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Small perturbations of the homogeneous cooling state for a low density granular gas are described by means
of the linearized Boltzmann equation. The spectrum of the generator for this dynamics is shown to contain
points corresponding to hydrodynamic excitations. The corresponding eigenvectors and eigenvalues are calcu-
lated to Navier-Stokes order and shown to agree with those obtained by the Chapman-Enskog method. The
conditions for the hydrodynamic excitations to dominate all other excitations are discussed.
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I. INTRODUCTION

The use of hydrodynamic equations to describe granular
fluids in rapid flow has been in practice for many years �1�.
The justification for this fluidlike description and prediction
of the transport coefficients appearing in these equations has
been the focus of attention for some time as well �2–4�. In
recent years, an accurate derivation of Navier-Stokes order
hydrodynamics has been given from the Boltzmann equation
for granular gases using an adaptation of the Chapman-
Enskog method for normal gases �4,5�. The expressions for
the transport coefficients as a function of the degree of in-
elasticity have been confirmed by both Monte Carlo and mo-
lecular dynamics simulation �6�. Successful application of
these Navier-Stokes equations to a number of different states
also supports their validity �7–9�. However, the context of
the hydrodynamic equations remains uncertain. What are the
relevant space and time scales? How much inelasticity can
be described in this way?

Such questions can be addressed for gases using the Bolt-
zmann kinetic equation to describe the complete dynamics
for properties of interest. Then it can be asked under what
conditions do the hydrodynamic excitations emerge as the
dominant dynamics. The analysis of this problem for normal
gases is quite complete and precise �10,11�. The objective
here is to initiate a similar formulation of the problem for
granular gases �12�. First, solutions to the Boltzmann equa-
tion are considered for states that deviate from spatial homo-
geneity only by small perturbations. The dynamics in this
case is governed by the linear Boltzmann operator for spa-
tially inhomogeneous states. The spectrum of this operator
determines all possible excitations on all space and time
scales, and for all degrees of inelasticity. The first problem is
to identify points in this spectrum corresponding to hydrody-
namics. This is one of the main results reported here. Both
the hydrodynamic eigenvalues and eigenfunctions are calcu-
lated for long wavelength excitations corresponding to
Navier-Stokes order hydrodynamics. Their agreement with
the corresponding results from the Chapman-Enskog method
is established.

Next, the issue of conditions for the dominance of the
hydrodynamic excitations, or modes, is considered. This en-

tails showing that the hydrodynamic eigenvalues are smaller
than all other parts of the spectrum, such that there is a long
enough time scale for the latter to decay relative to the hy-
drodynamic modes. There are two new difficulties for granu-
lar gases. First, the hydrodynamic eigenvalues cannot be
made arbitrarily small since they do not all scale with the
inverse wavelength of the perturbation, as for normal gases.
Second, there is a new characteristic frequency, the cooling
rate, in addition to the collision frequency to set the scale of
the spectrum. The cooling rate can be relatively large or
small depending on the inelasticity of the gas particle colli-
sions.

Analysis of the nonhydrodynamic spectrum of the Boltz-
mann equation for a granular gas remains a difficult unsolved
problem. Instead, we consider here a simpler kinetic model
�13� that retains the exact hydrodynamic spectrum and al-
lows identification of the entire spectrum as well. It is found
that the time scale for the hydrodynamic excitations is longer
than that for all other excitations, for any degree of inelas-
ticity. A Brief Report of these results has been given in Ref.
�12�, with the details and elaboration given below.

The plan of the paper is as follows. In the next section, a
short summary of the Boltzmann equation is given, and the
Navier-Stokes equations derived from it by the Chapman-
Enskog procedure are recalled. More details are given in
Appendix A. Also, the hydrodynamic equations are linear-
ized and the hydrodynamic modes to second order in the
wave vector are identified.

In Sec. III, the structure of the linear Boltzmann equation
is discussed, emphasizing the relevance of the spectrum of
the operator generating the linear dynamics to determine the
existence and validity of hydrodynamics. The first of the
above issues is addressed in Sec. IV, where the kinetic theory
hydrodynamic modes are identified in the long wavelength
limit. A technical point associated with the non Hermitian
character of the operator is discussed in Appendix B. The
results are extended to Navier-stokes order in Sec. V, and the
obtained expressions are shown to agree with those derived
in Sec. II from the hydrodynamic equations. Details of the
calculations are given in Appendix C. The possibility of a
description in terms of the hydrodynamic modes is studied in
Sec. VI, by means of a model kinetic equation. It is estab-
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lished that there are length and time scales on which only the
excitations associated to the hydrodynamic modes persist.
The mathematical details are given in Appendix D. Finally,
the last section contains a short summary of the main points
and conclusions in the paper.

II. BOLTZMANN EQUATION AND HYDRODYNAMIC
MODES

In all of the following, the simplest model of a granular
fluid is considered: a low density gas of smooth and inelastic
hard spheres �d=3� or disks �d=2� of mass m and diameter
�. The binary collision rule given below is characterized by
a constant coefficient of restitution �, defined in the interval
0���1, and measuring the loss of energy in each collision.
At sufficiently low density, the distribution function f�r ,v , t�
is determined from the Boltzmann equation �4,14,15�

��t + v · � �f = J�f , f� , �1�

where J is the inelastic Boltzmann collision operator defined
by

J�X,Y� � �d−1� dv1� d�̂���̂ · g��̂ · g

���−2X�r,v�,t,�Y�r,v1�,t� − X�r,v,t�Y�r,v1,t�� ,

�2�

for arbitrary functions X�v� and Y�v�. Here, �̂ is a unit vec-
tor along the line joining the centers of the colliding pair, �
is the Heaviside step function, and g=v−v1. The primes on
the velocities denote the initial values �v1� ,v2�� that lead to
�v1 ,v2� following a “restituting” binary collision

v� = v −
1

2
�1 + �−1���̂ · g��̂, v1� = v1 +

1

2
�1 + �−1���̂ · g��̂ .

�3�

The usual Boltmann collision operator is recovered from Eq.
�2� in the elastic limit �=1.

The macroscopic variables of interest are the hydrody-
namic fields, i.e., the density n�r , t�, the flow velocity u�r , t�,
and the �granular� temperature T�r , t�. They are defined as
moments of the solution to the Boltzmann equation

	
n�r,t�

n�r,t�u�r,t�
d

2
n�r,t�T�r,t� 
 =� dv	

1

v
1

2
m�v − u�2
 f�r,v,t� . �4�

An exact set of equations for these variables is obtained from
the following properties of the collision operator

� dv	
1

v
1

2
m�v − u�2
J�f , f� =	

0

0

−
d

2
nT	
 . �5�

The first two equations follow from conservation of mass
and momentum in the particle collisions. The last equation

reflects the loss of energy in collisions due to the inelasticity.
This appears through the “cooling rate” 	�r , t�
0, defined
by this equation.

The macroscopic balance equations resulting from the
above properties are

�tn + � · �nu� = 0, �6�

��t + u · � �u + �mn�−1���nT� + � · �� = 0, �7�

��t + u · � + 	�T +
2

nd
�nT � · u + �: � u + � · q� = 0.

�8�

The functionals giving the dissipative part of the pressure
tensor � and the heat flux q are also moments of the solution
to the Boltzmann equation

��r,t� =� dv m�VV −
V2

d
I� f�r,v,t� , �9�

q�r,t� =� dv�m

2
V2 −

d + 2

2
T�V f�r,v,t� , �10�

where I is the unit tensor of dimension d and V�v−u the
so-called peculiar velocity. Equations �6�–�8� are the basis
for a hydrodynamic description, once ��r , t� ,q�r , t�, and
	�r , t� are specified. These can be obtained from their defini-
tions using a solution of the Boltzmann equation generated
by the Chapman-Enskog method. This method assumes the
existence of a solution whose space and time dependence is
given entirely through the hydrodynamic fields and their gra-
dients �i.e., a “normal” solution�. As a result, ��r , t� and
q�r , t� are given in terms of these variables, and Eqs. �6�–�8�
become a closed set of hydrodynamic equations. The pri-
mary results of this method are recalled in Appendix A. To
leading order in the spatial gradients, the dissipative fluxes
are found to be given by �5,6�

�ij�r,t� = − ���iuj + � jui −
2

d
ij � · u� , �11�

q�r,t� = − � � T − � � n . �12�

For the cooling rate the result is

	�r,t� = n�d−1�2T

m
�1/2

	0
* + 	1�

2T + 	2�
2n

+ bilinear in � n, � T, � u terms, �13�

with 	0
* being a dimensionless positive constant proportional

to �1−�2�. The explicit forms for the shear viscosity �, the
thermal conductivity �, and the new transport coefficients
� ,	1, and 	2, peculiar to granular gases, are given in Appen-
dix A. The nonlinear contributions to 	�t� indicated in Eq.
�13� play no role in the following linear analysis and will be
not discussed further in this paper.

Equations �6�–�8� together with the “constitutive rela-
tions” �11�–�13� are the Navier-Stokes hydrodynamic equa-
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tions for a granular gas. A special solution of these equations
is that for a homogeneous state, characterized by a constant
density nHCS, a vanishing velocity flow uHCS=0, and a uni-
form temperature THCS�t� determined from

�tTHCS�t� = − nHCS�d−1� 2

m
�1/2

	0
*THCS

3/2 �t� . �14�

This is referred to as the homogeneous cooling state �HCS�,
since the only macroscopic dynamics is the monotonic de-
crease in the temperature field. It is easily seen that the HCS
as defined above is also a solution of the exact balance equa-
tions, taking into account that 	HCS�nHCS�d−1�THCS/m�1/2 on
dimensional grounds. In the following, the solution to the
Boltzmann equation will be considered for small perturba-
tions of the HCS, and it will be useful to have the corre-
sponding results from Navier-Stokes hydrodynamics. The
linearized Navier-Stokes equations have time dependent co-
efficients, since the distribution function of the reference
HCS depends on time. This complication can be overcome
by the introduction of suitable dimensionless space and time
scales, as well as scaled hydrodynamic fields. Thus we define
r* and s by

r* =
r

�
, ds =

vHCS�t�
�

dt . �15�

Here, vHCS�t���2THCS�t� /m�1/2 is the thermal velocity in the
HCS, and ���nHCS�d−1�−1 is proportional to the mean free
path of the particles. The dimensionless fields yj�r* ,s� are
chosen as

��r*,s� =
n�r,t� − nHCS

nHCS
, ��r*,s� =

T�r,t� − THCS�t�
THCS�t�

,

��r*,s� =
u�r,t�

vHCS�t�
. �16�

In addition, since the equations are linear and the reference
state is homogeneous, it is sufficient to consider a single
Fourier mode

yj�r*,s� = eik·r*
ỹ j�k,s� . �17�

The velocity components are chosen as a longitudinal com-
ponent relative to k , �̃�k ,s�= k̂ ·�̃�k ,s�, and d−1 transverse

components �̃�,i�k ,s�= êi ·�̃�k ,s�, where �k̂�k /k , ê�i� , i
=1,… ,d−1� are a set of d pairwise orthogonal unit vectors .
The dimensionless linear Navier-Stokes equations then be-
come a system of ordinary differential equations with con-
stant coefficients that can be expressed in the compact form
�5�

�sỹ�k,s� + K�k� · ỹ�k,s� = 0, �18�

where we use a �d+2� dimensional space representation with
ỹ�k ,s� being the vector

ỹ�k,s� =	
�̃�k,s�

�̃�k,s�
�̃�k,s�
�̃��k,s�


 , �19�

and �̃��k ,s� denoting the vector formed by the d−1 com-
ponents �̃�,i�k ,s�. The matrix K�k� is block diagonal, ex-
pressing the decoupling of transverse and longitudinal modes

K�k� = �K1 0

0 K2
� , �20�

K1�k� =	
0 0 ik

	0
* + ��* − 	2

*�k2 	0
*

2
+ ��* − 	1

*�k2 2i

d
k

i

2
k

i

2
k −

	0
*

2
+

2�d − 1�
d

�*k2
 , �21�

K2�k� = − � 	0
*

2
− �*k2�I . �22�

In the above expressions, K2 and I are matrices of dimension
d−1. The dimensionless transport coefficients used in the
above equations are defined by

�* =
�

�mnHCSvHCS
, �* =

2�

d�nHCSvHCS
, �* =

2�

d�THCSvHCS
,

�23�

	1
* =

THCS	1

�vHCS
, 	2

* =
nHCS	2

�vHCS
. �24�

The formal solution to the initial value problem �18� is

ỹ�k,s� = e−K�k�s · ỹ�k,0� . �25�

The eigenvalues and eigenvectors of the generator K for this
dynamics define the d+2 Navier-Stokes order hydrodynamic
modes. They are given by the solutions of the equation
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K�k� · � j�k� = � j�k�� j�k�, j = 1,…,d + 2. �26�

A simple calculation provides the expressions for the eigen-
values to order k2. They are given by

�1�k� =
k2

	0
* , �2�k� =

	0
*

2
− �d + 1

d	0
* − �* + 	1

*�k2,

��k� = −
	0

*

2
+ � 1

d	0
* +

2�d − 1��*

d
�k2, ���k� = −

	0
*

2
+ �*k2,

�27�

the eigenvalue ���k� being �d−1�-fold degenerate. The cor-
responding eigenvectors to leading order in k are

�1�k� =	
1

− 2

0

0

, �2�k� =	

0

1

0

0

, ��k� =	

0

0

1

0

 ,

��,i�k� =	
0

0

0

î

 . �28�

Here, 0=0, and î= 1̂=1, for d=2,0= �0

0 � , 1̂= �1

0 �, and 2̂= �0

1 �,
for d=3.

The first of these modes is excited by the condition

�̃�k ,0�=−2�̃�k ,0� at zero flow velocity. The second is pro-
duced by a temperature perturbation at constant density and
also zero velocity, while the third one corresponds to a lon-
gitudinal velocity perturbation at constant temperature and
density. There is a �d−1�-fold degeneracy for the shear
modes of eigenvalue ��. These diffusive modes are excited
by a perturbation of the velocity field in the transverse plane
orthogonal to k.

It should be noted that while the above analysis is re-
stricted to the Navier-Stokes equations, derived from the
Boltzmann equation by the Chapman-Enskog method, the
eigenvalues and eigenvectors to order k follow more gener-
ally from the exact macroscopic balance equations and do
not depend on the approximate constitutive equations �11�
and �12�. The hydrodynamic modes sought by kinetic theory
in the subsequent sections can therefore be defined as those
excitations due to small perturbations which agree with the
above in the long wavelength limit. Analyticity then allows
extension of that identification to shorter wavelengths. A con-
sistency check of the Chapman-Enskog method is agreement
with the above results at order k2. However, the concept of
hydrodynamic modes in this context does not require the
validity of the Chapman-Enskog method nor the limitation to
the Navier-Stokes approximation.

III. LINEAR BOLTZMANN EQUATION

A more complete and accurate description of the response
to small spatial perturbations of the density, temperature, and

flow velocity is obtained directly from the Boltzmann equa-
tion. Consider first an isolated system. As already indicated
in the previous section, the exact balance equations have a
solution describing the HCS, with a monotonically decreas-
ing temperature obeying Eq. �14�. The solution to the Boltz-
mann equation corresponding to this macroscopic state is
characterized by the scaling form �4�

fHCS�v,t� = nHCSvHCS
−d �t���V*� , �29�

with

V* =
V

vHCS�t�
=

v − uHCS

vHCS�t�
. �30�

Substitution into the Boltzmann equation gives

	HCS

2

�

�V
· �VfHCS� = J�fHCS, fHCS� . �31�

For later convenience, a constant velocity uHCS for the sys-
tem as a whole has been included, although this can always
be removed by means of a Gallilean transformation. Then, in
the following it will be considered that uHCS=0, unless it be
explicitly established otherwise. An exact and explicit solu-
tion of Eq. �31� is not known yet, but the behavior of � at
large and small velocities has been determined �14� and the
results obtained by the direct simulation Monte Carlo
method strongly supports the existence of such a scaling
form �16�.

The HCS distribution function is a “universal” homoge-
neous solution in the same sense as the Maxwellian for elas-
tic collisions. An arbitrary homogeneous state is expected to
approach the HCS after a few collisions. Therefore, in dis-
cussing response of any homogeneous state to small spatial
perturbations, it is sufficient to consider the HCS as the ref-
erence state. All the other cases will simply induce additional
short time transients.

Consider then small spatial perturbations of the HCS

f�r,v,t� = fHCS�v,t��1 + ��r,v,t��, ���r,v,t�� � 1. �32�

To linear order in ��r ,v , t�, the Boltzmann equation becomes

��t + v · � + L�t���fHCS�� = 0, �33�

where L�t� is the linearized Boltzmann collision operator
given by

L�t�X�v� = − J�fHCS,X� − J�X, fHCS� , �34�

for arbitrary X�v�. Just as for the analysis of the Navier-
Stokes equations in the previous section, the above linear
kinetic equation takes a simpler form when expressed in
terms of the dimensionless variables defined in Eq. �15�, and
considering a single Fourier mode

��r,v,t� = eik·r*
�̃�k,v*,s� , �35�

where v*=v /vHCS�t�. Then, Eq. �33� becomes

��s + ik · v* + L*��̃�k,v*,s� = 0. �36�

The dimensionless operator L* is now time independent and
it is given by
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L*X �
	0

*

2
�−1 �

�v* · �v*�X� + L*X , �37�

where L* is the dimensionless linear Boltzmann collision op-
erator

L*X � − �−1�J*��,�X� + J*��X,��� , �38�

J*�X,Y� � � dv1
*� d�̂���̂ · g*��̂ · g*��−2X�v*��Y�v1

*��

− X�v*�Y�v1
*�� . �39�

Here, v*� and v1
*� are related with v* and v1

* by Eqs. �3�. The
operator L* differs from the linearized Boltzmann collision
operator L* by terms representing the cooling effects of the
inelastic collisions. The latter arise because the derivative
with respect to s is taken at constant v* rather than v.

Solutions to the dimensionless, linear kinetic equation

�36� for �̃ are sought in a Hilbert space whose scalar product
is defined by

�X,Y� =� dv*��v*�X†�v*�Y�v*� , �40�

with the dagger denoting complex conjugation. The formal
solution to the kinetic equation is

�̃�k,v*,s� =
1

2�i
� dz e−zsR�z��*�k,v*,0� , �41�

R�z� � �z − ik · v* − L*�−1, �42�

where the contour encloses the entire spectrum of ik ·v*

+L* , both point and residual, counterclockwise. It is impor-
tant to realize that all the linear excitations of the granular
gas are determined from this spectrum. This formulation of
the problem for small spatial perturbations provides a precise
context for addressing many questions regarding hydrody-
namics for a granular gas. The existence of the hydrody-
namic modes and their role relative to other dynamical pro-
cesses are determined by the characterization of the above
spectrum. To see how this occurs, it is useful to recall briefly
the status of the corresponding problem for gases with elastic
collisions �10,11�. In that case, it has been proved that the
hydrodynamic modes exist as d+2 poles located at the origin
in the long wavelength limit and corresponding to the local
conserved quantities. Furthermore, the remainder of the
spectrum is bounded away from these poles, and the spec-
trum is analytic in k about k=0, so this isolation of the
hydrodynamic modes is preserved at finite wavelengths.

IV. EXISTENCE OF HYDRODYNAMIC MODES

The spectrum of ik ·v*+L* is expected to be quite com-
plex, based on the special case of elastic collisions, with
points spectra, continua, and limit points. The hydrodynamic
excitations, whenever they exist, are part of the point spec-
trum so in order to investigate them it suffices to consider the
eigenvalue problem

�ik · v* + L*��i = �i�k��i. �43�

The search for hydrodynamic excitations can be carried out
by assuming they are analytic in k and looking first for the
k=0 solutions of Eq. �43�. The practical issue of constructing
these modes at finite k is addressed in the next section.

The central idea for constructing the hydrodynamic eigen-
values and eigenvectors at k=0 is the note that the HCS is
parametrized by the hydrodynamic fields nHCS,THCS, and
uHCS, which is now considered different from zero, as dis-
cussed at the beginning of the previous section. Therefore,
differentiating the Boltzmann equation for the distribution
function of the HCS, Eq. �31�, with respect to these fields
gives exact properties of the linearized Boltzmann collision
operator. For example,

�

�nHCS
� 	HCS

2

�

�V
· �VfHCS� − J�fHCS, fHCS�� = 0 �44�

gives directly

1

2

�	HCS

�nHCS

�

�V
· �VfHCS� +

	HCS

2

�

�V
· �V

� fHCS

�nHCS
� + L

� fHCS

�nHCS
= 0.

�45�

The derivatives of 	HCS and fHCS are easily calculated from
the properties 	HCS�nHCS and fHCS�nHCS. In terms of the
dimensionless variables, and setting uHCS=0, Eq. �45� be-
comes

L*1 = −
	0

*

2
�−1 �

�v* · �v*�� . �46�

Next, calculate the derivative of Eq. �31� with respect to
THCS,

1

2

�	HCS

�THCS

�

�V
· �VfHCS� +

	HCS

2

�

�V
· �V

� fHCS

�THCS
� + L

� fHCS

�THCS
= 0.

�47�

Since fHCS has the scaling form �29�, it is

� fHCS

�THCS
= −

fHCS

2THCS
�d + V ·

�ln fHCS

�V
� , �48�

and, taking into account that 	HCS�THCS
1/2 , Eq. �47� becomes

	HCS

2

�

�V
· �VfHCS� −

	HCS

2

�

�V
· �VfHCS�d + V ·

�ln fHCS

�V
��

− L� fHCS�d + V ·
�ln fHCS

�V
�� = 0. �49�

Setting uHCS=0 and transforming to dimensionless variables,
the above equation yields

L*�d + v* ·
� ln �

�v* � =
	0

*

2
�d + v* ·

�ln �

�v* � . �50�

Finally, differentiating Eq. �31� with respect to uHCS, after-
wards setting uHCS=0, and introducing dimensionless vari-
ables leads in a similar way to
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L*� �ln �

�v* � = −
	0

*

2
� �ln �

�v* � . �51�

The d+2 equations �46�, �50�, and �51�, provide exact
properties of L*. In fact, Eqs. �50� and �51� are of the form of
the eigenvalue problem to be solved at k=0, with eigenval-
ues given by 	0

* /2 and −	0
* /2, respectively. It is straightfor-

ward to construct linear combinations of Eqs. �46� and �50�
to obtain an additional eigenvalue and eigenvector. The re-
sults can then be expressed as �12�

L*�i�0� = �i�0��i�0�, i = 1,…,d + 2, �52�

with

��i�0�� = �0,
	0

*

2
,−

	0
*

2
� , �53�

��i�0�� = �d + 1 + v* ·
�ln �

�v* ,− d − v* ·
�ln �

�v* ,− k̂ ·
�ln �

�v* ,

−
�ln �

�v�
* � . �54�

The eigenvalue −	0
* /2 is d-fold degenerated. For conve-

nience for the perturbation calculation to be carried out in the
following section, the subspace associated to it has been re-
arranged. The velocity v* has been decomposed into its com-

ponent in the direction of k ,v
*= k̂ ·v*, and the remaining

d−1 ones, forming with it a set of d pairwise orthogonal
components, i.e., v�

* is defined by the d−1 components
v* · ê�i�. When appropriate, the set of the d eigenfunctions
associated with the eigenvalue −	0

* /2 will be denoted by
�3�0�.

Clearly, the above are the long wavelength limit of the
hydrodynamic modes defined by Eq. �27�. This is a the first
primary result of the analysis developed here, demonstration
of the existence of hydrodynamic excitations in the spectrum
of the linearized Boltzmann equation. The results are exact
and apply for arbitrary degree of dissipation.

These long wavelength eigenfunctions are determined
from the HCS distribution which depends only on the mag-
nitude of v*, so the terms on the right side of Eq. �54� are all
determined from �ln ��v*� /�v*. In the elastic limit, ��v*�
becomes Gaussian, and the hydrodynamic eigenfunctions be-
come linear combinations of 1, v*, and v*2, i.e., of the sum-
mational invariants for the conservation laws of mass, mo-
mentum, and energy, as expected. For inelastic collisions, the
eigenfunctions are quite different, particularly at large v* due
to an overpopulation in the HCS distribution relative to the
Gaussian. This is illustrated in Figs. 1 and 2, where
�ln ��v� /�v* has been obtained from direct simulation
Monte Carlo solution of the Boltzmann equation for the HCS
�17�.

The set of eigenfunctions �i�0� span a �d+2�-
dimensional subspace of the Hilbert space, but they are not
orthogonal. Consistently, it is easily verified that the operator
L* is not Hermitian. Therefore, it is useful to introduce a
biorthogonal set of functions �i , i=1,… ,d+2, with the re-
quirement

„�i,� j�0�… = ij . �55�

To identify the appropriate set of functions, first note that

�1,L*X� = 0, �v*,L*X� = −
	0

*

2
�v*,X� , �56�

as a consequence of the number of particles and momentum
conservation in the moment equations �5�. Therefore, 1 and
v* are eigenfunctions of the adjoint of L* ,L*†, with eigen-
values 0 and −	0

* /2, respectively. This gives the set

��i� = �1,�2, k̂ · v*,v�
* � . �57�

The final choice of �2 does not appear to be unique. This is
discussed further in Appendix B. For the purposes of the next
section, it suffices to make the choice

FIG. 1. Plot of �ln ����� ln � /�v* as a function of v* for d
=3 and �=0.95. The circles are the numerical derivative of the
DSMC results and the solid line is the Gaussian. Quantities are
measured in the dimensionless units defined in the text.

FIG. 2. The same as Fig. 1 but for �=0.6.
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��i� = �1,
v*2

d
+

1

2
, k̂ · v*,v�

* � . �58�

The function �2 is not an eigenfunction of the adjoint opera-
tor L*†, but it is easily verified that the biorthogonality con-
ditions �55� are satisfied.

V. NAVIER-STOKES ORDER MODES

In the previous section, the hydrodynamic modes were
identified in the long wavelength limit. Assuming analyticity,
their existence at finite wavevectors can be inferred. Further-
more, their explicit construction is possible by perturbation
theory. This construction provides a critical test of the inter-
nal consistency of other quite different approaches �e.g., the
Chapman-Enskog method discussed above and in Appendix
A�. In particular, the detailed form of the eigenvalues and the
dependence of the associated transport coefficients on the
restitution coefficient should be exactly the same. This is
demonstrated to Navier-Stokes order in this section.

Return now to the eigenvalue problem �43� and consider
the case of k�1. Look for solutions with the expansion �a
more complete characterization of the conditions for this per-
turbation expansion is given below�,

�i�k� = �i�0� + k�i
�1� + k2�i

�2� + ¯ , �59�

�i�k� = �i�0� + k�i
�1� + k2�i

�2� + ¯ . �60�

The reference eigenfunctions �i�0� and eigenvalues �i�0� are
taken to be the long wavelength hydrodynamic results of
Eqs. �53� and �54�. As already indicated, there is a d-fold
degeneracy for the eigenvalue ��0�=−	0

* /2. However, the
d-dimensional subspace spanned by its eigenvectors was
naturally partitioned by symmetry into the longitudinal and
transverse components. The eigenvectors for the transverse
modes decouple from the remaining three modes even at
finite wave vector for the same symmetry reasons, so there
are no complications of degenerate perturbation theory. In
the longitudinal subspace, all the eigenvalues are distinct,
except in the elastic limit �=1, where there is a threefold
degeneracy in this subspace. Thus the two cases of unper-
turbed reference states with �=1 and ��1 must be distin-
guished. In the former case, the eigenvalues behave as

�i�k,�� = ��i�0� + k�i
�1� + k2�i

�2� + ¯ ��=1

+ terms of order �1 − �� , �61�

and are regular in �1−��. This occurs when the degree of
dissipation because of inelasticity is small relative to the ef-
fects of the spatial variation. The corresponding eigenvalues
are then similar to those of a normal gas, with d−1 shear
diffusion modes, two sound modes, and a heat diffusion
mode. Here attention is restricted to the more interesting and
relevant second case of fixed ��1 with small spatial pertur-
bations. It will be seen that the modes are now qualitatively
different, consistently with the results reported in Sec. II,
since the degeneracy of the elastic limit is lifted at the outset
by the finite dissipation.

To set up the perturbation expansion, projection operators
Pi for the biorthogonal set ��i ,�i�0�� are defined by

PiX = �i�0���i,X� , �62�

for an arbitrary element X in the Hilbert space. The eigen-
value problem �43� can be rearranged as

�L* − �i�0���i�k� = ��i�k� − �i�0� − ik · v*��i�k� . �63�

Then, operating on both sides of this equation with Qi
�1−Pi, and using the property �L*−�i�0��Pi=0, this be-
comes

Qi�L* − �i�0��Qi�i�k� = Qi��i�k� − �i�0� − ik · v*��i�k� .

�64�

By construction, the right side of the above equation is or-
thogonal to the null space for the adjoint of �L*−�i�0�� , and
the Fredholm alternative assures solutions to this equation
�18�. The eigenvalue problem for �i�k� is determined only
up to an overall scale factor, amounting to the choice of
normalization. It is convenient to choose

„�i,�i�k�… = 1, �65�

implying ��i ,�i
�n��=0 for n
1. With this, Eq. �64� gives

two sets of equations for the eigenvalues and eigenvectors

�i�k� = �i�0� + ��i,ik · v*�i�k�� + ��i,�L* − �i�0��Qi�i�k�� ,

�66�

Qi�i�k� = �Qi�L* − �i�0��Qi�−1Qi��i�k� − �i�0�

− ik · v*��i�k� . �67�

To zeroth order in k, these equations give the hydrody-
namic modes of the last section in the long wavelength limit,
consistently. To first order in k, the eigenvectors are

�i
�1��k� = Qi�i

�1��k� = �Qi�L* − �i�0���−1Qi��i
�1�

− ik̂ · v*��i�0� = − �Qi�L*

− �i�0���−1Qiik̂ · v*�i�0� . �68�

The first equality in the above transformations is a conse-
quence of the normalization condition �65�. For the first or-
der eigenvalues it is found

�i
�1� = ��i,ik̂ · v*�i�0�� + ��i,L*Qi�i

�1�� = 0. �69�

Now the last equality follows from the fact that each �i
and �i�0� have the same definite parity under the change
v*→−v* and the distribution function of the HCS, ��v*�,
defining the scalar product is invariant under this change.
Thus the first term on the right side vanishes. The second
term also vanishes for similar reasons, since �i and �i

�1�

have opposite parity and L* is invariant under the change in
sign of the velocity.

To second order in k the eigenvectors and eigenvalues are
given by

Qi�i
�2� = − �Qi�L* − �i�0���−1Qiik̂ · v*�i

�1�, �70�
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�i
�2� = ��i,ik · v*�i

�1�� + ��i,L*Qi�i
�2�� . �71�

The above expressions for the eigenvalues are evaluated in
Appendix C. The results have the same forms as given in
Eqs. �27�. Furthermore, the reduced transport coefficients
�* ,�*, and 	1

* are determined from the same integral equa-
tions as following from the Chapman-Enskog solution sum-
marized in Appendix A. This confirms that the hydrody-
namic modes determined from the spectrum of the linearized
Boltzmann equation are consistently determined to Navier-
Stokes order by both methods.

VI. “AGEING” TO HYDRODYNAMICS

The existence of hydrodynamic excitations only assures
that there is a hydrodynamic contribution to the dynamics of
small perturbations of the HCS. To establish a description in
terms of these hydrodynamic excitations alone, it is neces-
sary to characterize the rest of the excitations in the spec-
trum. For gases with elastic collisions, it has been shown that
for sufficiently small k the hydrodynamic excitations are
smaller in magnitude than all other excitations, and bounded
away from them �10,11�. Consequently, there is a time scale
beyond which only the hydrodynamic excitations persist. It
is on this space and time scales that hydrodynamics in the
usual sense applies. Typically, the conditions are wave-
lengths larger than the mean free path and times later than
the mean free time. This leaves a large domain of macro-
scopic space and time scales for hydrodynamics.

The extension of this concept of “ageing to hydrodynam-
ics” for granular gases is expected, but its verification is not
so straightforward. The mathematical analysis for elastic col-
lisions does not transfer to the granular gas due to the sig-
nificant differences in the linear collision operator. There are
qualitative differences in the hydrodynamic modes. For ex-
ample, the fact that energy is not conserved means that the
hydrodynamic excitations cannot be made arbitrarily small
simply by making k small. The fastest decaying hydrody-
namic modes is that with eigenvalue 	0

* /2 at long wave-
lengths. This has its maximum value at large dissipation, and
the question arises as to whether the time scale for this mode
can become comparable to or exceed those of the non-
hydrodynamic modes at strong dissipation.

A. Model kinetic equation

Current analysis of the spectrum of the linearized Boltz-
mann operator for granular gases appears to be limited to the
hydrodynamic excitations discussed here, with no character-
ization of the rest of the spectrum as yet. Consequently, in
the remainder of this presentation these questions are ad-
dressed in the context of a model kinetic equation. This
model �19� is an extension of the familiar Bhatnager, Gross,
Krook �BGK� single relaxation time model for normal gases
�20�. The Boltzmann equation can be formally written in the
form

� �

�t
+ v · �� f = − ��f − g� . �72�

There are two significant differences of the model considered
here with respect to the original Boltzmann equation. First,

the collision frequency is replaced by a velocity independent
function of the local density and temperature, �=��n ,T�.
Second, the gain term of the Boltzmann equation is replaced
by �g, where g is taken to be a Gaussian function of the
velocity

g�r,v,t� = n�b�T�
�

�d/2

e−b�T�V2
. �73�

Here V is the peculiar velocity defined below Eq. �10�. The
parameter b is chosen to be function of the local density and
temperature so as to enforce the moment conditions �5�
above. This leads to the identification

b�T� =
m

2T�1 − 	/��
. �74�

In this way, it is assured that the exact macroscopic balance
equations �6�–�10� are preserved by the model. Then the
Chapman-Enskog method leads to the same Navier-Stokes
hydrodynamic equations as for the Boltzmann equation, with
only the transport coefficients being different. In the follow-
ing, it will be considered that the expression for the collision
frequency � is chosen as scaling with nT1/2, in order to
mimic the hard sphere behavior. Dimensional analysis then
implies the same scaling for the cooling rate 	. Moreover,
note that consistency of the model kinetic equation requires
that 	�� for all values of �. A possible choice for the cool-
ing rate is to be the same as obtained from the Boltzmann
equation by using a local Maxwellian for the distribution
function. In the same spirit, the collision frequency can be
fixed by fitting one of the transport coefficients of the model
to that obtained from the Boltzamnn equation by the
Chapman-Enskog procedure in the first Sonine approxima-
tion. If the shear viscosity � is used, the above choices lead
to �21�

��r,t� =
�3 − 3� + 2d��1 + ��

4d
�0�r,t� , �75�

	�r,t� =
�2 + d��1 − �2�

4d
�0�r,t� , �76�

where �0�r , t� is an average local collision frequency

�0�r,t� =
8��d−1�/2n�d−1

�2 + d���d/2�
� T

m
�1/2

. �77�

The above expressions yield

	�r,t�
��r,t�

=
�2 + d��1 − ��
3 − 3� + 2d

�
2 + d

3 + 2d
� 1, �78�

in agreement with the model consistency requirement.
This kinetic model reduces to the BGK model for normal

gases at �=1 �20�. Otherwise it reproduces all of the quali-
tative features of the granular Boltzmann equation, including
a nontrivial HCS and the same hydrodynamic excitations
discussed in the sections above. In some respects, the model
kinetic equation is more complex than the Boltzmann equa-
tion since the collision operator is a nonlinear functional of f
through the dependence of g on T and u. However, the lin-
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earized model kinetic equation for small perturbations of the
HCS is considerably simpler than that for the Boltzmann
equation, as shown below.

B. Model HCS and linear model kinetic equation

The HCS equation �31� for this model becomes in dimen-
sionless form

	0
*

2

�

�v* · �v*�� + �0
*� = �0

*���1 − 	0
*/�0

*��−d/2exp�−
v*2

1 − 	0
*/�0

*� ,

�79�

where 	0
*��	HCS/vHCS�t�, as in the preceding sections and,

consistently, �0
*���HCS/vHCS�t�. The solution to the above

equation is

��v*� = �0
*���1 − 	0

*/�0
*��−d/2�

0

�

ds

�exp�− �d	0
*

2
+ �0

*�s�exp�−
e−	0

*sv*2

1 − 	0
*/�0

*� . �80�

It is easily verified that this distribution exhibits algebraic
decay for large velocities

��v*� �
p�−d/2

2
� p

p − 2
�−p/2

�� p + d

2
�v*−�p+d�, �81�

with p=2�0
* /	0

*. Therefore, moments of degree p or greater
do not exist.

The linearized kinetic model equation for small perturba-
tions of the HCS is obtained in Appendix D, with the result,
in the dimensionless variables of the previous sections,

��s + ik · v* + Lm
* ��̃�k,v*,s� = 0. �82�

The linear collision operator in this case is

Lm
* = �

i

�i�0�Pi + Q��HCS
* +

	0
*

2
�−1 �

�v* · v*��Q . �83�

The projection operators Pi are the same as defined in Eq.
�62� and

P � �
i

Pi, Q � 1 − P . �84�

In the above expressions, the summations are over the hy-
drodynamic modes. The first term on the right-hand side of
Eq. �83� is the projection onto the hydrodynamic eigenfunc-
tions, while the second one is orthogonal to this subspace.
Consequently, the spectrum of Lm

* for the model kinetic
equation has the same k=0 hydrodynamic eigenfunctions
and eigenvalues as the Boltzmann equation, i.e., it is

Lm
* �i�0� = �i�0��i�0�, i = 1,…,d + 2. �85�

Furthermore, the structure of Lm
* decomposes into opera-

tors defined in the hydrodynamic subspace and its orthogonal
complement. This allows more detailed analysis of the non-
hydrodynamic spectrum. The associated eigenfunctions lie in

the orthogonal complement Q. Consider the general form for
�Q=Q�

��Q,�L* − �
i

�i�0�Pi��Q�
= ��Q,��0

* +
	0

*

2
�−1 �

�v* · v*���Q�
= ���0

* −
	0

*

2
v* ·

�

�v*��Q,�Q� . �86�

The second term in the scalar product above can be simpli-
fied as

	0
*

2
�v* ·

�

�v*�Q,�Q� =
	0

*

4
�1,v* ·

�

�v*�Q
2 �

= −
	0

*

4
��−1 �

�v* · �v*��,�Q
2 �

=
�0

*

2
��Q,�Q� −

�0
*

2
��−1g0

*,�Q
2 � ,

�87�

where

g0
*�v*� = nHCS

−1 vd�t�gHCS�v,t� 
 0. �88�

Then Eq. �86� gives the desired inequality

��Q,�Lm
* − �

i

�i�0�Pi��Q�
��Q,�Q�

=
�0

*

2
�1 +

��Q,�−1g0
*�Q�

��Q,�Q� �
�

�0
*

2
. �89�

Therefore, the nonhydrodynamic spectrum of Lm
* consists of

points �or continuum� with real parts larger than �0
* /2. The

fastest decaying hydrodynamic eigenvalue is at 	0
* /2. The

hydrodynamic excitations are isolated from the rest of the
spectrum for 	0

*��0
*, as is always the case. Assuming analy-

ticity in k, the hydrodynamic modes at finite wavelength also
will be isolated from the rest of the spectrum for sufficiently
small k.

In summary, the kinetic model considered here illustrates
the expected behavior for the Boltzmann equation. The lin-
earized kinetic equation for small perturbations of the HCS
characterizes the complete complex response. Among the ex-
citations there are d+2 hydrodynamic modes. At long wave-
lengths, these modes are isolated from and have smaller ei-
genvalues than the rest of the spectrum. Hence, there is a
sufficiently long time scale on which only the hydrodynamic
excitations persist.

This kinetic model can be used to explore the role of
hydrodynamics in great detail as the linear equation can be
solved exactly �21�. For example, it has been shown that the
hydrodynamic modes extend to very short wavelengths far
beyond the validity of the Navier-Stokes approximation.
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VII. DISCUSSION

The objective here has been to explore the role of hydro-
dynamics for a granular gas by a direct analysis of the spec-
trum of the linear inelastic Boltzmann equation. This analy-
sis has been shown to lead to results equivalent to those
obtained previously based on the Chapman-Enskog method
to solve the Boltzmann equation. However, the current
method is more straightforward and less susceptible to sub-
jective questions about the applicability of the Chapman-
Enskog method to granular gases. In addition, the formula-
tion of the problem in terms of the spectrum of the linearized
collision operator is the proper setting to explore the context
for dominance of a hydrodynamic description.

The eigenvalue problem posed in Sec. IV, together with
the macroscopic balance equations leads to a precise defini-
tion of the hydrodynamic modes. Here, it has been estab-
lished that they exist for sufficiently long wavelengths. It
remains to explore the form and extent to which they are
meaningful at shorter wavelengths, and other methods to
solve the eigenvalue problem are available to complement
the simple perturbation theory applied here. This has been
done in Ref. �21� for the kinetic model introduced in Sec. V,
demonstrating the extension of the hydrodynamic modes to
wavelengths an order of magnitude shorter than those re-
quired for the Navier-Stokes approximation .

A second relevant result of the analysis here is the iden-
tification of the hydrodynamic eigenfunctions. This allows
calculation of the hydrodynamic component for properties of
interest, and provides the means to explore dynamical
mechanisms beyond the Boltzmann description based on hy-
drodynamics �e.g., mode coupling phenomena for fluctua-
tions�. For normal gases, these eigenfunctions are the sum-
mational invariants �1,v2 ,v� in the long wavelength limit.
For a granular gas, they are replaced by derivatives of the
logarithm of the HCS distribution function, which behave
quite differently for large velocities, as illustrated in Figs. 1
and 2.

The hydrodynamic excitations are usually interpreted as a
set of d+2 modes associated with the density, temperature,
and flow field of the macroscopic balance equations. Here,
they are simply d+2 points associated with the spectrum of
the linearized inelastic Boltzmann equation for response to
small perturbations. It is often claimed that the temperature
should not be included in the set of hydrodynamic fields, as
the energy is not conserved. However, the analysis here
shows that in the proper reduced variables all but one eigen-
value is nonzero in the long wavelength limit. Thus, the ex-
clusion of one field from the description will not recover a
smaller set of eigenvalues clustered around zero at long
wavelengths. Instead, the d+2 modes have the following
qualitative behavior. They are all clustered near zero for
weak dissipation, but become increasingly separated at stron-
ger dissipation. This means that within the hydrodynamic
description there are time scales set by both the wavelength
and the cooling rate and these can be quite different.

A second question is the isolation of these hydrodynamic
modes from the rest of the spectrum. At weak dissipation, it
is expected that this is the case since the hydrodynamic ei-
genvalues are all small and the nonhydrodynamic spectrum

is expected to be of the order of the collision frequency. At
strong dissipation, there is a hydrodynamic mode of the or-
der of 	0

* /2, which can be of the order of the collision fre-
quency. It remains an open question regarding the size of this
eigenvalue relative to the nonhydrodynamic spectrum. It is
possible that the isolation of the hydrodynamic spectrum
places some restriction on the degree of dissipation. How-
ever, the analysis based on the kinetic model of Sec. VI
suggests this may not be the case. For the kinetic model, all
of the hydrodynamic spectra remain isolated from all of the
nonhydrodynamic spectra for any degree of dissipation. In
this case, the d+2 hydrodynamic modes define a dominant
set on a sufficiently large time scale, even when the separa-
tion of times among the hydrodynamic modes is significant.

The idealized model for a granular gas discussed here can
be made more realistic by considering a more complex bi-
nary collision rule. In particular, a velocity dependent resti-
tution coefficient �which approaches unity as the relative ve-
locity goes to zero� and tangential friction are two additional
qualitative features of real granular fluids. However, the gen-
eral form of the hydrodynamic equations �macroscopic bal-
ance equations� is unchanged in that case; only the detailed
values of the transport coefficients, pressure, and cooling
rates differ from those of the present model. Similarly, the
collision operator of the Boltzmann equation becomes more
complex but its properties relevant for the macroscopic bal-
ance equations are the same. Most of the analysis given here
depends only on those properties rather than the detailed
form of the collision operator. Consequently, it is expected
that the implications of our simple model extend to more
realistic models as well.

The analysis of the linear Boltzmann collision operator
for normal, elastic gases is quite complete �10�. It is hoped
that the beginning provided here for granular gases will pro-
voke the new mathematical analysis required for this case as
well.
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APPENDIX A: CHAPMAN-ENSKOG RESULTS

The Chapman-Enskog method constructs a solution to the
Boltzmann equation whose space and time dependence oc-
curs entirely through the hydrodynamic fields and their gra-
dients. For small spatial gradients, i.e., small relative varia-
tion of the hydrodynamic fields over a mean free path, the
solution reads �we use the same notation as in Ref. �5��

f�r,v,t� = fHCS
�0� �r,v,t� + A · � ln T + B · � ln n + C: � u

+ M�2T + N�2n . �A1�

Consider the contributions to the heat flux and the momen-
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tum flux from the terms of first order in the gradients of the
above expression. Since these fluxes appear in the macro-
scopic balance equations under a gradient, the resulting con-
tributions are of second order in the gradients �Navier-Stokes
order�. For consistency, the cooling rate which does not oc-
cur under a gradient in the balance equations must be calcu-
lated to second order. Therefore, the last two terms on the
right hand side of Eq. �A1� give contributions to the cooling
rate at this order, but lead to higher order �Burnett� terms in
the heat and momentum fluxes. Additional nonlinear terms of
second order in the gradients coming from the cooling rate
have been omitted in Eq. �A1� as only the linear hydrody-
namic equations are considered here. The reference distribu-
tion function fHCS

�0� �r ,v , t� has the same functional form as the
distribution function of the HCS discussed at the beginning
of Sec. III, but scaled with respect to the local exact hydro-
dynamic fields at time t for the generally nonuniform, non-
stationary state. Therefore, it can be considered as the local
HCS distribution function.

The dissipative part of the pressure tensor and the heat
flux are given by Eqs. �11� and �12�, respectively. The trans-
port coefficients in these equations are determined from the
functions A ,B, and C appearing in Eq. �A1�� through

� = −
1

d2 + d − 2
� dv D�v�:C�v�,

� = −
1

dT
� dvS�v� · A�v�,

� = −
1

dn
� dvS�v� · B�v� , �A2�

where the functions D�v� and S�v� are defined by

D � m�vv −
v2

d
I�, S = �mv2

2
−

d + 2

2
T�v . �A3�

The functions A�v ,n ,T� ,B�v ,n ,T�, and C�v ,n , t� are so-
lutions of the integral equations

�− 	HCS
�0� T

�

�T
+ L�0� −

	HCS
�0�

2
�A = A , �A4�

�− 	HCS
�0� T

�

�T
+ L�0��B = B + 	HCS

�0� A , �A5�

�− 	HCS
�0� T

�

�T
+ L�0��C = G , �A6�

with the definitions

L�0��t�X�v� = − J�fHCS
�0� ,X� − J�X, fHCS

�0� � , �A7�

A =
v
2

�

�v
· �vfHCS

�0� � −
T

m

� fHCS
�0�

�v
, B = − vfHCS

�0� −
T

m

� fHCS
�0�

�v
,

G =
�

�v
�vfHCS

�0� � −
I

d

�

�v
· �vfHCS

�0� � . �A8�

Moreover, 	HCS
�0� is the local form of 	HCS.

The transport coefficients arising from the cooling rate are
best described by first making the expression for the cooling
rate more explicit. In general, it is given by a bilinear func-
tional of the distribution function

	 = 	�f , f� , �A9�

where

	�X,Y� = −
m

dnT
� dv v2J�X,Y�

= �1 − �2�
m��d−1�/2�d−1

4dnT�� d+3
2 � � dv� dv1g3X�v�Y�v1�

= 	�Y,X� . �A10�

The linear contributions from the cooling rate to second or-
der order in the gradients are then

	L
�2� = 	1�2T + 	2�

2n , �A11�

with

	1 = 2	�M, fHCS
�0� �, 	2 = 2	�N, fHCS

�0� � . �A12�

The integral equations for M and N are found to be

�− 	HCS
�0� T

�

�T
−

3

2
	HCS

�0� + L�0��M = T	1
� fHCS

�0�

�T

− �2�

dn

� fHCS
�0�

�T
+

1

dT
A · v� , �A13�

�− 	HCS
�0� T

�

�T
+ L�0��N = T	2

� fHCS
�0�

�T
+

T	HCS
�0�

n
M

− �2�

dn

� fHCS
�0�

�T
+

1

dn
B · v� .

�A14�

The above results can be easily transformed to be ex-
pressed in terms of the reduced units and quantities intro-
duced in Secs. II and III. Dimensionless transport coeffi-
cients are again defined by Eqs. �23� and �24�, but replacing
nHCS and THCS by their local values n and T. Of course, now
it is �= �n�d−1�−1 and vHCS�t� is replaced by v�t�= �2T /m�1/2.
In this way, it is obtained

�* =
1

d2 + d − 2�
i,j

�Dij
* ,Cij

* �, �* =
1

d2�
i

�Si
*,Ai

*� ,

�* =
1

d2�
i

�Si
*,Bi

*� , �A15�

with the dimensionless functions D* and S* given by

D* = v*v* −
v*2

d
I, S* = �v*2 −

d + 2

2
�v*. �A16�

Moreover, A* ,B*, and C* are now defined through the equa-
tions
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�L* −
	0

*

2
�A* = A*, �A17�

L*B* = B* + 	0
*A*, �A18�

�L* +
	0

*

2
�C* = G*, �A19�

where the operator L* is defined in Eq. �37� and

A* = v*�2�0� − �3�0�, B* = 2v* − �3�0� ,

G* = v*�3�0� −
I

d
v* · �3�0� . �A20�

The expressions of the reduced transport coefficients 	1
* and

	2
* are

	1
* =

1

d
�a,M*�, 	2

* =
1

d
�a,N*� , �A21�

where

a�v*� =
�1 − �2���d−1�/2

2�� d+3
2 � � dv1

*��v1
*�g*3. �A22�

The integral equations obeyed by M* and N* are

�L* −
	0

*

2
�M* = �	1

* − �*��2�0� +
1

d
A* · v*, �A23�

L*N* = 	0
*M* + �	2

* − �*��2�0� +
1

d
B* · v*. �A24�

For later use, it is convenient to elaborate more the above
expression for 	1

*. By construction, the velocity integrals of
M times 1, v, and v2 vanish. This is equivalent to say that
M* is orthogonal to the set of functions �i defined in Eq.
�58�, and in particular it verifies M*=Q2M*, with Q2=1
−P2 ,Pi being the projection operator defined in Eq. �62�.
Then, acting with Q2 on both sides of Eq. �A23� it is ob-
tained

M* = Q2M* =
1

d
�Q2�L* −

	0
*

2
��−1

Q2A* · v*.

�A25�

For the same reason, Eq. �A17� yields

A* = Q2A*

= �Q2�L* −
	0

*

2
��−1

Q2A*

= �Q2�L* −
	0

*

2
��−1

Q2v*�2�0�

− �Q2�L* −
	0

*

2
��−1

�3�0�

= �Q2�L* −
	0

*

2
��−1

Q2v*�2�0� +
1

	0
*�3�0� .

�A26�

Substitution of this expression into Eq. �A25� after some
algebra leads to

M* =
1

d
�Q2�L* −

	0
*

2
��−1

�Q2v* · �Q2�L* −
	0

*

2
��−1

Q2v*�2�0� −
2

	0
*2�1�0� ,

�A27�

and use of this into Eq. �A21� gives the result

	1
* =

1

	0
* +

1

d
�a,M1

*� , �A28�

with

M1
* =

1

d
�Q2�L* −

	0
*

2
��−1

�Q2v* · �Q2�L* −
	0

*

2
��−1

Q2v*�2�0� . �A29�

Although the expression for 	2
* can be written in a similar

way, it will not be needed here.

APPENDIX B: ADJOINT LINEAR OPERATOR AND
BIORTHOGONAL SET

The adjoint for L* ,L*†, is defined as usual by

�X,L*Y� = �L*†X,Y� , �B1�

for arbitrary X�v*� and Y�v*� belonging to the Hilbert space.
The explicit form of L* is given in Eq. �37�. From it, and
using the above definition, the expression for L*† is easily
found,

L*†X�v*� = −� dv1
*��v1

*� � d�̂���̂ · g��̂ · g�X�v*��

+ X�v1
*�� − X�v*� − X�v1

*�� −
	0

*

2
v* ·

�

�v*X�v*� ,

�B2�

where v*� and v1
*� are the postcollisional velocities corre-

sponding to v* and v1
*,

v*� = v* −
1 + �

2
��̂ · g*��̂ ,

v1
*� = v1

* +
1 + �

2
��̂ · g*��̂ . �B3�

Equation �B2� gives immediately
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L*†1 = 0, L*†v* = −
	0

*

2
v*, �B4�

so that 1 and v* are eigenfunctions of the adjoint operator
with eigenvalues 0 and −	0

* /2, respectively.
However, the kinetic energy is not an eigenfunction of the

adjoint operator. Direct calculation gives

L*†v*2 = − 	0
*v*2 +

a�v*�
2

, �B5�

where a�v� is given by Eq. �A22�. Nevertheless, a biorthogo-
nal set can be constructed from 1, v*, and v*2 and it is given
in Eq. �58�. As noted in the main text, the choice of this set
is not unique. The conditions of biorthogonality on �2 are

��2,�2�0�� = �v* ·
��2

�v* ,1� = 1, �B6�

��2,�1�0�� = ��2,1� − 1 = 0, �B7�

��2,�3�0�� = � ��2

�v* ,1� = 0 . �B8�

A sufficient condition to guarantee that the above relations
are verified, is that �2 have the form

�2�v*� = A + Bb�v*� , �B9�

where b�v*� is an arbitrary scalar function of v*, and the
constants A and B are determined from

A = 1 − �1,b�B, B = �v* ·
�b

�v* ,1�−1

. �B10�

Substitution of these expressions into Eq. �B8� yields

�2�v*� = 1 + �b�v*� − �1,b���v* ·
�b

�v* ,1�−1

. �B11�

The optimal choice for b�v*� would be that implying that
�2�v*� is an eigenfunction of L*† corresponding to the ei-
genvalue 	0

* /2. This is accomplished if b�v*� is the solution
to

L*†b�v*� =
	0

*

2
�b�v*� + B−1� . �B12�

The solution to this equation, if it exists, has not yet been
found.

APPENDIX C: EVALUATION OF THE PERTURBATION
THEORY RESULTS

The expansion of the hydrodynamic eigenvalues of the
linearized Boltzmann equation for small k is given in Sec. V
with the result

�i�k� = �i�0� + k2�i
�2� + ¯ , �C1�

where

��i�0�� = �0,
	0

*

2
,−

	0
*

2
� , �C2�

and

�i
�2� = ��i,ik̂ · v*�i

�1�� + ��i,L*Qi�i
�2��

= „�i, k̂ · v*�Qi�L* − �i�0���−1Qik̂ · v*�i�0��

+ ��i,L*Qi�i
�2�� . �C3�

The eigenvalue −	0
* /2 is d-fold degenerated and the conve-

nient choice for the lowest order eigenfunctions has been
discussed in Sec. IV. The formal expression for the second
order eigenfunctions Qi�i

�2� is given in Eq. �70�. For i�2,
the second term on the right-hand side of Eq. �C3� vanishes
since �i is an eigenvector in those cases and, therefore,

��i,L*Qi�i
�2�� = �L*†�i,Qi�i

�2�� � ��i,Qi�i
�2�� = 0.

�C4�

Then, Eq. �C3� can be rewritten as

�i
�2� = �k̂ · v*�i,�Qi�L* − �i�0���−1k̂ · v*�i�0��

+ i,2
1

d
�L*†v*2,Q2�2

�2�� , �C5�

where it has been used that

Pik̂ · v*�i�0� = �i�0���i, k̂ · v*�i�0�� = 0. �C6�

This follows since �i and �i�0� have the same parity with
respect to reflections of v*.

For the first eigenvalue it is

�1
�2� = „k̂ · v*,�Q1L*�−1k̂ · v*�i�0�…

= „k̂ · v*,L*−1k̂ · v*�1�0�… = „L*†−1k̂ · v*, k̂ · v*�1�0�…

= −
2

	0
*„�k̂ · v*�2,�1�0�… =

1

	0
* . �C7�

In the first transformation, the property P1L*X=0, for arbi-
trary X�v*�, has been employed. Next, consider the eigen-
value associated to the longitudinal component of �3�0� that
we will denote by �

�2�,

�
�2� = ��k̂ · v*�2,�Q3�L* +

	0
*

2
��−1

k̂ · v*k̂ ·
�ln �

�v* �
= �vi

*2,�Q3�L* +
	0

*

2
��−1

Gii
*� + �vi

*2,�Q3�L* +
	0

*

2
��−1

���1�0� +
d + 1

d
�2�0��� = �vi

*2,�L* +
	0

*

2
�−1

Gii
*�

+
2

	0
* �vi

*2,�1�0�� +
d − 1

d

1

	0
* �vi

*2,�2�0�� , �C8�

where it has been taken into account that P3�L*+	0
* /2�=0.

Using Eq. �A19� in the first term on the right-hand side of the
above equation and evaluating explicitly the other two ones
one gets
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�
0 = �vi

*2,Cii
*� +

1

d	0
* =

2�d − 1�
d

�* +
1

d	0
* . �C9�

The last equality follows from the fact that the expression of
�* given in Eq. �A15� is equivalent to

�Dij
* ,Cij

* � = �*�1 +
d − 2

d
i,j� , �C10�

because of the symmetry of the tensors D and C. The calcu-
lation of the shear modes eigenvalues �

�

�2� is straightforward:

��
�2� = �v

*v�i
* ,�L* +

	0
*

2
�−1

v
*�3,�i�

= �D,�i
* ,�L* +

	0
*

2
�−1

G,�i
* �

= �D,�i
* ,C,�i

* � = �*. �C11�

Finally, the evaluation of �2
�2� is somewhat more complicated.

The contributions from each of the two terms in Eq. �C5�
will be computed separately. The first one is given by

�k̂ · v*�2,�Q2�L* −
	0

*

2
��−1

k̂ · v*�2�0��
= �vi

*�2,�L −
	0

*

2
�−1

vi
*�2�0�� , �C12�

that is equivalent to

1

d
�Si

*,�L −
	0

*

2
�−1

vi
*�2�0��

+
d − 1

d
�vi

*,�L −
	0

*

2
�−1

vi
*�2�0��

=
1

d
�Si

*,Ai
*� −

2

d	0
*„Si

*,�3,i�0�… −
d + 1

d

1

	0
*�vi

*,vi
*�2�0��

= �* −
d + 1

d	0
* . �C13�

The analysis of the second term on the right-hand side of Eq.
�C5� is carried out in an analogous way,

1

d
�L*v*2,Q2�2

�2�� = −
	0

*

d
�v*2,Q2�2

�2�� +
1

d
�a,Q2�2

�2�� .

�C14�

It is

−
	0

*

d
�v*2,Q2

2�2
�2�� =

	0
*

2
��1,Q2�2

�2��

= −
1

	0
*„�3,i,vi

*�2�0�… = −
1

	0
* .

�C15�

In the second equality above, the explicit expression of �2
�2�

given in Eq. �70� as well as the properties of L* have been

used. The second term on the right-hand side of Eq. �C14�
can be rewritten as

1

d
�a,Q2�2

�2�� = −
1

d
�a,M1

*� , �C16�

where M1
* is defined in Eq. �A29�. Substitution of Eqs.

�C15� and �C16� into Eq. �C14� yields

1

d
�L*v*2,Q2�2

�2�� = −
1

	0
* −

1

d
�a,M1

*� = − 	1
*, �C17�

because of Eq. �A28�. Then, use of Eqs. �C13� and �C17�
into Eq. �C5� gives the final expression for �2

�2�,

�2
�2� = �* − 	1

* −
d + 1

d	0
* . �C18�

Comparison of the results for the second order eigenvalues
obtained in this Appendix with those reported in Sec. II
shows that both agree, with the transport coefficients given
by the same expressions in both cases.

APPENDIX D: LINEARIZATION OF THE MODEL
KINETIC EQUATION

Solutions to the model kinetic equation �72� are sought of
the form �32� and, consistently, g=gHCS+g and �=�HCS
+�, retaining only terms linear in �,

� �

�t
+ v · ���fHCS�� = − ��fHCS − gHCS� − �HCS�fHCS�

− g� . �D1�

Use has been made of the HCS model equation

� fHCS

�t
=

	HCS

2

�

�v
· �vfHCS� = − �HCS�fHCS − gHCS� .

�D2�

Next, from the choice of � as corresponding to hard sphere
behavior,

� = �HCS� n

nHCS
+

2T

THCS
� . �D3�

Similarly, the definition of g in Eq. �73� gives

g =
gHCS

nHCS
n +

�gHCS

�THCS
T −

�gHCS

�v
· u . �D4�

The linear model kinetic equation �D1� then becomes

� �

�t
+ v · ���fHCS�� = − � n

nHCS
+

T

2THCS
��HCS�fHCS − gHCS�

− �HCS� fHCS� −
gHCS

nHCS
n −

�gHCS

�THCS
T

+
�gHCS

�v
· u� . �D5�

It is convenient to eliminate gHCS in this result using the HCS
equation �D2� to get
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� �

�t
+ v · ���fHCS�� = − �HCSfHCS� + � n

nHCS

+
T

2THCS
� 	HCS

2

�

�v
· �vfHCS� +

n

nHCS
��HCSfHCS

+
	HCS

2

�

�v
· �vfHCS��

+ T��HCS
� fHCS

�THCS
+

	HCS

2

�

�v
· �v

� fHCS

�THCS
��

− u ·
�

�v
��HCSfHCS +

	HCS

2

�

�v
· �vfHCS�� . �D6�

The right-hand side of this expression can be put in a more
transparent form by noting that

���,�i�� = � n

nHCS
,

T

2THCS
+

n

nHCS
,

u

vHCS
,

u�

vHCS
� . �D7�

where the scalar product �X ,Y� is defined in Eq. �40� and
��i� are the biorthogonal set given in Eq. �58�. Moreover, the
relation

THCS
� ln fHCS

�THCS
=

1

2�

�

�v
· �v�� , �D8�

allows one to write the dependence on fHCS on the right-hand
side in terms of the lowest order hydrodynamic eigenfunc-
tions ��i�0�� of the linearized Boltzmann operator given in
Eq. �54�. Then, Eq. �D6� can be rewritten as

� �

�t
+ v · ���fHCS�� = − �HCSfHCS�� − �

i

�i�0���i,���
+

	HCS

2

�

�v
· � fHCSv�

i

�i�0���i,���
− fHCS

vHCS�t�
� �

i

�i�0��i�0���i,�� .

�D9�

Here ��i�0�� are the eigenvalues of Eq. �53�.
Finally, introducing the dimensionless variables of Secs.

II and III, and the single Fourier component of Eq. �35� gives
the linear kinetic equation for the model

��s + ik · v* + Lm
* ��̃�k,v*,s� = 0, �D10�

with

Lm
* = �

i

�i�0�Pi + �0
*Q +

	0
*

2
�−1 �

�v* · v*�Q . �D11�

The projection operators Pi are defined in Eq. �62�, and

P � �
i

Pi, Q � 1 − P . �D12�

It is directly verified that

P�−1 �

�v* · v*�Q = 0, �D13�

so that Lm
* can be written

Lm
* = �

i

�i�0�Pi + Q��0
* +

	0
*

2
�−1 �

�v* · v*��Q .

�D14�

This is the expression for the generator of the linear dynam-
ics used in main the text.
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