonine polynomial expansion. Molecular dynamics simulations are reported,
confirming the existence of this idealized Fourier state. Good agreement is found for the predicted and simulated
thermal diffusion coefficient, while only qualitative agreement is found for the temperature ratio.
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I. INTRODUCTION

Segregation among species in a granular mixture is of
significant practical importance, and its description, both
qualitative and quantitative, is a challenging problem [1].
Many physical systems and state conditions are of interest,
involving a range of mechanisms responsible for segregation
across a wide range of control parameters. Here attention is
focused on a simple system of gas mixtures in a temperature
gradient, the latter being the only mechanism available to
induce segregation. Furthermore, each species is assumed to
be composed of smooth, inelastic hard spheres at low density,
so the inelastic Boltzmann kinetic equation applies [2]. One
component (the impurities) is taken to be dilute with respect
to the other (the host). In this limit the host gas is not affected
by the impurities and is described by its own independent
Boltzmann equation.

The macroscopic balance equations, or hydrodynamic
equations, obtained from this kinetic theory description have
special solutions: the host gas has zero flow velocity, a constant
temperature gradient, and a constant pressure [3,4]; the impu-
rity gas has zero flow velocity, a temperature proportional to
the host temperature, and a pressure proportional to a power of
that temperature [5]. Since the heat flux of the host component
can be expressed as proportional to the temperature gradient,
i.e., by Fourier’s law, this state is referred to here as the Fourier
state. The coefficients in this hydrodynamic description are
defined in terms of coupled, nonlinear integral equations
obtained from kinetic theory. In this way, a description of
a mixture in a temperature gradient is obtained as the basis
for exploration of segregation as a function of the differences
in mechanical properties of the two species. No explicit
limitations on the magnitude of the temperature gradient are
assumed in this analysis, and all higher degree derivatives
are exactly zero. This complements the extensive studies of
thermal segregation based on applications of kinetic theory at
the Navier-Stokes level [6,7].

Due to the symmetry of the problem, all spatial variation
of properties occurs along the temperature gradient, taken

to be the x axis. The segregation of impurity particles
relative to the host gas is described by the variation of
the composition n0(x)/n(x), where n0(x) and n(x) are the
impurity and host densities, respectively. In the absence of the
temperature gradient, these densities are uniform, and there is
no segregation. For a finite temperature gradient, a convenient
measure of thermal segregation is given in terms of the thermal
diffusion factor � defined by

d

dx
ln

n0(x)

n(x)
= −�

d ln T (x)

dx
. (1)

For the special hydrodynamic state constructed here this
dimensionless factor is independent of x and therefore is a
global property of the system. For more general states, � is a
local function, and segregation properties can vary throughout
the system. Here it can depend only on the ratios of the
mechanical properties of each species (size, mass, degree
of collisional inelasticity). It can be positive or negative,
implying that the impurity concentration increases against
or along the temperature gradient, respectively (a thermal
analog of the Brazil nut and reverse Brazil nut effects for
gravitational segregation [8–11]). Of course, � should vanish
for mechanically identical host and impurity particles.

The expression for � depends on coefficients defining the
hydrodynamic fields, which in turn are defined in terms of
solutions to nonlinear integral equations following from the
underlying kinetic theory. The kinetic theory and associated
hydrodynamics for the Fourier state have been described
elsewhere [5], so only a brief summary is presented in the next
section. An analytic solution to the integral equations can be
obtained as described in Ref. [5], and the results are extended
here to arbitrary dimension d in the Appendix. More generally,
for an arbitrary degree of inelasticity the equations are solved
by a truncated Sonine polynomial expansion [4,5]. The results
in both cases for � and the violation of energy equipartition
measured by means of the parameter γ ≡ T0/T are illustrated
for a wide range of degrees of inelasticity (granular and
nonequilibrium systems violate the equipartition property of
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equilibrium states, and hence the steady temperatures of the
two systems are different in general). Next, event driven
molecular dynamics simulations (MD) are described for 200
inelastic hard disks (d = 2) in a rectangular box with thermal
walls to generate a temperature gradient. The Fourier state
spatial dependence of the hydrodynamic fields for both species
is confirmed in the bulk of the system, away from boundary
layers near the walls. Comparison of the MD and Fourier
state results for the temperature ratio γ as a function of
dissipation, mass ratio, and size ratio shows good agreement
only for weak to moderate dissipation or small mechanical
differences, but only qualitative agreement is found otherwise.
This poor accuracy is interpreted as a limitation of the Sonine
approximation for this property. However, MD and Fourier
state results for the thermal diffusion factor � show much
better agreement over the entire parameter space. These results
are discussed further in the last section.

II. THE FOURIER STATE FOR THE HOST GAS
AND THE IMPURITIES

Consider a system of N smooth inelastic hard spheres (d =
3) or disks (d = 2) of mass m and diameter σ . Inelasticity of
collisions is characterized by a constant, velocity independent
coefficient of normal restitution α, defined in the interval 0 <

α � 1. Then, when two particles, i and j , with velocities vi

and vj collide, the velocities are instantaneously modified to
new values given by

v′
1 = v1 − 1 + α

2
(g · σ̂ )σ̂ ,

(2)

v′
2 = v2 + 1 + α

2
(g · σ̂ )σ̂ ,

where g ≡ v1 − v2 and σ̂ is the unit vector joining the centers
of the two particles at contact. The system is supposed to
be very dilute, so that the one-particle distribution function for
position r and velocity v at time t , f (r,v,t), obeys the inelastic
Boltzmann equation [2]. In Refs. [3,4] a special solution of this
equation was proposed, and the state associated with it was
called the Fourier state. It is a time-independent distribution
function with gradients only in one direction and having a
scaling form in terms of the hydrodynamic fields,

f (x,v) = n(x)

[
m

2T (x)

]d/2

φ(c), c ≡
[

m

2T (x)

]1/2

v. (3)

In the above expressions, T is the granular temperature, and
n is the number of particle density. Both are defined from the
one-particle distribution function in the usual way, although
with the Boltzmann constant set equal to unity. It is verified
that the state defined by the above distribution has a uniform
hydrodynamic pressure p ≡ n(x)T (x) and a heat flux qx,

qx =
∫

dv
1

2
mv2vxf (x,v), (4)

proportional to T (x)1/2, and it exhibits a linear temperature
profile,

dT (x)

dx
= Bpσd−1, (5)

with the dimensionless constant B given by a functional
of φ [3,4]. This functional, as well as the function φ, was
approximately determined by solving the Boltzmann equation
using a representation of the distribution function φ as a
truncated Sonine polynomial expansion and keeping only up
to bilinear terms in the coefficients [4]. The results were shown
to be in good agreement with molecular dynamics simulation
data, at least for weak inelasticity (0.9 � α < 1).

Now suppose that M additional hard spheres or disks of
mass m0 and diameter σ0 are added to the host gas in the
Fourier state. For M � N , the effect of these “impurity”
particles or “intruders” on the host gas distribution function
is negligible, so that the results described above remain valid.
Moreover, the dynamics of the impurities is determined by
their collisions with the host gas particles, while collisions
between intruders can be neglected. When an intruder with
velocity v0 collides with a gas particle of velocity v1, the
velocities are instantaneously changed into

v′
0 = v0 − m(1 + α0)

m + m0
(g0 · σ̂ )σ̂ ,

(6)

v′
1 = v1 + m0(1 + α0)

m + m0
(g0 · σ̂ )σ̂ ,

where g0 ≡ v0 − v1 and α0 is the coefficient of normal
restitution for collisions between an intruder and a host gas
particle. It is also defined in the interval 0 < α0 � 1. In the
tracer limit being considered, the one-particle distribution
function for the additional particles F (r,v0,t) obeys the
inelastic Boltzmann-Lorentz equation [5,12]. A solution of
this equation similar to (3) is considered,

F (x,v0) = n0(x)

[
m0

2γ T (x)

]d/2

�(c0),

(7)

c0 ≡
[

m0

2γ T (x)

]1/2

v0.

Here n0 is the number density of intruders, and the function �

has been chosen such that the average velocity vanishes and the
granular temperature of the impurities, defined from the second
velocity moment of F , is T0(x) = γ T (x). The parameter γ ,
measuring the deviation from energy equipartition, must be
identified (similarly to the function �) by requiring Eq. (7)
to be a solution of the Boltzmann-Lorentz kinetic equation. A
necessary condition for it is that [5]

d ln n0(x)

dx
= Cn(x)σd−1, (8)

with σ ≡ (σ + σ0)/2 and C being a constant. The distribution
function � and the constant C have also been evaluated by
using a truncated Sonine representation for φ and � [5]. The
distribution function F is “normal” in the context of kinetic
theory, i.e., it depends on position only through the local
densities and the temperature of the system. The full parameter
space (α,α0,m,m0,σ,σ0) for this description (Boltzmann and
Boltzmann-Lorentz kinetic equations) is contracted due to a
scaling property [13], implying the equivalence of solutions
F with the same values for μ = (m0/m) + (1 + m0/m)(1 −
α0)/(1 + α0).

As already mentioned in the Introduction, the main focus in
this paper is on segregation, i.e., the demixing of the granular
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FIG. 1. (Color online) Temperature of the impurities T0 divided
by the temperature of the host gas T as a function of the coefficient
of normal restitution of the gas particles α for several values of the
restitution coefficient for collisions between the gas particles and
the impurities α0, as indicated in the legend (the lower the curve
is, the smaller α0 is). In all cases, d = 2, m0 = m, and σ = σ0 =
σ . The solid lines have been obtained by solving numerically the
Boltzmann equation in the Sonine approximation, while the dashed
ones are the expressions in the almost elastic host gas limit given in
the Appendix.

mixture, by thermal diffusion. The amount of segregation can
be measured by the thermal diffusion factor � defined by (1).
The value � = 0 indicates that no segregation induced by the
temperature gradient occurs, in the sense that the density ratio
does not depend on position. On the other hand, when � > 0,
the impurity concentration increases against the temperature
gradient, while for � < 0 the impurity concentration increases
as the temperature increases. By means of Eqs. (5) and (7) the
thermal diffusion factor can be expressed in the present case
as

� = −
(

1 + σd−1C

σd−1B

)
. (9)

For arbitrary values of the restitution coefficients, the
equations determining the coefficients of the truncated Sonine
expansions of the distribution functions are rather involved
(even in the bilinear approximation used in Refs. [4,5]), and
they must be solved numerically. Nevertheless, in the limit
of small inelasticity for the host gas, i.e., 1 − α � 1, it is
possible to obtain explicit expressions for the coefficients. The
results are summarized in the Appendix. In Figs. 1 and 2,
the asymptotic expressions for � and γ for small inelasticity
of the host gas, as given in the Appendix, are compared
with the numerical solution of the kinetic equations. The
comparison is carried out as a function of the coefficient of
inelasticity α for several values of α0, as indicated in Figs.
1 and 2. The constant values of the other parameters are
d = 2, m0 = m, and σ0 = σ . It is important to realize that
all the expressions being compared have been obtained in the
Sonine approximation and by neglecting products of three or
more of the coefficients appearing in the truncated expansion
of the distribution function. Consequently, nothing can be
concluded about the validity of the truncated Sonine approx-
imation from Figs. 1 and 2. It is seen that the accuracy of
the asymptotic expression for the temperature ratio extends up
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FIG. 2. (Color online) The dimensionless thermal diffusion factor
� as a function of the coefficient of normal restitution of the
gas particles α for several values of the restitution coefficient for
collisions between the gas particles and the impurities α0, as indicated
in the legend (the lower the curve is, the larger α0 is). In all
cases, d = 2, m0 = m, and σ = σ0 = σ . The solid lines have been
obtained by solving numerically the Boltzmann equation in the
Sonine approximation, while the dashed ones are the expressions
in the almost elastic host gas limit given in the Appendix.

to smaller values of the coefficient α than the corresponding
expression for the thermal diffusion factor. Actually, the latter
does not depend on α in the considered limit. This behavior
was to be expected since, as pointed out in the Appendix,
the former has been evaluated to order 1 − α and the latter
to order (1 − α)0. Similar results are obtained for inelastic
hard spheres (d = 3). Finally, it is seen from Figs. 1 and
2 that the temperature ratio and diffusion factor appear to
become singular for very strong dissipation. Either the Sonine
approximation used fails or the normal solution to the kinetic
equations does not exist.

III. MOLECULAR DYNAMICS SIMULATIONS

Event driven molecular dynamics simulations of a system
of inelastic hard disks (d = 2) have been performed to check
the accuracy of the above theoretical predictions. In all the
simulations that will be reported, the number of particles
is N = 200, and they are enclosed in a rectangular cell of
sides Lx = 4Ly = 200σ . Moreover, only a single impurity
was considered, i.e., M = 1. The simulations started with all
the particles, including the impurity, uniformly distributed on
a square lattice and with a Gaussian velocity distribution.

A. The Fourier state

To generate the Fourier state, the same procedure as in
Ref. [4] was employed. To inject energy into the system and
induce the temperature gradient, two thermal walls [14,15]
located at x = 0 and x = Lx were considered, while periodic
boundary conditions were used in the y direction. The thermal
walls are implemented in the simulations by assigning to the
particles, after collision with the walls, a velocity drawn from
a Maxwellian distribution at the chosen temperature,

P (v) = 1

(2π )1/2

(
m

Tw

)3/2

|vx | exp

(
−mv2

2Tw

)
. (10)
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FIG. 3. Steady dimensionless pressure, temperature, and heat flux
profiles for a system of hard disks with α = 0.9. The temperature and
pressure have been scaled with some arbitrary reference value TR ,
which is actually the initial temperature of the system. The circles
are simulation data, the dashed straight lines in the pressure and heat
profiles are guides for the eye, and the dashed line in the temperature
profile is a linear fit of the data in the bulk of the system.

The values of the temperatures of the walls Tw were chosen
accordingly with the theoretical prediction for the Fourier
state [4]. For the cases being reported, it was found that
the system reached, after a transient period, a steady state
with gradients only in the x direction and no macroscopic
flow. This is consistent with the value chosen for the aspect
ratio Lx/Ly , which is outside the region in which the
transversal hydrodynamic instability exhibited by the state we
are considering shows up [16,17] for the parameters used in
the simulations.

Figure 3 shows the pressure, temperature, and heat flux
profiles measured in a system with α = 0.9. The finite system
generated by MD has boundary layers near x = 0 and x = Lx ,
where a hydrodynamic description does not hold. Outside
those layers a bulk region in which the pressure and the
scaled heat flux are uniform while the temperature is linear
is clearly identified. This is the region in which the theoretical
predictions are expected to hold. For α > 0.9 a similar
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FIG. 4. (Color online) Profile along the x direction of the ratio
between the temperature of the intruder T0 and the temperature of the
system T for a system with α = 0.9.

behavior is observed, with the size of the bulk region increasing
as α increases.

Once the system has reached the Fourier state, several
properties of the gas and the impurity have been measured.
The system has been divided in 20 slices parallel to the y axis
of the same width. Moreover, the results that will be shown
have been averaged in time and also over 500 trajectories of
the system. The emphasis has been put on the temperature
and density profiles of both the gas and the impurity and on
the values of the parameters γ and � obtained from them. In
order to get a systematic information of the role played by the
several properties of the impurity (α0,m0,σ0), only one of these
properties is chosen in each case to differ from the gas host
particles. Then, for instance, in those cases in which α �= α0,
the values m0 = m and σ0 = σ have been employed.

The quantity γ ≡ T0/T has been computed by identifying
the bulk region of the system in which the temperature ratio
is homogeneous. An example for α = 0.9 is given in Fig. 4.
In the following attention will be restricted to this value of α,
although similar results were found for larger values of it. The
different data sets correspond to varying one of the parameters
of the impurity, as indicated in the legend. In each of the cases,
all the others parameters are the same for the host gas particles
and for the impurity. It is seen that the ratio is uniform over
most of the system. The deviation from unity is small for the
differences in mass and size ratios considered since the system
is almost elastic in all collisions. However, when there is a large
difference between the two coefficients of normal restitution,
a rather strong violation of energy equipartition shows up.
This is a general property of granular mixtures [8,18–20]. The
values of γ reported in the following have been obtained by
averaging the temperature ratio in the region in which it is
roughly uniform.

The coefficient � could be measured, in principle, by
using its definition in Eq. (1). Nevertheless, the measurement
of temperatures from the simulation data exhibited larger
statistical uncertainties than the measurement of densities.
Taking into account that in the Fourier state the pressure is
uniform, Eq. (1) can be transformed into

� = d ln n0

d ln n
− 1. (11)
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FIG. 5. (Color online) Logarithm of the (dimensionless) intruder
density as a function of the logarithm of the host gas (dimensionless)
density for a system with α = 0.9.

This is the expression actually used to compute �; i.e., it is
obtained from the slope of linear profile of ln n0 as a function
of ln n. An example is provided in Fig. 5. The three sets of data
correspond to the intruder differing from the host gas particles
in the mechanical property indicated in the legend.

B. Comparisons for γ and �

In the following, results will be restricted to the case
α = 0.9. Figures 6 and 7 show the behavior of γ as a function of
α0 (m = m0 and σ = σ0) and of m0/m (α = α0 and σ = σ0),
respectively. A good agreement between the theoretical predic-
tions and the simulation data is observed, although quantitative
discrepancies in γ appear for small values of α0, i.e., a
very inelastic intruder. Figure 7 demonstrates the existence
of segregation. The thermal diffusion coefficient is positive
when α0 < 0.9; i.e., the impurity concentration is higher at the
colder part of the system. For larger values of α0, segregation
occurs in the opposite direction; the impurity concentration
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FIG. 6. Ratio between the impurity temperature T0 and the host
gas temperature T in the bulk of the system, once the Fourier state
has been reached, as a function of the coefficient of normal restitution
for the collisions between the intruder and the host gas particles. The
coefficient of normal restitution for the gas is α = 0.9. The mass and
diameter of the intruder are the same as those of the host particles.
The crosses are MD simulation results, the solid line is the theoretical
prediction from the Boltzmann equation using a truncated Sonine
expansion, and the dashed line is the weak inelasticity host gas limit
given in the Appendix and discussed in the text.
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FIG. 7. The dimensionless thermal diffusion factor � for the same
system as in Fig. 6.

is higher in the hotter part of the system. Consistently, the
value of α0 = α for which the direction of the segregation
effect changes is also the value at which the temperature of the
impurity equals the temperature of the host gas since at this
point the intruder is equivalent to the gas particles.

The dependence on the mass ratio of both γ and � is
shown in Figs. 8 and 9, respectively. Now it is observed
that, while the theory accurately predicts the thermal diffusion
factor, it clearly fails to describe the breakdown of the energy
equipartition. When the mass m0 of the intruder is larger than
the mass m of the host gas particles, the simulation results
indicate that T0/T grows rather fast with m0/m, while the
theory predicts a weak decrease remaining smaller than unity.
Violations of energy equipartition in homogeneous granular
mixtures much stronger than predicted by the existing kinetic
theory models have been reported recently [20].

Finally, the dependence of γ and � on the diameter
ratio σ0/σ is given in Figs. 10 and 11, respectively. Again,
the theoretical prediction for � can be considered as quite
satisfactory, but not that for the temperature ratio.

 0.6
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FIG. 8. Ratio between the impurity temperature T0 and the host
gas temperature T in the bulk of the system, once the Fourier state
has been reached, as a function of the ratio of the masses m0/m.
The coefficients of normal restitution for the gas-gas and for the
gas-intruder collisions are α = α0 = 0.9. The diameter of the intruder
is the same as the diameter of the host particles. The crosses are
molecular dynamics simulation results, the solid line is the theoretical
prediction from the Boltzmann equation using a truncated Sonine
expansion, and the dashed line is the weak inelasticity host gas limit
given in the Appendix and discussed in the text.
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FIG. 9. The dimensionless thermal diffusion factor � for the same
system as in Fig. 8.

IV. DISCUSSION

A theoretical description of thermal segregation has been
explored under very controlled conditions. The fundamental
assumptions are the validity of Boltzmann kinetic theory for a
binary mixture of inelastic, smooth, hard spheres or disks and a
special steady “normal” solution. The kinetic theory is limited
to low density gases, which excludes many experimental
conditions of interest. However, it provides a useful testing
ground for exploring the rather large parameter space of binary
mixtures. The normal solution is restricted to conditions for
which all space and time dependence can be captured by the
hydrodynamic fields and hence excludes boundary layers as
discussed above. The only segregation mechanism considered
in the special solution here is a thermal gradient. However,
an important feature distinguishing the analysis from others in
the literature is the absence of any explicit restriction to small
temperature gradients, i.e., a description of thermal segregation
outside the Navier-Stokes limit. Still, the absence of solutions
for extreme dissipation (see Figs. 1 and 2) may suggest an
implicit limitation of the normal solution.
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FIG. 10. Ratio between the impurity temperature T0 and the host
gas temperature T in the bulk of the system, once the Fourier state
has been reached, as a function of the ratio of the diameters σ0/σ . The
coefficients of normal restitution for the gas-gas and the gas-intruder
collisions are α = α0 = 0.9. The mass of the intruder is the same
as the mass the host particles. The crosses are molecular dynamics
simulation results, the solid line is the theoretical prediction from
the Boltzmann equation using a truncated Sonine expansion, and
the dashed line is the weak inelasticity host gas limit given in the
Appendix and discussed in the text.
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FIG. 11. The dimensionless thermal diffusion factor � for the
same system as in Fig. 10.

As expected, the MD simulation of a finite system with
an externally imposed temperature gradient does not give
the Fourier state exactly due to boundary layers. However,
in the bulk of the system the Fourier state is confirmed
to good accuracy. The comparison of MD and theoretical
predictions for the thermal diffusion factor � shows good
agreement across the parameter space of α0,m0,σ0. In all
cases conditions are found for increased composition of the
impurities both along and opposite the temperature gradient.
The corresponding comparison for the temperature ratio γ

is less satisfactory, particularly for variations of m0/m and
σ0/σ. It might be taken as a signature of the breakdown of the
low order Sonine expansion truncation, but then it is puzzling
why this same approximation should work so well for �.
This discrepancy between theory and simulation for γ remains
unexplained at this point.
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APPENDIX: NEARLY ELASTIC HOST GAS LIMIT

The distribution functions of (3) and (7) must be solutions to
the Boltzmann and Boltzmann-Lorentz equations, as described
in Ref. [5]. They are approximated by the truncated Sonine
expansions,

φ(c) � π−d/2e−c2

[
1 − a01

(
c2 − dc2

x

)
+

(
d − 1

2
b01 + 3

2
b10

)
cx − b01c

2cx − (b10 − b01)c3
x

]
,

(A1)

�(c0) � π−d/2e−c2
0

[
1 − A01

(
c2

0 − dc2
0x

)
+

(
d − 1

2
B01 + 3

2
B10

)
c0x

−B01c
2
0c0x − (B10 − B01)c3

0x

]
, (A2)

with the constants appearing in these expressions determined
from moments of the kinetic equations. For 1 − α � 1 a
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systematic determination of these coefficients has been carried
out for d = 2 in the Appendix of [5]. The general results for
arbitrary dimension are given here:

a01 ∼ A01 = O(1 − α), (A3)

b01 = b10 + O(1 − α), (A4)

b10 =
[

2d(1 − α)

d − 1

]1/2

+ O(1 − α), (A5)

B10 = B01 + O(1 − α), (A6)

B01 = 16(d − 1)(σ/σ )d−1 + 27h(2 − h)3/2

h1/2[24(d + 2) − 8(d + 8)h + 27h2]
b01 + O(1 − α).

(A7)

All the dependence on the mass ratio m/m0 and the coefficient
of restitution α0 occurs through the parameter

h ≡ m(1 + α0)

m + m0
. (A8)

Moreover, the coefficients B and C characterizing the hy-
drodynamic profiles defined in Eqs. (5) and (8) have the
expressions

B = 2π
d−1

2 (d − 1)√
2	

(
d−1

2

) b01 + O(1 − α), (A9)

C= π
d−1

2

16
√

2	
(

d+4
2

) {h1/2 [48 + 4d(6 − h) − (56 − 27h)h] B01

− [48(σ/σ )d−1(d − 1) + (2 − h)3/2(8 + 4d + 27h)]b01}
+O(1 − α), (A10)

while the temperature ratio reads

γ = 1 + α0 − h

2 − h

(
1 + B10

32d(2 − h)

×
{

[48 + 4d(6 − h) − (56 − 27h)h]B01

− (2 − h)3/2(8 + 4d + 33h − 6h2)

h1/2
b01

})
+O(1 − α)3/2.

(A11)

Notice that all the quantities above have been explicitly
evaluated up to order (1 − α)1/2, with the exception of the
temperature ratio γ , which has been computed up to order
1 − α. Finally, the thermal diffusion coefficient � is obtained
by substituting Eqs. (A9) and (A10) into Eq. (9). This provides
an expression valid up to order (1 − α)0.
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