
UNIVERSIDAD DE SEVILLA
DOBLE GRADO EN F ÍSICA Y MATEMÁTICAS1
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Abstract

In this thesis, both the geometrical and action principle approach to Einstein’s field
equations are developed, providing an intuitive fundamental path also with a more formal
development given by an extremal principle. After this solid introduction, derivations of
the metric of two distinct theoretical models of black holes are presented. Firstly, the
Reissner-Nordström model is studied and its metric is obtained by solving the differential
field equations. Secondly, the Kerr-Newman model is approached by the Newman-Jannis
algorithm that provides an easy and straightaway procedure to obtain its metric and energy-
momentum tensor just by identifying a seed metric and applying a change of variables.
Finally, the solutions are studied, horizons and regions of interest of both black holes are
commented.

Keywords: general relativity, gravitation, Reissner-Nordström, Kerr-Newman, Schwarzschild,
Minskowski, inertial frame, curvilinear coordinates, covariant derivative, general covariance,
Einstein’s field equations, metric, affine connection, energy-momentum, action principle, Newman-
Jannis algorithm, tetrad formalism, horizon.
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1 Introduction
General relativity is one of the most shocking and best experimentally-proved theories of the
last century with enormous changes on the development of Physics due to its profound math-
ematical structure and geometrical results. Nowadays, general relativity is still a matter of
difficulties for many students and scientists due to a deep need of interpretation and mathemat-
ical background that intuition is not always willing provide our minds.

The geometrical approach of general relativity is, therefore, a matter of need for most of us
to relate curvature and gravitation. This path is of course much more technical mathematically
and will take us some time but, once we have developed our own intuition of this subject, the
following derivations will be easily, substantially, derived. As done in Weinberg (1972) [1],
Schutz (2009) [2], Dirac (1975) [3], Hamilton (2015) [4] or Chandrasekhar (1983) [5], geom-
etry is developed and linked to gravitation through identification of geodesics and curvature.

A much more elegant way of deriving Einstein’s field equations is, of course, an extremal
principle, which in Physics gets the name of action principle as done firstly by David Hilbert
in gravitation and reproduced in Weinberg (1972) [1] and Hamilton (2015) [4]. This action
principle will provide us with a highly sophisticated mathematical tool developed properly in
Gelfand & Fomin (1963) [6], the Calculus of Variations, that will help us, once we have defined
and obtained all proper quantities and functionals, to obtain the very same equations as we did
using only geometrical procedures.

Finally, we will be studying black holes as done by most of the authors, but mainly focusing
on the works of Chandrasekhar (1983) [5], Hamilton (2015) [4] and Weinberg (1972) [1],
in that order of relevance, with certain parameters that make them have physically special
properties. We will be studying firstly the Reissner-Nordström black hole, which consists of
a static charged mass, no more no less. This charge will lead us to different solutions like
the uncharged case, known as Schwarzschild’s solution. From this watchtower, a way simpler
derivation of the Kerr-Newman black hole will be possible just by ”turning on” the rotation and
giving significant electric charge to the mass. A discussion of physically interesting properties
of these two solutions will be exposed, which makes the really important part of a physicist
investigation.

2 Geometric Approach
Weinberg (1972) [1] will be mostly followed in this section because of its straightaway devel-
opment, Schutz (2009) [2], which goes backwards from the field equations to its foundations in
Newtonian gravity and Dirac (1975) [3], whose compact notation is more than recommendable,
eventhough we will be using that of [1] to avoid mistakes through the derivations, are the books
that can be consulted to verify and follow, more deeply, this section.

2.1 Principle of Equivalence
The principle of equivalence of gravitation and inertia gives a subtle but important property of
Newtonian transformations of reference systems matching gravitational forces in an arbitrary
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reference frame with inertial forces in a locally inertial frame. From the preceding sentence we
will have to clarify some terms because, what is a locally inertial frame?

In order to develop a theory of gravitation, a mathematical structure must be assumed and,
in the case of general relativity, its foundations are based on Riemannian geometry. For this
interpretation, spacetime will be formalized by a four-dimensional differentiable manifold that
will locally resemble an Euclidean space. Locally will therefore mean an open subset of the
manifold small enough such that it will behave, in our case, as a Minkowskian spacetime. This
will translate to the vanishing of the first derivatives of the metric in an arbitrary inertial frame
that acts as the subject of study.

More visually, if a system of N particles where forces act upon has as equations of motion
the following expression

mN ÜxNxNxN = mNggg +
∑
M

FFF(xMxMxM − xNxNxN ) (1)

where the primes have been neglected in the right side of the equation because an affine
transformation of the coordinates doesn’t change the distance. By a simple Galilean transfor-
mation xxx′ = xxx − 1

2gggt2 and t′ = t, we get a new system in which the gravitational force is
suppressed by an inertial force of the same value. This can be done due to the equivalence
of inertial mass and gravitational mass, which has been studied up to a high level of accuracy
leading to the equality of both values. After the transformation, the equation is invariant in the
right side, where the non-gravitational forces are

mN ÜxNxNxN
′ =

∑
M

FFF(xMxMxM − xNxNxN ) (2)

Of course, in this case ggg was a constant, but we can do this transformations also when the
gravitational field depends on time. This is done by a differentiable change of coordinates that
will lead to derivatives of the transformation xxx → ξξξ as factors ∂ξµ/∂xν of the transformation.

So, the question here must be, are the laws of nature the same in an gravitationally-accelerating
system than in an inertial reference frame absent of gravitation? The answer is yes, and when
we extrapolate this to every point in space, due to homogeneity of spacetime, we get the prin-
ciple of equivalence that we can state as:

”at every spacetime point in an arbitrary gravitational field it is possible to choose a
locally inertial coordinate system such that [...] the laws of nature take the same form as
in unaccelerated Cartesian coordinate systems in the absence of gravitation.” (Weinberg,
1972, p.68) [1].

2.2 Gravitational Forces
Take a test particle in reference frame where non-zero gravitational forces are the only forces
acting on the particle. This particle could be observed in another reference frame with such a
coordinate system, called freely falling, that makes gravitational forces vanish, and we know
this is true due to the principle of equivalence that we just stated. So, therefore, in this new
system, the particle moves freely, and we know the equations of motion for this case, leading
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to
∂2ξλ

∂τ2
= 0 (3)

with the proper time as dτ2 = −ηαβdξαdξ β. Remember that proper time along a timelike
world line is defined as the time as measured by a clock following that line; the particle’s clock.

If we now take any other arbitrarily chosen coordinate system xµ, we could obtain the same
information of the previous coordinate system ξν by asking that the coordinate transformation
between the proper system and the new one are regularly differentiable. This means nothing but
that we could locally ”see” the old coordinates as a differentiable function of the new, xxx = f (ξ).
With this, applying the chain rule, we will obtain the equation of motion in the new system

∂2xλ

∂τ2
+ Γλµν

dxµ

dτ
dxν

dτ
= 0 (4)

where we define the following quantity as Christoffel symbols or affine connection

Γ
λ
µν ≡

∂xλ

∂ξα
∂2ξα

∂xµ∂xν
(5)

The proper time, as long as it is also a function of the coordinates, will also experience a
change. Its expression in the arbitrarily chosen coordinates is

dτ2 = −gµνdxµdxν (6)

where gµν is the metric tensor, given by

gµν ≡ ηαβ
∂ξα

∂xµ
∂ξ β

∂xν
(7)

In the case of a massless particle, as a photon, dτ2 = 0 as the particle is travelling at the
speed of light. If the proper interval is null, then derivatives using proper time as a variable make
no sense, see equation (3). As a solution, we can take another parameter σ ≡ ξ0 that we do not
need to know in order to find the path of the particle, as its only purpose is parametrization, and
applying again the chain rule we get the very same equations

∂2xλ

∂σ2
+ Γλµν

dxµ

dσ
dxν

dσ
= 0 (8)

− gµν
dxµ

dσ
dxν

dσ
= 0 (9)

Analyzing the results we can see that equation (4), as well as (8), gives the differential
equation of motion and equation (6) tells us how to compute the proper time, while in (9) sets
initial conditions to massless particles.

To argue that both gµν and Γλµν are relevant quantities that comprise the effects of gravitation,
we would expect that coordinate transformations from one coordinate system xµ to another ξα
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will only depend on the metric, the affine connection and the coordinates, xµ. As we are
working with frames that are only locally inertial, this means that the coordinates’ ξα Taylor’s
series up to second order around a spacetime point can be expressed not uniquely, but up to an
inhomogeneous Lorentz transformation right hand side of equation (12), determined.

In order to do this, take the affine connection and multiply by ∂ξ β/∂xλ to get

Γ
λ
µν

∂ξα

∂xλ
=

∂2ξα

∂xµ∂xν
(10)

with solution, expanded as a Taylor’s series

ξα(xxx) = aα + bαµ(x
µ − X µ) +

1

2
bαλΓ

λ
µν(x

µ − X µ)(xν − Xν) + ... (11)

Thus, by identifying coefficients we clearly see

aα = ξα(XXX) bα =
(
∂ξα(xxx)
∂xλ

)
xxx=XXX

(12)

2.3 Relation between gµν and Γλµν
Just as a remark before deriving the relation between metric and affine connection, we need
to be completely clear about the mathematical procedure of derivation and fixing coordinate
systems. When we fix a locally inertial coordinate system ξα(xxx), we need a specific point in
spacetime to do so, call it X , and the coordinates should reflect this information by a proper la-
belling ξαXXX(xxx). Of course, if XXX is the origin of our locally inertial coordinate system, we should
be able to move in a neighborhood small enough with smooth properties, by means of differ-
entiable functions. Derivatives with arguments the components XXXα, which are not related at all
with the metric or affine connection, appear as new terms. The solution is to use the principle
of equivalence by means of another interpretation, that ”the locally inertial coordinates ξαXXX(xxx)
that we construct at a given point XXX can be chosen so that the first derivatives of the metric
tensor vanish at XXX” as developed in Weinberg (1972), p.73-77 [1]. These ”derivatives” are
respect to XXX , giving us the expression we will be giving in the following lines, as there will be
no such terms independent of gµν and Γλµν.

By differentiating the gµν and identifying terms with Γλµν we get

∂gµν

∂xλ
= Γ

ρ
µλgρν + Γ

ρ
λνgµρ (13)

and it can be easily seen that, with proper summation

Γ
σ
µλ =

1

2
gσν

(
∂gµν

∂xλ
+
∂gλν
∂xµ

−
∂gµλ

∂xν

)
(14)

This shows that gµν acts as a gravitational potential of the gravitational force, which we find
by clearing the term gµν in equation (4) to be proportional to the affine connection Γλµν.
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2.4 The Newtonian Limit
A new theory is considered valid only when it can predict results that previous theories already
predicted. In the case of gravity, the previous theory was Newtonian theory of gravity and we
will be not only confirming but also using its statements to complete our results for a better
comprehension.

Before beginning the approximation, it is interesting to point out the interpretation of the
metric tensor done in Dirac (1975), p.26 [3]:

”At first sight Einstein’s law of gravitation does not look anything like Newton’s. To see a
similarity, we must look on the gµν as potentials describing the gravitational field. There
are ten of them, instead of just the one potential of the Newtonian theory. They describe
not only the gravitational field, but also the system of coordinates. The gravitational field
and the system of coordinates are inextricably mixed up in the Einstein’s theory, and one
cannot describe the one without the other.”

Let’s start with a particle whose velocity is Newtonian, non-relativistic, in a weak stationary
gravitational field and therefore we consider that |dxxx/dτ | � dt/dτ, with τ being the proper
time as in equation (6). With this assumption, the equation of motion given by (4) is

∂2xλ

∂τ2
+ Γλ00

(
dt
dτ

)2
= 0 (15)

Stationary tells us that all time derivatives of gµν are null, giving

Γ
λ
00 = −

1

2
gλρ

∂g00
∂xρ

(16)

and weak gives us the prerequisite to be able to have a coordinate system such that, in an
open set G around a point XXX , we have

gµν(xxx) = ηµν(xxx) + hµν(xxx) |hµν(xxx)| � 1 ∀xxx ∈ G(XXX) (17)

and to first order in hµν, the rest of the terms can be neglected in this approximation,

Γ
λ
00 = −

1

2
ηλρ

∂h00
∂xρ

(18)

∂2xxx
∂τ2
=

1

2

(
dt
dτ

)2
∇h00 (19)

and the Newtonian analogue, for φ = −GM/r ,is

∂2xxx
∂τ2
= −∇φ (20)
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So, by comparison we get, as h00 → 0 at great distances,

h00 = −2φ and g00 = −1 − 2φ (21)

2.5 Principle of General Covariance
An alternative, and more suitable, version of the principle of equivalence is given by the prin-
ciple of general covariance

”states that a physical equation holds in a general gravitational field if two conditions are
met:

1. The equation holds in the absence of gravitation; that is, it agrees with the laws of
special relativity when the metric tensor gµν equals the Minkowski tensor ηµν and
when the affine connection Γλµν vanishes.

2. The equation is generally covariant; that is, it preserves its form under a general
coordinate transformation” (Weinberg, 1972, p.91-92) [1].

In order to validate this new principle and related to the previous one, we need arguments
in favor. First, from (1) we learn that locally inertial coordinate systems, in which gravitational
effects can be neglected, exist at every point of spacetime and that if an equation is valid in
such coordinate systems then, from (2), we could take an arbitrary differentiable coordinate
transformation to any other coordinate system (for example one where gravitation is non-zero),
where it will be valid.

To put this idea briefly: coordinates are a mathematical artifice that has no tangible analogue
in nature, they are only used to describe nature and, therefore, any arbitrarily chosen coordinate
system should be valid for the development of physical laws.

To finish this introduction to the principle of general covariance, we will write a procedure
or recipe on how to used the principle: take the equations in their special relativity form,
replace ηµν with gµν, replace all derivatives with covariant derivatives and compute how each
quantity transforms under a general coordinate transformation, meaning that we have to look
for tensor-transformated objects.

2.6 Energy-Momentum Tensor
The energy-momentum tensor is defined to be a tensor quantity that describes the density and
flux of energy and momentum in spacetime, being the source of the gravitational field in the
Einstein’s field equations that we are looking for. More technically, Tαβ gives the flux of the
α-th component of the momentum vector across a surface with constant xβ coordinate, being
symmetric in GR and non-symmetric in theories with non-zero spin tensor.

The energy-momentum tensor is the conserved Noether current associated with spacetime
translations, with Tαβ being conserved both in non-gravitational and gravitational interactions.
Conservation means that the covariant derivative is null; translating to non-gravitational ef-
fects, its divergence vanishes.
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We will later see how the energy-momentum tensor acts as source of spacetime curvature.
Particularly, we will obtain the energy-momentum tensor for the two specific cases of black
holes we will be studied as, in order to solve Einstein’s field equations (which we will see at
the end of the geometric and the action principle’s approach), the tensor provides us with the
information about the curvature of spacetime.

2.7 Curvature Tensor
As we mentioned in the last part of section 2.2, both the metric tensor and the affine connection
comprise the effects of gravitation. More generally, as the affine connection is derived from the
”potential” given by the metric, all the information of our gravitational system is enclose in this
latter quantity.

We would imagine that the relevant tensors that we are about to obtain, as the title already
tells us, are related to the so-called curvature tensor, must be related to this gµν which contains
all the information. So, it is logical to think about what tensors can we form from the metric
tensor, its derivatives and, particularly, scalars.

Let’s take the terms given by the first derivatives of the metric tensor. We know that, due
to the principle of covariance, we can make them vanish in a locally inertial frame properly
chosen where gravitational effects are negligible. So, these terms must be dismissed as this
”new” tensor will be a combination of gµν, and we know that equality between tensors is true
in all frames.

If we now think of the second easier possibility, a tensor formed from the metric tensor and
its second derivatives, we look at the transformation of the affine connection

Γ
λ
µν =

∂xλ

∂x′τ
∂x′ρ

∂xµ
∂x′σ

∂xν
Γ
′τ
ρσ +

∂xλ

∂x′τ
∂2x′τ

∂xµ∂xν
(22)

but what keeps the affine connection from being a tensor in equation (22) is the inhomo-
geneous term that appears when trying a coordinate change. Let’s clear the term ∂2x′τ

∂xµ∂xν , take
∂/∂xκ and collect terms

∂3x′τ

∂xκ∂xµ∂xν
=
∂x′τ

∂xλ
(
∂Γλµν

∂xκ
+ Γ

η
µνΓ

λ
κη)

−
∂x′ρ

∂xµ
∂x′σ

∂xν
∂x′η

∂xκ
(
∂Γ′τρσ

∂x′η
− ΓτρλΓ

′λ
ησ − Γ

′τ
λσΓ

′λ
ηρ)

− Γ′τρσ
∂x′σ

∂xλ
(Γλµν

∂x′ρ

∂xκ
+ Γλκν

∂x′ρ

∂xµ
+ Γλµκ

∂x′ρ

∂xν
)

(23)

And if we follow the procedure of Weinberg (1972), p.131-133 [1], by subtracting the same
equation interchanging ν and κ, terms involving products of Γ · Γ′ drop out, and by multiplying
by the inverse of ∂x′ρ

∂xµ
∂x′σ
∂xν

∂x′η
∂xκ , the following is obtained

R′τρση =
∂x′τ

∂xλ
∂xµ

∂x′ρ
∂xν

∂x′σ
∂xκ

∂x′η
Rλµνκ (24)
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which looks like the transformation rule of a 1-contravariant, 3-covariant tensor. And by
definition, the Riemann-Christoffel curvature tensor, which is the unique tensor that can be
built from gµν and its first and second derivatives, being linear in the last ones, is given by

Rλµνκ ≡
∂Γλµν

∂xκ
−
∂Γλµκ

∂xν
+ Γ

η
µνΓ

λ
κη − Γ

η
µκΓ

λ
ην (25)

It is important to notice the sign of the curvature tensor presented in Weinberg (1972) [1],
as it is opposite in sign to the general definition. This will imply no more than a change of
sign to the usual approach in the energy-momentum tensor when written in the Einstein’s field
equations.

The amount of equations of these mathematical procedures is overwhelming at least, and
we should keep in mind their derivations. What is important is their interpretation, and we shall
give the main ideas and reminders of the theory done partially in Schutz (2009), p.165-166 [3]:

• We are working on Riemannian manifolds, which are sufficiently smooths spaces where
we define our metric

• The conservation of the sign of our metric is based Sylvester’s law of inertia for sym-
metric spaces. We will have three positive eigenvalues and one negative in any given
reference frame.

• ”The covariant derivative is the analogous in arbitrary frames to the ordinary derivative
in locally inertial frames.” [3]

• ”The Riemann tensor is the characterization of the curvature. Only if it vanishes identi-
cally, is the manifold flat. It has 20 independent components (in four dimensions), and
satisfies the Bianchi identities, which are differential equations.” [3]

2.8 Gravitation and Curvilinear Coordinates
There is another important remark that we would like to present before deriving the field equa-
tions of general relativity, which is about the distinguishability of gravitational fields and curvi-
linear coordinates. Is it possible to tell if space is really under the effects of gravitation or if our
gµν is just ηµν expressed in arbitrarily chosen coordinates?

Citing Weinberg (1972), p.138 [1], the answer is in the following theorem (see [1] for a
complete proof of sufficiency):

”The necessary and sufficient conditions for a metric gµν(xxx) to be equivalent to the
Minkowski metric ηµν [...] are, first, that the curvature tensor [...] must everywhere van-
ish, Rλµνκ(xxx) = 0 and, second, that at some point XXX the matrix gµν(XXX) has three positive
and one negative eigenvalues.”

The first condition gives us a global condition for the entries of the curvature tensor. The
second condition makes us remember directly Sylvester’s law of inertia between matrices from
linear algebra. The first is obvious if you think about it for one second: if, thanks to the principle
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of equivalence, we are able to find a coordinate system such that the metric tensor becomes
that of Minkowski in a point XXX of spacetime, the affine connection must vanish, making the
curvature tensor vanish as well. But as Rλµνκ(xxx) = 0 is an equality between tensors, and we know
that ”a tensor has the property that if all the components vanish in one system of coordinates,
they vanish in every system of coordinates” (Dirac, 1975, p.8) [3], in particular, in the previous
coordinate system.

This leaves in perfect conditions to finally develop and obtain the field equations we have
been looking for. Most of the concepts presented were completely necessary for both ap-
proaches to the Einstein’s field equations, and their understanding will make it easier for the
reader to follow the arguments.

2.9 Derivations of the Field Equations
As a cherry to the cake for all the mathematical formalism and generalization of Minkowski
spacetime we have developed, in this section we are obtaining the Einstein’s field equations
through an heuristic process that may not convince the most conventional physicist, which is a
coherent process which agrees with the action principle derivation of the field equations.

To make our minds, we will take the path of Weinberg (1972), p.151-155 [1], remem-
ber Maxwell’s equations. This equations describe the relativistic behaviour of electromag-
netic waves through spacetime, and they are linear differential equations due to the non-self-
interacting nature of the field, As the electromagnetic field does not carry charge. How-
ever, gravitational fields carry energy and momentum, which interact with itself causing non-
linearity in the field equations that we are about to obtain. As argued in Dirac (1975), p.45 [3]:
”In curved space the conservation of energy and momentum is only approximate. The error is
to be ascribed to the gravitation field working on the matter and having itself some energy and
momentum.”

So, first of all in this process, remember the principle of equivalence, choose a point XXX of
spacetime and build a locally inertial coordinate system that behaves as the following

gαβ(XXX) = ηαβ (26)(
∂gαβ(xxx)
∂xγ

)
xxx=XXX
= 0 (27)

If expanded the metric tensor around XXX , we will find that it only contains quadratic or
higher terms that we will neglect, apart from the Minkowski metric. We plan on taking the
Newtonian limit and ”undo” the process in order to obtain the field equations. So, for a weak
static field produced by a non-relativistic mass density ρ, we got equation (21) for the time-time
component of the metric tensor, and by using Poisson’s equation for the potential we obtain

∇2φ = 4πGρ (28)

∇2g00 = −8πGT00 (29)

as the energy density T00 for non-relativistic matter is approximately equal to its mass den-
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sity T00 ' ρ. We are lead to ”guess” [1] that for a general distribution of energy-momentum
Tαβ the weak-field equations look like

Gµν = −8πGTµν (30)

where Gµν, called the Einstein’s tensor, is a linear combination of the metric, its first and
second derivatives. And, from the principle of equivalence, if we were able to find this equa-
tions for an arbitrary locally inertial frame of reference, we can generalize them for fields of
arbitrarily strong, gravitationally.

Now, in order to derive Gµν we have two possible approaches: the first is considering that
this tensor is only formed up to linear terms of the second derivatives and quadratic terms of
the first derivatives; the second, which is more general, we can suppose that this tensor depends
on elements unrelated to the metric tensor, just by coordinate transformation derivatives, for
further development in this direction, see Weinberg (1972), p.155-157 [1].

Our information about this Gµν, and all we need to find it, reduces to the following

• Gµν is a tensor, because Tµν is.

• Gµν is symmetric, because Tµν is.

• Gµν is conserved, because Tµν is.

• As assumed in the first possible approach, this tensor is only formed up to linear terms
of the second derivatives and quadratic terms of the first derivatives.

• For weak stationary fields, equation (29) must hold.

As explained in section 2.7, the Riemann-Christoffel curvature tensor, and its contractions,
are the most general tensor we were able to form from the metric tensor and the affine connec-
tion. So, we could write our tensor as a combination of the contractions of the curvature tensor:
R is the curvature scalar, which is ”defined in order to be positive in the surface of a sphere
embedded in three dimensions.” (Dirac, 1975, p.24) [3], and the Ricci tensor Rµν

Gµν = C1Rµν + C2gµνR (31)

and using the so-called Bianchi identity

Rµ
ν;µ =

1

2
R;ν (32)

Gµ
ν;µ =

(
C1

2
+ C2

)
R;ν = 0 (33)

where the null equality comes from the fact that Gµν is conserved, leaving us with the equal-
ity C1 = −2C2. We have neglected the possibility of R;ν = 0 everywhere because, by equation
(30), it would lead us to ∂T µ

µ/∂xν = 0, which is false under the action of inhomogeneous
non-relativistic matter.

13



And, finally, to fix the missing constant we take advantage of the limit given by equation
(29), and of the fact that our system is non-relativistic by means of

|Ti j | � |T00 | → |Gi j | � |G00 | → Ri j '
1

2
gi j R (34)

gαβ ' ηαβ → R ' Rkk − R00 '
3

2
R − R00 → R ' 2R00 → G00 ' 2C1R00 (35)

To obtain R00, we approximate and take only the linear part of the expression of the lowered
Riemann-Christoffel curvature tensor

Rλµνκ =
1

2

[
∂2gλν
∂xκ∂xµ

−
∂2gµν

∂xκ∂xλ
−

∂2gλκ
∂xν∂xµ

+
∂2gµκ

∂xν∂xλ

]
(36)

For an static field, time derivatives must vanish, leaving us with

R0000 ' 0, Ri0 j0 '
1

2

∂2g00

∂xi∂x j → G00 ' 2C1(Ri0 j0 − R0000) ' C1∇
2g00 (37)

We find that C1 = 1 by equations (29) and (30). So we finally find the Einstein’s field
equations that relates curvature of spacetime to the energy-momentum tensor

Rµν −
1

2
gµνR = −8πGTµν (38)

As we said, there is another derivation that does not contemplate the assumption of Gµν

being formed only up to linear terms of the second derivatives and quadratic terms of the first
derivatives. If we allowed the metric tensor itself to enter the field equations we would get

Rµν −
1

2
gµνR − λgµν = −8πGTµν (39)

being λ the so-called Einstein’s cosmological constant, Einstein

”inserted it many years later in order to obtain static cosmological solutions [...] that
he felt at the time were desirable. Observations of the expansion of the universe sub-
sequently made him reject the term [...]. However, recent astronomical observations
strongly suggest that it is small but not zero.” (Schutz, 2009, p.188) [2].
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3 Action Principle Approach
Dirac (1975) [3] reproduces the approach done originally by David Hilbert of an action princi-
ple applied to relativity that we consider in this section. As well as Gelfand (1963) [6], a book
on the foundations of Calculus of Variations that might be consulted in case of mathematical
need.

This formulation of the dynamic equations has the great advantage of allowing us to estab-
lish a connection between symmetries and conservation laws [1].

3.1 The Gravitational Action Principle
Let us define the action scalar I as

I =
∫
Ω

R
√
g(xxx)d4xxx (40)

where the integration volume can be compactly finite or even infinity, if the Ricci scalar R
has proper vanishing behaviour. The fact that we have defined this action quantity as the integral
of R makes sense because the integral must have a scalar argument, and the only possible scalar
formed from the metric tensor and the affine connection, as argued in (2.7), a contraction of the
curvature tensor, the Ricci scalar. It is also worth to mention that the element

√
g(xxx) can be

regarded as the Jacobian of the coordinate transformation.
Take the mathematical theory from Gelfand (1975) [6], and make small variations δgµν,

while keeping the gµν and their derivatives of first order constant at the boundaries

δgµν(∂Ω) = 0 (41)

δ

(
∂gµν

∂xα

)
∂Ω

= 0 (42)

We will assume that, for a properly defined action, making δI = 0 will provide us with a
functional equation leading to Einstein’s field equations in vacuum. We have

R = gµνRµν = R∗ − L (43)

with

R∗ = gµν(
∂Γσµσ

∂xν
−
∂Γσµν

∂xσ
) ≡ gµν(Γσµσ,ν − Γ

σ
µν,σ) (44)

L = gµν(ΓσµνΓ
ρ
σρ − Γ

ρ
µσΓ

σ
νρ) (45)

where second derivatives of gµν are only occurring in R∗ and only linearly and can be
removed by partial integration. Also, we find perfect differentials, or the product rule, that will
contribute nothing to the action I in the first to terms of

R∗
√
g = (gµνΓσµσ

√
g),ν − (g

µν
Γ
σ
µν

√
g),σ − (g

µν√g),νΓ
σ
µσ + (g

µν√g),σΓ
σ
µν (46)
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Expanding and using gνβΓ
µ
νβ

√
g = (gµν

√
g),ν, we get that the remaining two terms are

2L
√
g, so the action becomes

I =
∫
Ω

L
√
gd4xxx (47)

which only contains the gµν and its first derivatives. If we write L = L
√
g, which may be

considered a Lagrangian density in three dimensions or as an action density in spacetime, as

I =
∫
Ω

Ld4xxx =
∫
Ω0

dx0

∫
Ω′
Ldx1dx2dx3 (48)

beingL, the argument correspondent to the time variable of integration dx0, the Lagrangian.
Now, applying the rules of variational calculus, we vary L to obtain

δL = Γαµνδ(g
µν√g),α − Γ

β
αβδ(g

αν√g),ν + (Γ
β
µαΓ

α
βν − Γ

β
αβΓ

α
µν)δ(g

µν√g) (49)

we get, after adding and subtracting terms to make the first two terms of equation (49) a
perfect differential,

δI = δ
∫
Ω

Ld4xxx =
∫
Ω

Rµνδ(g
µν√g)d4xxx (50)

where Rµν = Γ
α
µα,ν − Γ

α
µν,α − Γ

α
µνΓ

β
αβ + Γ

α
µβΓ

β
αν.

And we can also deduce, from the usual partial derivation of the factor, that the variation
must take the following form (due to the behaviour of Leibniz’s rule)

δgµν = −gµαgβνδgαβ (51)

δ
√
g =

1

2

√
ggαβδgαβ (52)

Providing us with

δ(gµν
√
g) = −(gµαgβν −

1

2
gµνgαβ)

√
gδgαβ (53)

turning equation (50) into

δI = −
∫
Ω

Rµν(g
µαgβν −

1

2
gµνgαβ)

√
gδgαβd4xxx (54)

which gives the vanishing functional condition that of Einstein’s field equations for vacuum
as it must vanish ∀δgαβ arbitrarily chosen:

Rαβ −
1

2
gαβR = 0 (55)

16



3.2 The Comprehensive Action Principle
In this section we will rename our action from I → Ig in order to denote that this is the
gravitational part of the action and, I′ will be the action of all the other fields, consisting of a
sum of terms corresponding each one to one field in particular.

A really interesting feature of the action principle is linearity in the variational derivative.
We only need to obtain the action for each of the fields and add them all together.

Let’s start with a renormalized equation (48), where L → (16π)−1L, so (we will omit the
region of integration Ω from now on)

Ig =
∫
Ld4xxx (56)

and applying a variation and partial integration in the second term

δIg =
∫ (

∂L

∂gµν
δgµν +

∂L

∂gµν,α
δgµν,α

)
d4xxx =

∫ [
∂L

∂gµν
−

(
∂L

∂gµν,α

)
,α

]
δgµνd4xxx (57)

where the work on section (3.1) leads to

pµν
√
g ≡ −(16π)−1

(
Rµν −

1

2
gµνR

)
√
g =

∂L

∂gµν
−

(
∂L

∂gµν,α

)
,α

(58)

where we have defined the quantity pµν so as to reduce notation.
Now, let’s calculate the part of the action corresponding to the rest of the fields φn (n ∈ N),

each of them assumed to be independent but unspecified. The action looks

I′ =
∫
L′d4xxx (59)

where L′ = f (φn, φn,ν), in the form of an integral of a scalar density.
The total variation of the action leads to

0 = δ(Ig + I′) =
∫ (

pµνδgµν + N µνδgµν +
∑

n

χnδφn

)
√
gd4xxx (60)

where pµν
√
g is the argument of integration coming from equation (58) of the Ig deriva-

tion (note that in [3] these quantities pµν are renamed while we keep their first definition and
introduce the N µν as other new terms outside pµν), the second tensor in the argument

N µν√g ≡
1

2

∂ f (φn, φn,ν)

∂
√
g

√
ggµν =

∂L′

∂gµν
(61)

is formed from L′,√g, as what we are really varying is the metric; and, the last terms in the
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argument of the variation of the action

χn ≡
1
√
g

[
∂ f (φn, φn,ν)

∂φn
+

∑
ν

(
∂ f (φn, φn,ν)

∂φn,ν

)
,ν

]
= 0 (62)

are the coefficients due to the partial derivation of the scalar fields, which are assumed to
be independent and that is the reason why they should vanish to fulfill the variational principle.

To make the argument of equation (60) completely vanish, equation (62) must give us

Rµν −
1

2
gµνR − 16πN µν = 0 (63)

where both pµν and N µν are symmetrical. These are no less than the Einstein’s field equa-
tions, when a proper normalization of N µν is taken, derived from an action principle we can
define the energy-momentum tensor to be the tensor that

Rµν −
1

2
gµνR + 8πT µν = 0 (64)

where any tensor produced by matter must fulfill, in order to be consistent,

T µν
;ν = 0 (65)

This same procedure is derived, for example, in Weinberg (1972) p. 387-365, [1] by defin-
ing the energy-momentum tensor as the functional derivative (in our case, variational deriva-
tive) of the gravitational action itself, obtaining therefore the same results as with the normal-
ized N µν.

3.3 Further Reading
For a deeper understanding of the subject, several generalizations have been proposed over the
decades after General Relativity came to light.

Among them, both Brans-Dicke theory and Einstein-Cartan theory are of high interest for
those who would like to continue into more general gravitation theories.

Brans-Dicke theory [1] provides a different approach by defending that the gravitational
constant G is not so. Instead, gravitational interaction is mediated by a scalar field and that
gives G as an average of the interaction of the field with all the matter in the Universe. In fact,
general relativity theory can be obtained from Brans-Dicke’s as a limit.

Einstein-Cartan theory [7] relaxes the assumption of General Relativity that the affine con-
nection has vanishing antisymmetric part (torsion tensor), so that the torsion can be coupled to
the intrinsic angular momentum (spin) of matter, much in the same way in which the curvature
is coupled to the energy and momentum of matter. This theory provides a possible different
origin of the Universe, the Big Bounce, that will make the Big Bang an obsolete theory. It also
provides a mathematical basis for the theory of wormholes that may be interesting for further
reading.
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All three Einstein’s, Brans-Dicke’s and Einstein-Cartan’s theories are relativistic classical
field theories of gravitation, called metric theories. For a further insight, also see quantum
theories of gravity [1].

4 Black Holes
For this interesting part of the paper, we will be following the both deep and conceptual books
by Hamilton (2015) [4] and Chandrasekhar (1983) [5], as well as Nordebo (2016) [8] and
Newman & Adamo (2004) [11]. This will provide us with an intuition of the particular stellar
configurations we are going to work with by learning key concepts of the subject.

4.1 Introduction
A black hole is defined [4] to be a region where space itself falls faster than the speed of light,
whose main result is that, of course, no light can escape from a black hole from inside. A way
to see it is by applying the cosmological expansion analogue: imagine that you are a photon
inside a black hole, you know you are the fastest entity ever known. You follow a path that
hypothetically carries you out of the black hole, but this path will be longer and longer and,
somehow, space is being created just in front of you at a rate that you cannot surpass in any
possible way.

So, theoretical physics had demonstrated the possibility of existence of black holes in our
Universe, but we know that theoretical physics has not always been correct. We need evidence,
and there is non-direct observational evidence of their ubiquitous presence by means of the
study of their surroundings. To the day, there are two kinds of black holes that can be observed:
stellar-sized black holes in X-ray binary systems, mostly in our own Milky Way galaxy, and
supermassive black holes in Active Galactic Nuclei (AGN) found at the centres of our own and
other galaxies [1].

Secondary evidences of the presence of a black hole can also be inferred by facts like high
luminosity, non-stellar spectrum, rapid variability and relativistic jets. To the day, there is also
evidence of gravitational waves measured at Earth by the experiment LIGO, setting the general
theory of relativity as a more-than-proved gravitational theory.

The types of black holes that we will be studying are a generalization of the so-called ”ideal
black holes” which are stationary, static and electrovac (null-energy-momentum tensor except
for the contribution of a stationary electromagnetic field). The Schwarzschild solution of a
black hole may be the most known of all of them, we assume, because of their simplicity and
importance.

4.2 Reissner-Nordström Black Hole
The first attempt we are dealing with, in the matter of black holes, is the Reissner-Nordström
metric surrounding a stationary, non-rotating, charged spherically-symmetric mass discovered
independently by Hans Reissner, Hermann Weyl and Gunnar Nordström. This metric describes
the unique solution in asymptotically flat spacetime.
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This types of black holes are of little interest, regarding their charge, as astrophysical objects
like stars or clouds tend to neutralize electrically, providing a little net charge for the body. The
interest comes from its solution, the physical interpretation and its resemblance to the Kerr
solution.

4.2.1 Reissner-Nordström Metric

The Reissner-Nordström metric for a black hole of mass M and charge Q, in geometric units
c = G = k = 1, is given by

ds2 = −∆dt2 + ∆−1dr2 + r2(dθ2 + sin2(θ)dφ2) (66)

where the so-called horizon function is given by

∆(r) ≡
(
1 −

2M
r
+

Q2

r2

)
(67)

If you have seen or studied Schwarzschild metric before, this particular metric will sound
familiar to you or, at least, resemble that other metric. Just take Q→ 0 to obtain the most simple
case of a black hole. Another possible interpretation of the mass is to take Schwarzschild’s MS
and identify its analogue in Reissner-Nordström’s MRN :

MS → MRN (r) = M −
Q2

2r
(68)

Where the quantity MRN (r) has the coordinate-independent interpretation [4] as the mass
interior to radius r, being the mass seen by an observer at infinity M minus the mass (or energy,
thanks to mass-energy equality in relativity theory) in the electric field E = Q/r2 outside r

4π

∫ ∞

r

E2

8πr′2
dr′ =

Q
2r

(69)

This may look like a Newtonian calculation, but it turns out to be true as the electromagnetic
field is unchanged under Lorentz boosts in the radial direction of movement.

4.2.2 Derivation of the Metric and the Energy-Momentum Tensor

If we consider spacetime to be spherically symmetric, we can write a general metric, as con-
cisely developed in Nordebo (2016), p.25-30 [8],

ds2 = −A(t, r)dt2 + B(t, r)dr2 + r2(dθ2 + sin2(θ)dφ2) (70)

where we have assumed dependence on time t, eventhough we will later find out that the
dependence is not so, and the unknowns functions of the metric will only depend on r .

Since we are working in vacuum, the energy-momentum tensor we need is given by the
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electromagnetic energy-momentum tensor

Tµν =
1

µ0

(
FµγFναgαγ −

1

4
gµνFγδFγδ

)
(71)

and as we know, the trace of the electromagnetic Tµν vanishes, turning Einstein’s field
equations to be

Rµν = −8πTµν (72)

Finally we also need the source-free Maxwell’s equations

Fµν
;ν = 0 (73)

Fµν;γ + Fγµ;ν + Fνγ;µ = 0 (74)

So, let’s compute the affine connection applying equation (14) to the functions A(t, r) and
B(t, r); and, thereafter, we will compute the Ricci tensor using contracted equation (25) by
λ = ν. Firstly, all non-vanishing Christoffel symbols are given

Γ
0
00 =

ÛA
2A

Γ
0
01 = Γ

0
10 =

A′

2A
Γ
0
11 =

ÛB
2A

Γ
1
00 =

A′

2B
Γ
1
01 = Γ

0
10 =

ÛB
2B

Γ
1
11 =

B′

2B

Γ
1
22 = −

r
B

Γ
1
33 = −

r sin2(θ)

B

Γ
2
12 = Γ

2
21 =

1

r
Γ
2
33 = − sin(θ) cos(θ)

Γ
3
13 = Γ

3
31 =

1

r
Γ
3
23 = Γ

3
32 = cot(θ)

(75)

where a dot represents differentiation with respect to t, and the prime, with respect to r .
Analogously, all the non-vanishing component of the Ricci tensor are

R00 =
A′

4B

(
A′

A
+

B′

B

)
−

A′′

2B
−

A′

rB
+
ÜB

2B
−
ÛB

4B

(
ÛA
A
−
ÛB
B

)
(76)

R11 = −
A′

4A

(
A′

A
+

B′

B

)
+

A′′

2A
−

B′

rB
+
ÜB

2A
+
ÛB

4A

(
ÛA
A
−
ÛB
B

)
(77)

R22 =
r

2B

(
A′

A
−

B′

B

)
+

1

B
− 1 (78)

R33 = R22 sin2(θ) (79)

R01 = R10 = −
ÛB

rB
(80)

By generalizing the spherically symmetric gravitational field, we can get no further. Now,
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if we want to determine the functions A and B, what we need is to plug these relations into the
Einstein’s field equations with a proper energy-momentum tensor, computed with the electro-
magnetic tensor and the metric tensor.

So, as we have only a radial component of the electric field, we can write

Er(t, r) = E1(t, r) = F01(t, r) = F10(t, r) (81)

and using equation (71) we get

T00 =
1

2µ0
AF01F01 (82)

T11 = −
1

2µ0
BF01F01 (83)

T22 =
1

2µ0
r2F01F01 (84)

T33 =
1

2µ0
g33F01F01 = T22sin2(θ) (85)

All non-diagonal components of the energy-momentum tensor are zero, which means

T01 = 0 = R01 =
ÛB

rB
→ ÛB = 0→ B = B(r) (86)

the dependence on time of B has been eliminated. Also note that

T00
A
+

T11
B
= 0→ 0 =

R00

A
+

R11

B
=

1

rB

(
A′

A
+

B′

B

)
(87)

which implies
∂ ln(AB)

∂r
=

(
A′

A
+

B′

B

)
= 0→ AB = f (t) (88)

as it must be constant with respect to r .
Solving Maxwell’s equations, given in a compact form by equation (74), and applying

Gauss’ law to determine the arbitrary constant of integration, we get

Er =
Q

4πε0r2
(89)

And now, using explicitly Einstein’s field equations we can write by identifying B = A/ f
and B′ = − f A′/A2,

− 8πT22 = R22 =
r

2B

(
A′

A
−

B′

B

)
+

1

B
− 1 =

1

f (t)
∂(r A(r))
∂r

− 1 (90)
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and by plugging in the expression of T22

1

f (t)
∂(r A(r))
∂r

− 1 = −
1

f (t)
8π

1

2µ0
r2E2

r (91)

which gives
∂(r A(r))
∂r

= f −
Q2

4πε0r2
(92)

and integrating and dividing by r , we obtain the result

A(t, r) = f (t) +
C(t)

r
+

Q2

4πε0r2
(93)

Finally, to get the values of the unknown functions of time f and C, we must take the limit
to the Schwarzschild metric Q→ 0, and therefore g00 must approach

g00 = 1 −
2M
r

(94)

giving

f (t) = 1, C(t) = −2M ≡ rS, r2Q ≡
Q2

4πε0
(95)

g00(r) = A(r) = 1 −
rS

r
+

r2Q
r2

(96)

So, a nice visualization of the metric in this particular case would be to show the tensor

gµν(r, θ) =



−

(
1 − rS

r +
r2
Q

r2

)
0 0 0

0

(
1 − rS

r +
r2
Q

r2

)−1
0 0

0 0 r2 0
0 0 0 r2 sin2(θ)


and by setting k = 1/4πε0 = 1, we get the result from section 4.2.1.

4.2.3 Horizons

In the Reissner-Nordström metric we find two possible horizons or singularities in the term
g11, given by the inverse of the horizon function in equation (67), that make this term tend to
infinity. The horizons occur where an object at rest in the geometry, dr = dθ = dφ = 0, follows
a null geodesic, ds2 = 0, which occurs where the horizon function vanishes. This gives us a
quadratic equation that we can easily solve

R± = M ±
√

M2 −Q2 (97)
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We can check that the time coordinate has different behaviours depending on the value of
r: t is a timelike coordinate when r > r+ and r < r−, so outside the outer horizon and inside the
inner horizon; and t is a spacelike coordinate between the inner and outer horizons r− < r < r+.

We can interpret this differing behaviour from the Schwarzschild solution: outside the outer
horizon, spacetime is falling at the speed of light, as it does inside the inner horizon. This is
caused by electromagnetic repulsion (negative pressure of the electric field). In between the
horizons, space behaves as in the Schwarzschild black hole, spacetime is falling at velocities
higher than the speed of light.

If we made M2 = Q2, with their correspondent units, we would see that both the inner and
outer horizon are the same, providing just a 2-dimensional spherical surface where spacetime
is falling at exactly the speed of light. Eventhough there is only a ”shell” of spacetime with
velocity c, light could not get out of the inside of the black hole.

And if we take a vanishing amount of charge we get, as expected from last section, only
one horizon that corresponds to that of Schwarzschild’s solution, r = 2M .

4.3 Kerr-Newman Black Hole
The Kerr-Newman metric is the metric corresponding to a stationary, rotating, charged black
hole in an asymptotically flat empty space. The original solution was given by Kerr [12] for
the uncharged case and completed by Newman for the case with non-vanishing charge. We can
also state that is a generalization of the Reissner-Nordström metric developed in the previous
section, where the angular momentum was assumed to vanish.

4.3.1 Kerr-Newman Geometry

The metric for the Kerr-Newman geometry is better given by the Boyer-Lindquist metric [4],
which states

ds2 = −
R2∆

ρ2
(dt − asin2(θ)dφ)2 +

ρ2

R2∆
dr2 + ρ2dθ2 +

R4sin2(θ)
ρ2

(
dφ −

a
R2

dt
)2

(98)

where
R ≡

√
r2 + a2 ρ ≡

√
r2 + a2cos2(θ) (99)

and ∆ is the horizon function given in equation (67), and a is the term related to the angular
momentum of the system.

It is a matter of checking that if we set the constants M = Q = 0 → ∆ = 1, the Boyer-
Lindquist metric gives the Minkowski metric. Also, if we set a = 0, we get the Reissner-
Nordström metric.

The Boyer-Lindquist line-element of equation (98) defines not only a metric but also a
tetrad carefully chosen to exhibit the symmetries of the geometry. In the locally inertial frame
defined by the Boyer-Lindquist tetrad, the energy-momentum tensor (which is non-vanishing
for charged Kerr-Newman) is diagonal. These assertions only become apparent in the tetrad
frame, and are obscure in the coordinate frame.
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4.3.2 Tetrad Formalism

The formalism used in the derivation of the Kerr-Newman black hole solution is called the
tetrad formalism, where the coordinate basis choice is transformed to a much more mathe-
matically general concept of local basis of the tangent bundle, where we define four linearly
independent vector fields or tetrad that are able to span the 4-dimensional tangent space at each
point in spacetime.

The fact of using a local basis of the tangent will help, not only notation, but also the
extension of general relativity to particles with 1

2 -spin. Conceptually, the results obtained by
the theory will keep the same but its expressions will be of a much simpler nature due to
notation.

For a further reading about the tetrad formalism, we recommend both Weinberg (1972) [1]
or De Felice & Clarke [10].

4.3.3 Newman-Janis Algorithm

Following the discovery of the Kerr metric, Newman and Janis developed and ad hoc procedure
to generalize the static solution given by Schwarzschild to the rotating case of Kerr by using a
complex transformation of the coordinates. This procedure has been thought, for many years,
to be a lucky path, without mathematical proof of its development.

Lately, as done in [9] by S. P. Drake and Peter Szekeres, proofs of several particular
cases have been provided, making this procedure an interesting and conceptually easier way
of achieving the so wanted Kerr metric.

For the Newman-Janis approach, we are about to follow a five-step algorithm developed
in [9] which will provide the reader with a recipe to generalize static metrics to rotating metrics:

1. Write a static spherically symmetric seed line element in advanced null coordinates
{u, r, θ, φ}

ds2 = e2Φ(r)du2 + eΦ(r)+λ(r)dudt − r2(dθ2 + sin2(θ)dφ2) (100)

In the Newman-Janis algorithm the metric seed is Reissner-Nordström’s given in equa-
tion (66).

2. Express the contravariant form of the metric in terms of a null tetrad

gµν = lµnν + lνnµ − mµm̄ν − mνm̄µ (101)

where the null tetrad vectors are denoted by Z µ
a = (lµ, nµ,mµ, m̄µ), and

lµlµ = lmµmµ = nµnµ = 0, lµnµ = −mµm̄µ = 1, lµmµ = nµmµ = 0 (102)

and for our spacetime, the null tetrad vectors look like

lµ = δµ1 (103)

25



nµ = δµ0 −
1

2

(
1 −

2M
r
+

Q2

r2

)
δ
µ
1 (104)

mµ =
1
√

2r

(
δ
µ
2 +

i
sin(θ)

δ
µ
3

)
(105)

3. Extend the coordinates xρ to a new set of complex coordinates x̃ρ

xρ → x̃ρ = xρ + iyρ(xσ) (106)

where yρ(xσ) are analytic functions of the real coordinates xσ. We also require that the
transformation can by recovered when x̃ρ = ¯̃xρ

In the original Newman-Janis algorithm, the tilde transformation of equations (103-105)
is

lµ → l̃µ = δµ1 (107)

nµ → ñµ = δµ0 −
1

2

(
1 − M

(
1

r̃
+

1
¯̃r

)
+

Q2

r̃ ¯̃r

)
δ
µ
1 (108)

mµ → m̃µ =
1
√

2r̃

(
δ
µ
2 +

i

sin(θ̃)
δ
µ
3

)
(109)

4. The particular choice of equation (106) we are making is

x̃ρ = xρ + ia cos
(
x2

(
δ
ρ
0 − δ

ρ
1

) )
(110)

and using equation (101), we get a new metric, with the correspondent transformation of
the null tetrad vectors,

gµν(r, θ) =


1 − 2Mr−Q2

ρ2
1 0 a sin2(θ)2Mr−Q2

ρ2

. 0 0 −a sin2(θ)

. . −ρ2 0

. . . −sin2(θ)
(
r2 + a2 − a2 sin2(θ)2Mr−Q2

ρ2

)


where ρ was defined in equation (99) and, because the matrix is symmetric, we have
avoided redundancy.

5. Finally, we will transform the metric to Boyer-Lindquist coordinates, a set of coordinates
in which the metric has only one off-diagonal term gtφ. The usual change of variables is
given by

u = t −
∫

r2

r2 +Q2 − 2Mr
dr (111)

ψ = φ −

∫
r2 + a2

r2 + a2 +Q2 − 2Mr
dr (112)
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4.3.4 Derivation of the Metric and the Energy-Momentum Tensor

As explained in [9], we will be using both the Reissner-Nordström black hole solution already
obtained and the Newman-Janis approach explained in the above section to get to the Kerr-
Newman solution of the black hole.

Taking as an starting point the Reissner-Nordström metric for an electrically charged, static
and spherically symmetric body, by a complex transformation algorithm whose generalization
was done in section 4.3.3, we will obtain our desired results.

We transform to a null coordinate system by applying step 5

u = t −
∫

r2

r2 +Q2 − 2Mr
dr (113)

and equation (66) becomes, adding the suffix RN to denote where it comes from,

ds2RN = −

(
1 −

2M
r
+

Q2

r2

)
du2 − 2dudr + r2(dθ2 + sin2(θ)dφ2) (114)

Using now step 2, particularly equation (101), we can deduce the line elements of the null
tetrad

lµdxµ = du (115)

nµdxµ = dr +
1

2

(
1 −

2M
r
+

Q2

r2

)
du (116)

mµdxµ =
r
√

2
(dθ + i sin(θ)dφ) (117)

The inner products and nullity conditions given in step 2 allow us to write down the tetrad
of null vectors like

l =
∂

∂u
(118)

n =
∂

∂u
−

1

2

(
1 −

2M
r
+

Q2

r2

)
∂

∂r
(119)

m =
1
√

2r

(
∂

∂θ
+ i csc(θ)

∂

∂φ

)
(120)

The contravariant Reissner-Nordström metric in null coordinates is

gµν(r, θ) =


0 1 0 0

1 −
(
1 − 2M

r +
Q2

r2

)
0 0

0 0 − 1
r2 0

0 0 0 − 1
r2 sin2(θ)


where the electromagnetic energy-momentum tensor is that of Reissner-Nordström, being

the potential Aµ = (Q/r, 0, 0, 0).
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Now, making a change of coordinates motivated by the analogy taken from the Schwarzschild
to Kerr transformation

r′ = r + ia cos(θ), u′ = u − ia cos(θ), θ′ = θ, φ′ = φ (121)

where a = J/M is interpreted as the Kerr parameter. The complex tetrad given in equations
(107-109) will translate, after applying the above transformation, into

l′ =
∂

∂r
(122)

n′ =
∂

∂u
−

1

2

(
1 −

2Mr −Q2

ρ2

)
∂

∂r
(123)

m′ =
1

√
2(r + ia cos(θ)

(
ia sin(θ)

∂

∂u
− ia sin(θ)

∂

∂r
∂

∂θ
+ i csc(θ)

∂

∂φ

)
(124)

This allows us to write the covariant form of the metric by using equation (101), see [11]
for higher detail,

gµν(r, θ) =


1 − 2Mr−Q2

ρ2
1 0 a sin2(θ)2Mr−Q2

ρ2

. 0 0 −a sin2(θ)

. . −ρ2 0

. . . sin2(θ)
ρ2

(
(r2 + a2 +Q2 − 2Mr)a2 sin2(θ) − (a2 + r2)2

)


As done in [9], finally it is assumed that a proper coordinate transformation of the variables
u = t + F(r) and φ = ψ + G(r) will transform the metric to the well-known Boyer-Lindquist
coordinates form as in equations (111-112), which will provide only one off-diagonal term
corresponding to gtφ, as in equation (98).

As for the electromagnetic energy-momentum tensor, we would leave its derivation out
of the scope of this project, but we will provide the reader with its expression, given in its
contravariant form as

Fµν(r, θ) =


0 (r4 + a2r2 sin2(θ) − a4 cos2(θ)) −2a2r cos(θ) sin(θ) 0
. 0 0 a(a2 cos2(θ) − r2)
. . 0 2ar cot(θ)
. . . 0


which reduces to the Reissner-Nordström electromagnetic field in the limit of a→ 0.

4.3.5 Horizons

If a distant observer looks at the horizon of a Kerr-Newman black hole, it clearly rotates, so
trying to solve for the position of the horizon, eventhough it is symmetric, might be incorrect.

If we take a photon at the horizon, fighting against the inflow of space, with fixed coordi-
nates (r, θ), it will evolve in the other coordinates (t, φ). Taking a look at the photon’s 4 velocity
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vµ = (vt, 0, 0, vφ), the condition that the photon rests in a null-geodesic is given by

0 = vµv
µ = gµνv

µvν = gtt(v
t)2 + 2gtφv

tvφ + gφφ(v
φ)2 (125)

This equation has solutions provided that the determinant is less or equal to zero (see Frobe-
nius’ theorem for linear algebra). The determinant is given by

gttgφφ − g
2
tφ = −R2sin2(θ)∆ (126)

Thus, if ∆ ≥ 0, then we have solutions for the null-geodesics such that a photon can be at
rest instantaneously both in (r, θ); if ∆ ≤ 0, these null-geodesics do not exist. So, the horizons
will be defined analogously as in Reissner-Nordström by setting ∆ = 0.

The solution for the outer and inner horizons that we obtain are given by the solution to the
quadratic equation

r± = M ±
√

M2 −Q2 − a2 (127)

So, between the horizons, ∆ < 0 which means that photons cannot be at rest under this
condition of the parameters (M,Q, a), because spacetime is falling faster that light in that re-
gion. Analogously, outside these two horizons, spacetime will be falling a less than the speed
of light.

Before concluding this section, we would like to mention several important regions of this
particular solution of Kerr-Newman black hole. We will provide a list that might be of interest
to the reader:

• Ergospheres: these are finite regions, outside the outer and inside the inner horizon,
where the worldline of an object at rest dr = dθ = dφ = 0 is spacelike. Here, nothing
can remain at rest, but objects can escape. The boundary of the ergosphere is given by

gtt = 0

• Turnaround radius: this is radius inside the inner horizon at which infallers falling from
zero velocity and zero angular momentum at infinity turn around. The radius is given by

gtφ = 0

• Sisytube: is a toroidal region inside the inner horizon where both (t, φ) are timelike coor-
dinates. Within the toroidal region, there are timelike trajectories that go either forward
or backwards in time, which are nothing but closed timelike curves, trajectories that con-
nect themselves: their own future with their own past. The boundary of this tube is given
by

gφφ = 0

Simulations for these special regions, as well as for the visualization of a falling camera into
a black hole, can be checked in Hamilton (2015) [1] and in its web page given in the reference.
There are simulations not only for this Kerr-Newman black hole, but also for Schwarzschild’s
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and Reissner-Nordström that will clarify your imagination of what black holes are as cosmo-
logical objects.

Also, another type that visualization that you may be familiar with because of special rela-
tivity are diagrams. In special relativity cone diagrams were mostly used, but when we get to
general relativity, horizons and singularities make the visualization of the coordinates a little
big more complicated, and the reason for this diagrams is no more than helping the student
of the subject imagine what the coordinates, the geodesics, the forces, time-development and
other parameters evolve around these objects, black holes.
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5 Conclusion and Discussion of the Results
Throughout this thesis we have been able to fully understand what theory general relativity is
and why it was considered to be an enlightening theory of gravity since its beginning up to the
day of today.

Successfully, Einstein’s field equations have been obtained both by geometrical and by
means of an action principle, having provided the reader with a wide range of mathemati-
cal and physical theory and interpretation of the subject that could also be a basis for further
approaches and deeper books on general relativity subjects, as gravitational waves, light deflec-
tion and another phenomena worth to study. I personally recommend both Berman (2007) [13]
and Fernández Barbón (2005) [14], apart from the literature that has been used and followed
through the development of the thesis. The first gives an overview of all the so-called metric
theories and, most concisely, black holes classification. The second provides a deeper com-
mon link between mathematics, quantum physics and gravity theory with key concepts and
interpretations that are more than worth to read.

We also obtained, in a successful way, not only the metrics but also the energy-momentum
tensors in both cases. We encourage the reader to think on the importance of the huge massive
objects spread through the Universe and their cosmic relevance. It is an interesting exercise to
do to imagine yourself around one of these bodies.

Of course, there is no need to say that the rest of the books and articles are more than
recommended in order to understand and be able to provide other students and reader with a
bibliography that can cover all subjects and doubts that may arise.

I personally find really interesting the last section were we spoke about regions around the
black holes. I think it provides a imaginative reader with the visual help that is needed in order
to consider these astrophysical and theoretical objects a completely astonishing physical entity.

I would also like to mention to the reader to be careful with the notation when following
different books and articles. Do not focus in the notation, which is, of course, of value, but
I would recommend to get the underlying idea of what is being studied with that particular
language.

Also, I would like to encourage universities, in particular my own, University of Sevilla, to
provide students with the opportunity of studying this beautiful subject, that nowadays is not
present in the curricular programme of any of the degrees done in the Faculty of Physics.

It is also really important to do calculations with these new objects here defined: differen-
tiate, make your own exercises on the subject, do not trust other people’s calculations until you
have got the same results. We, scientist, know that this is the only way of doing real science.
Study, read, think, do, compare and repeat.
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