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Analytical Circuit Model for 1-D Periodic
T-Shaped Corrugated Surfaces
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Abstract—An analytical circuit model is obtained to study the
reflection of TM polarized electromagnetic waves that impinge
obliquely on a 1-D periodic corrugated surface consisting of
dielectric-loaded T-shaped planar corrugations backed by an
infinite ground plane. The model is based on transmission line
theory and equivalent lumped-element circuits. For the case of
perfect conductors, the topology of the circuit is directly inferred
from a rigorous full-wave formulation of the periodic problem
without using any heuristic argument. This procedure leads to
fully analytical expressions for all the circuit parameters. Ohmic
losses are further incorporated in the model under the assumption
of strong skin effect. The results thus obtained are compared with
those given by an accurate Method of Moments numerical code
and HFSS software showing a very good agreement. The strong
numerical efficiency as well as the good physical insight provided
by the present equivalent circuit model can be advantageously
employed for the analysis and/or design of a variety of devices. As
examples of the latter, the circuit model is used for the first-stage
design of an electrically thin hard impedance surface, a corrugated
surface that prevents specular reflection, and an absorber.

Index Terms—Corrugated surfaces, electromagnetic scattering
by periodic structures, equivalent circuits.

I. INTRODUCTION

C ORRUGATED conducting surfaces have long been em-
ployed in microwave and antenna engineering for their

unique and special electromagnetic properties. This kind of sur-
faces can act as guiding systems for bound surface waves and
leaky waves, and their basic theory can be found in well-known
textbooks [1], [2]. The control of the characteristics of these
waves by proper manipulation of the geometry of the corruga-
tions or their dielectric filling is one of the advantageous fea-
tures of this type of structures. The study of these structures is a
classical topic in the microwaves field and the literature on the
subject can be traced to the middle decades of the past century.
Thus, many authors have studied and explained the propagation
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Fig. 1. Cross section of the different types of corrugated planar surfaces ana-
lyzed in this work. a): T-shaped corrugated structure with a symmetrically cen-
tered slit aperture. b): T-shaped corrugated structure with a non symmetrical
slit position. c): T-shaped corrugation with the maximum slit displacement. d):
Classical corrugated plane. The structures are periodic along the direction and
invariant along the direction.

characteristics of single planar corrugated surfaces [3]–[5], cor-
rugated cylindrical waveguides [3], [5]–[7], or corrugated rect-
angular waveguides [8]. In [9], 1-D corrugated surfaces are clas-
sified as soft and hard surfaces. Accordingly, a soft corrugated
surface is capable of suppressing surface waves and a hard sur-
face enhances the wave propagation. This description is related
to the value of the equivalent surface impedance of the struc-
ture, which controls the propagation properties of surface waves
within the considered frequency range.
Periodically structured metal surfaces have also been consid-

ered in order to exploit their reflection/transmission character-
istics as well as their focusing or field enhancement features.
The interest on this kind of problems was recently boosted by
the discovery of the so-called extraordinary optical transmis-
sion [10]–[12]. This phenomenon (and its dual, extraordinary
reflection [11]) was originally discovered for 2-D arrays of holes
in thick metal surfaces but was soon observed in 1-D periodic
structures [13] similar to the ones treated in this paper. Due to
this fact, many papers dealing with the analysis of metallic pat-
terned screens can be found in physics and optics journals; see,
for instance among many others, [14]–[16] or, more recently,
[17]–[20] and references therein. These papers are of interest in
the context of the present work because the methodology and
physical discussions presented here can be applied to the prob-
lems posed in [14]–[20].
The basic geometry of the planar corrugated surfaces con-

sidered in this paper are shown in Fig. 1. It is well known that
the wave guiding along a periodic structure occurs at some fre-
quency bands (passband) and is suppressed at others (stopband)
[1], [21]. Moreover, corrugated surfaces can also behave as ar-
tificial magnetic conductors (AMC), making that a plane wave
impinging on the structure is reflected with near-zero phase
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shift within certain frequency band. One of the most interesting
features of corrugated surfaces comes from their ability to ex-
hibit simultaneously AMC and stopband behaviors in certain
bandwidth (depending on the type of the corrugated surface,
the bandwidth features can vary). This property can be effi-
ciently used to enhance the performance of some devices, such
as low-profile antennas [22]–[24]. In [25], a comparison among
the stopband bandwidths obtained with the structures depicted
in Fig. 1 is summarized. In general, it can be concluded that,
for T-shaped corrugations, the stopband is shifted to lower fre-
quencies as the slit is moved away from the symmetry center
of the cavity. An additional bandwidth comparative study be-
tween 1-D corrugated surfaces and the well-known 2-D mush-
room configurations [22] is also given in [25].
The structures in Fig. 1 were rigorously analyzed using

the aperture integral equation combined with the method of
moments in [26]. In a more recent paper [27], the symmetric
T-shaped corrugated structure shown in Fig. 1(a) is analyzed
using both numerical and analytical approaches. Both AMC
bandwidth and surface-wave stopband are studied in [27], and a
simple formula (with certain parameters to be fitted) is derived
using the transverse resonant technique to calculate the phase
of the reflection coefficient when the structure is illuminated
by an obliquely incident plane wave. This formula seems to
work properly for narrow corrugations but it will be shown
here that it fails in predicting the behavior of the structure if
the groove size is similar to the period. An enhanced theory is
presented in [28] for the case of planar corrugated planes, but it
does not consider T-shaped corrugations, limiting the range of
applicability to the classical configuration shown in Fig. 1(d).
For this latter configuration, another circuit model is presented
in [29] to compute the reflection coefficient of the structure
under oblique incidence.
In order to extend the possibility of using closed-form analyt-

ical formulas to all the configurations shown in Fig. 1, this paper
presents a novel circuit model to obtain the reflection properties
of a TM oblique plane wave impinging on those corrugated sur-
faces. (The case of TE polarization is not explicitly treated here
since the interaction with the structure is very weak in such case.
However, the analysis of this case can be carried out along very
similar lines). The present analysis is based on previous ideas
and works developed in [30], [31] and, especially, [32], where
a circuit model was systematically deduced for the scattering
problem in slits/strips gratings embedded in a layered environ-
ment. The whole formulation is described in next section for
a general case that considers the corrugations filled with a di-
electric material, the presence of a dielectric overlay on top of
them, and ohmic losses in the cavity walls. Different compar-
isons with a self-developed Method of Moments (MoM) code
and with ANSYS HFSS [33] are presented, as well as with pre-
viously reported models [27], [29]. Finally, our circuit approach
is employed to propose examples of some possible applications
of this type of structures.

II. DERIVATION OF THE ANALYTICAL MODEL

The T-shaped corrugated structures under consideration in
this work are those shown in Fig. 1 but including the possible
presence of dielectric filling and cover. The whole structure

Fig. 2. General unit cell of any of the structures shown in Fig. 1 including a
cover slab and a cavity dielectric filling. Structural parameters: period , groove
size , slit width , slit displacement , external slab thickness , corrugation
depth , relative permittivity of the dielectric in the cavity , relative per-
mittivity in the external slab , external relative permittivity , incidence
angle .

extends indefinitely along the direction, which makes the
structure be 1-D periodic along the -direction. A TM-polar-
ized plane wave impinges on the structure, exciting electric
currents on the metallic surfaces. Due to the periodic nature of
the structure, Floquet theory allows us to restrict the analysis to
the unit cell of period shown in Fig. 2 (it should be noted that
all the configurations sketched in Fig. 1 are particular cases of
the generalized unit cell defined in Fig. 2).

A. Lossless Case

The unit cell shown in Fig. 2 involves two clearly distinct
regions: (1) the external region ( ), which is regarded as
a generalized parallel-plate waveguide with periodic boundary
conditions at its upper and lower walls (a dielectric overlay can
eventually be placed in the external region above the corruga-
tions at ), and (2) the cavity region, a parallel-plate
waveguidewith electric-wall boundary conditions and short-cir-
cuited at its right end ( ). Employing a Floquet expan-
sion to describe the electric field in the external region (1) and a
modal expansion in the parallel-plate waveguide corresponding
to the cavity region (2), the -component of the electric field at
both sides of the can be written as

(1)

(2)

The cutoff wavenumber parameters are and
. The amplitude of the impinging plane wave has

been normalized to unity, represents the reflection coeffi-
cient of the reflected plane wave inside the dielectric overlay,
and is the tangential (to the grating) com-
ponent of the wavevector of the obliquely incident plane wave,
with being the free-space wavenumber ( is the an-
gular frequency of the incident time-harmonic field and the
speed of light in free space) and the incidence angle.
At this point, a key assumption is made that the electric field

at the slit aperture can be factorized in the following way [32]:

(3)
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The spatial field profile, , incorporates the exact edge sin-
gularities when the edges of the slit are not placed at
(see Fig. 2). In any case, it is expected to be a good approxima-
tion for apertures whose width is electrically narrow. Projecting
each harmonic/mode over and using Fourier analysis, the
following coefficients of the field expansion are obtained:

(4)

(5)

(6)

(7)

(8)

where is the zero-order Bessel function of the first kind.
From the above equations, all the coefficients can be written in
terms of as

(9)

(10)

(11)

Following a similar procedure as in [32], the continuity of the
magnetic field ( -component) through the slit

(12)

can now be written in terms of the coefficients of the modal
expansions of the electric field in the following way:

(13)

where

(14)

(15)

can be interpreted as the input admittances corresponding to the
transmission lines associated with the high order modes/ har-
monics excited at both sides of the discontinuity, with

(16)

being the characteristic admittance ( is the free space
impedance) of the transmission line associated with the -th
mode/harmonic in the -th medium, and

(17)

(18)

the corresponding modal/harmonic wavenumbers. After pro-
jecting (13) over the profile function

(19)

and employing (9), (10) and (11), the following expression for
the reflection coefficient of the impinging plane wave is found:

(20)

where the equivalent admittance of the discontinuity is given by

(21)
with

(22)

(23)

(24)

The expression (20) obtained above for the reflection coeffi-
cient, together with the interpretation of the input admittances,
leads us to the equivalent circuit depicted in Fig. 3(a). Con-
cerning the topology of the admittance in the circuit model,
from (21) it is apparent that it consists of a parallel connec-
tion of the input admittances of all the high order harmonics
(open region) and modes (cavity region) excited at the discon-
tinuity (weighted by the factor ). The is thus formally
given by the parallel connection of an infinite number of input
admittances. This infinite series is not very convenient from a
practical point of view, but this drawback can be overcome fol-
lowing a strategy similar to that in [32]. The basic idea consists
in dealing separately with the overall contribution of all the high
order harmonics/modes that are far from their cutoff frequen-
cies. For harmonics and modes with high cutoff wavenumbers
(in comparison to ), the following approximations are
used:

(25)

and their characteristic admittances reduce to

(26)
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Fig. 3. (a) Equivalent circuit of the periodic structure under analysis.
(b) Topology of the equivalent admittance that represents the high-order
harmonics and modes excited at the slit discontinuity. (c) Definition of the
input admittances in .

In this way, all the parallel-connected admittances of high order
(greater than, say, a given order for the external region and
for the cavity) can be grouped together to form an equivalent

high order capacitance, , given by

(27)

Thus, the equivalent admittance can finally be written as a sum
of a few dynamic terms plus the contribution of the equivalent
high-order capacitance:

(28)

Taking into account this last expression, the topology of the
equivalent admittance is shown in Fig. 3(b). It should be
noted that the infinite series in the capacitance [see (27)]
is independent of both frequency and incidence angle. There-
fore, in the case of an eventual sweep in either frequency or

incidence angle, the infinite series needs to be computed only
once [32]. Concerning the value of and , in practice they
can be chosen as the order of the first harmonic/mode that re-
mains evanescent in their respective medium at the highest fre-
quency of interest [32] (in most practical cases, they are rarely
higher than three). The low order elements in (28) would then
account analytically for the nontrivial frequency dependence of
the equivalent admittance of the first relevant high order har-
monics/modes. It is interesting to note that the value of the
groove depth ( ) is not relevant in the choice of ( is
only determined by ). But this does not mean
that for shallow grooves the coupling of the slit aperture with
the back metallic wall through high-order evanescent modes is
being somehow neglected. Indeed, this coupling is accurately
taken into account by the factors in (27), whose
value is different from one for evanescent modes that reach the
back wall at .
Finally, it should be recalled that above represents the

reflection coefficient seen at . The parameter of the
incident plane wave at is then given by

(29)

It should be pointed out that the procedure described in this
section is extremely fast from a computational point of view. All
the computations involved in the study of the cases considered
in Section III of this work have taken an almost negligible CPU
time in a standard laptop computer when compared with the use
of numerical methods.

B. Resistive Overlay

If the dielectric overlay [medium (1)] is lossy (this is an in-
teresting situation if the structure is intended to be used as
absorber), its permittivity is complex and can be written as

with

(30)

where represents the dielectric loss tangent and the con-
ductivity of the medium. The complex wavenumber of the -th
harmonic in this medium is then given by

(31)

The complex values of the relative permittivity and the
wavenumber given in (30) and (31) must now be introduced
in (16) to obtain the associated complex harmonic admittance,

, in this lossy medium. (A completely similar treatment
applies in case the dielectric filling the cavity is lossy.)

C. Ohmic Losses in the Cavity Walls

For completeness, ohmic losses in the cavity walls are also
incorporated in the model. Since the metallic materials usually
employed in the fabrication of practical structures are good con-
ductors, the conventional strong skin-effect approximation is
used here. The effect of losses in the lateral walls at ,
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the back wall at , and the periodic slit screen are con-
sidered separately. In any case, an additional approximation is
made that conductor ohmic losses are attributed only to prop-
agative modes.
Ohmic losses in the lateral walls cause the wavenumbers of

the parallel plate waveguide modes to become complex. Their
quantitative impact is obtained via the well-known perturba-
tion method [2], which provides not only a resistive but also
an inductive contribution due to the penetration of the magnetic
field into the metal (the inductive contribution is usually neg-
ligible, but may become noticeable for very high frequencies
and/or very narrow cavities). Thus, the complex wavenumber
of each modal transmission line in the cavity can now be written
as

(32)

where is the propagation constant calculated in the lossless
case [see (18)], and is the contribution of the ohmic
losses obtained by the perturbation method

(33)

with being the skin depth and the conduc-
tivity of the metal. The complex characteristic admittance of the
corresponding -order transmission line, , is obtained after
introducing (32) into (16).
Concerning ohmic losses in the back wall of the cavity, its

effect is introduced by placing an imperfect short-circuit load at
the end of the modal transmission lines. Assuming strong skin
effect, the value of the admittance of this load is given directly
by the surface admittance [2]

(34)

which is the same for all the cavity modes.
For the two previous cases of lateral walls and back wall it has

been possible to account approximately for the effect of ohmic
losses individually for each mode in the cavity, and then it is
straightforward to compute the corresponding input admittances
seen at the slit aperture. These input admittances incorporate the
combined effect of the lateral and back wall losses and are ob-
tained by transforming the imperfect load along the lossy
transmission line with wavenumber and characteristic ad-
mittance , thus giving the following expression that substi-
tutes (15):

(35)

Finally, for ohmic losses in the slit screen, since all modes
and harmonics couple together at the slit discontinuity, it is not
easy to find an approximate analytical expression that accounts
for the effect of each individual mode. However, a heuristic
reasoning suggests to model the resistive screen by a similar
equivalent surface admittance as that used in the back wall case,
but excluding now the contribution corresponding to the aper-
ture. Thus, this ohmic effect is here taken into account as a se-

Fig. 4. Equivalent circuit of the periodic structure under analysis with ohmic
losses.

ries resistance connected to each transmission line (propagative
modes/harmonics), whose value is approximated as

(36)

(37)

The resulting final equivalent circuit is schematically shown in
Fig. 4.

III. NUMERICAL RESULTS

In the derivation of our equivalent circuit model, it was as-
sumed a given electric field profile at the slit aperture. For the
strip/slit gratings studied in [32], this approximated profile was
proven to give sufficient accuracy, even in the oblique inci-
dence case. This fact suggests that the same profile could also
work properly for both the symmetric and the nonsymmetric
planar T-shaped corrugated structures. In this latter case, the
asymmetry is approximately considered in our analysis by the
inclusion of odd modes in the proposed modal expansion for
the cavity. An additional approximation of our study is that the
effect of higher order harmonics/modes is accounted for by a
global lumped capacitance. Hence, due to the existence of such
approximations, the accuracy of our model needs to be validated
against some independent numerical results. This validation is
next carried out by comparing our results with the data obtained
from a full-wave MoM numerical code that uses several basis
functions for the electric field at the slit (for our purposes, this
carefully implemented MoM is considered “exact”). With the
aim of exploring how other previously proposed equivalent-cir-
cuit models behave with respect to our equivalent-circuit ap-
proach in terms of accuracy, robustness and range of applica-
bility, our results are also compared with those computed from
the formula provided in [27, Eq.27] (henceforth called Kehn’s
formula) and with those obtained following the Woo’s circuit
reported in [29]. The examples showing ohmic losses are com-
pared with simulations obtained with HFSS.
A first comparison is shown in Fig. 5, where the phase

of the reflection coefficient is plotted versus frequency for
three different configurations (see the caption for the structure
parameters). The slit aperture is symmetrically placed, so
there is no contribution of the odd modes inside the cavity
in our model. As expected, as frequency increases, the struc-
ture departs from the low-frequency electric wall behavior to
achieve a near-zero phase of the reflection coefficient (artificial
magnetic conductor or high-impedance surface) in a given
frequency range. This can be understood as the “quarter-wave
transformer” effect caused by the transmission line corre-
sponding to the fundamental TEM mode inside the groove
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Fig. 5. Phase of the reflection coefficient versus frequency for three different
configurations. Top: mm, mm, s, mm,

mm, , , , in our model , .
Center: Same as top, except mm, s. Bottom: mm,

mm, s, mm, mm, , , .
In our model, , .

[the transmission line (2) shown in Fig. 3(a)]. Rigorously, the
magnetic wall condition occurs at a frequency slightly lower
than that for which , since this admittance has to
compensate for the capacitive admittance introduced by the
high-order modes/harmonics excited at the slit discontinuity so
that . In the case shown at the top of Fig. 5,
the agreement between the three sets of data (our equivalent
circuit, the MoM, and Kehn’s formula in [27] and [28]) is very
good in all the frequency range. However, in this case, the
groove width is electrically small in the considered frequency
range ( , with being the free-space wavelength)
and the slit aperture is relatively wide with respect to the
groove ( ). Hence, the high-order modes excited
at the discontinuity are not expected to have a relevant effect
(Khen’s formula was derived neglecting the effect of high

order modes). In the case shown at the central panel of Fig. 5,
the groove has been enlarged to half the size of the unit-cell
period ( ), and the slit aperture has been narrowed to
20% of the groove size ( ). In this situation, Kehn’s
formula clearly deviates from the MoM numerical results as
frequency increases, whereas the results provided by our circuit
model remain remarkably accurate. With the set of dimensions
chosen in the bottom panel in Fig. 5, Kehn’s formula is not
capable of reproducing the correct behavior of the phase of the
reflection coefficient. The reason behind such a poor behavior
of Kehn’s expression is related to the relatively small value of
the corrugation depth. Under these circumstances, the implicit
assumption in Kehn’s model that links the phase evolution to
the existence of Fabry-Pérot resonances along the -direction
is no longer valid. Our model makes no assumption in this
regard but takes into account analytically the influence of high
order cavity modes, which turns out to be essential in this
situation. Indeed, the cutoff frequency of the first high order
mode inside the cavity is 33.54 GHz. At this frequency, the
admittance of this high order mode diverges, giving rise to a
short-circuit in the equivalent admittance associated with the
discontinuity. This fact is perfectly captured by our model, in
good agreement with MoM, but seems to be ignored by other
simplified equivalent circuits. (In order to show a validation of
our MoM code, HFSS results are also included in this last plot.
The agreement between MoM and HFSS results is similarly
good for all the cases without ohmic losses studied.)
Fig. 6 shows results for the classical corrugated surface re-

cently studied in [29] by means of an analytical circuit model
(here called Woo’s circuit model). Actually, for the case of TM
incidence, the circuit model in [29] resembles the one proposed
by some of the authors in [34], [35] for transmission slit struc-
tures. The purpose of Fig. 6 is to compare the predictions of
the model in [29] with the new proposal in the present paper.
The top plot shows the phase of the reflection coefficient when
the groove size is 1/10 of the unit cell period. As expected, our
circuit approach gives accurate results, which agree very well
with MoM data, due to the small electrical size of the aper-
ture. Woo’s circuit model also provides acceptable agreement
with MoM numerical code results, although slightly less pre-
cise. It should be reminded that Woo’s model considers only the
TEM mode inside the cavity; i.e., the reactive field is ignored.
Hence, as the groove size grows, the accuracy of this model is
expected to worsen, as observed in the bottom plot of Fig. 6 even
in the low frequency regime. In this last case, the groove size is
now 4/10 of the period and its electrical size is not negligible at
the high end of the studied frequency spectrum, thus inducing
a non-negligible reactive field inside the cavity. Although our
model does account for the reactive field excited in the discon-
tinuity, its numerical results are not expected to be very accurate
at high frequencies where the width of the cavity is not electri-
cally small (@45 GHz, ) and the approximation
for the aperture field in (3) is not sufficiently valid.
An interesting example is shown in Fig. 7, where the mag-

nitude and phase of the reflection coefficient is plotted versus
frequency for a nonsymmetric T-shaped corrugated structure.
Since an obliquely incident plane wave impinges on the corru-
gated surface, purely specular reflection is expected only below
approximately 34 GHz, the onset frequency at which the
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Fig. 6. Phase of reflection coefficient versus frequency for two different con-
figurations. Top: mm, mm, , mm, mm,

, , , in our model , . Bottom: Same as
top, except mm and .

harmonic becomes propagative. Above that onset frequency, the
reflected power is carried away by the two propagative har-
monics ( ) outside the cavity. As frequency increases,
the power ratio transferred to each propagative harmonic varies.
The top plot in Fig. 7 shows that, around 41.2 and 52.7 GHz, the
fraction of the reflected power channeled into the zero-order har-
monic is very low. In certain frequency bands centered at these
two frequencies, most of the power is then “diffracted” to the

harmonic, thus preventing specular reflection. This be-
havior can readily be understood in terms of our circuit model,
as explained next. In the bottom plot of Fig. 7, it can be observed
that the reflection phase is close to zero at these two reflectivity
minima. Indeed, the minima occur when the corrugation depth
is below but close to and , with being the

wavelength of the TEM (zero-order) mode inside the cavity. At
these frequencies the zero-order mode input admittance, ,
is inductive and small (recall that when the corruga-
tion depth is an odd multiple of ). Hence, the ad-
mittance can compensate for the small capacitive admittance in-
troduced by evanescent harmonic/modes excited at the slit dis-
continuity (namely, , where stands for the
equivalent admittance excluding the effect of the prop-
agative harmonic). Under these circumstances, the load met at

by the impinging signal in the circuit model is just the
real admittance of the propagative harmonic. If this
real admittance is close to the characteristic admittance of the

Fig. 7. Magnitude (top) and phase (bottom) of the reflection coefficient versus
frequency for an structure with mm, mm, mm,
mm, mm, , , . In our model, ,

.

input transmission line ( in this case), there will be good
matching and most of the impinging power is transferred to the

propagative harmonic (this matching is found to be
better at 41.2 GHz than at 52.7 GHz). At approximately 49 GHz,
the whole power returns again along the input line since, at this
frequency, and then , causing a short
circuit in the corresponding equivalent circuit. It should be noted
that the groove size was chosen small enough to avoid the exci-
tation of propagative modes inside the cavity in the considered
frequency range ( ). Thus, the present structure
could be used in applications where specular reflections are not
desired. Finally, it should be pointed out that the numerical re-
sults provided by our approach and the MoM agree very sat-
isfactorily, showing a slight deviation at high frequencies as a
consequence, once again, of the limitations introduced by the
assumed electric field profile (see Section II-A). This satisfac-
tory agreement has also been found for other incident angles,
even for the limiting case of grazing incidence.
Previously it has been discussed that the possible application

of the T-shaped corrugated structure as a high impedance sur-
face (HIS, obtained when it behaves as an AMC) can be re-
lated to corrugation depths satisfying the condition

. However, this HIS behavior can also be obtained in a
different way by using wide and shallow grooves to make that
the first propagative mode inside the cavity appears at a fre-
quency lower than that of the first AMC condition (this situation
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Fig. 8. Phase of reflection coefficient versus frequency for two different con-
figurations. Top: mm, mm, mm, mm,

mm, , , . Bottom: Same as top, except
mm. , .

requires ). At this point it is convenient to recall that
the modal admittances given in (16) grow to infinity as the fre-
quency approaches any of the corresponding modal cutoff fre-
quencies. Thus, for frequencies lower than the cutoff frequency
of a given high ordermode, the correspondingmodal admittance
is capacitive and can be as high as desired. For wide and shallow
grooves, it implies that, at some frequency below the cutoff of
the first high order mode inside the cavity, the capacitive admit-
tance of the high order modes can compensate for the induc-
tive admittance associated with the zero-order TEM standing
wave inside the cavity (so that the admittance of the resulting

tank is zero). For that frequency, the corrugated structure
resonates and behaves as a magnetic conductor (open circuit).
This situation is reported in Fig. 8, which shows the phase of
the reflection coefficient versus normalized frequency for two
different configurations. In the top plot, a symmetric structure
is analyzed. Since odd high order modes inside the cavity are
not considered due to symmetry, the onset of the first high order
mode takes place at . A near-zero phase is observed
at , corresponding to . The
bottom plot shows results obtained for an asymmetric structure
with the slit fully displaced. In this case, the onset of the first
odd high-order mode is half lower than that of the first even
high-order mode, which causes the HIS behavior to be found
also at a lower frequency ( , corresponding to

). It is interesting to note that these HIS behav-
iors occur when the groove size is roughly and ,

Fig. 9. Magnitude of reflection coefficient versus frequency. Structure param-
eters: mm, mm, mm, mm,

mm mm, , , , ,
S m, , .

respectively. This is consistent with a possible alternative view
[24] that considers the propagation of the TEM mode along the
vertical direction inside the cavity, with the screen and the
back wall now forming the parallel-plate waveguide. Under this
standpoint, the structure is expected to behave as an AMCwhen
either the upper (seen from the slit aperture) or the lower TEM
line is roughly a quarter wavelength long.
The AMC behavior of the T-shaped planar corrugated struc-

ture discussed above can also be used to design a very thin
narrow-band absorber. The underlying reasoning is based on the
familiar idea that the electric field is maximum at the aperture
under resonance condition, and therefore, it may be strongly
dissipated by placing a resistive overlay with the appropriate
conductivity on top of the corrugations. In principle, this appro-
priate value of conductivity can be found by matching the real
part of the input admittance of the resistive overlay (terminated
with an open circuit) to the characteristic admittance of the input
transmission line, namely

(38)

Assuming that the resistive slab is electrically thin, the above
condition leads to

(39)

However, it should be noted that the condition (39) has been
obtained considering only the effect that the resistive overlay
has on the zeroth-order harmonic. Certainly, the higher-order
harmonics will also be affected, and their corresponding admit-
tances in the model also contribute with a real (resistive) part. In
other words, the value of the overlay conductivity in (39) pro-
vides optimum absorption as long as the total field inside the re-
sistive slab is well accounted for by the zeroth-order harmonic
field, thus neglecting the strong inhomogeneity of the field in
the aperture region. Nevertheless, the value of the conductivity
obtained from the proposed coarse matching condition (39) can
be used as an initial guess in an optimization procedure to en-
hance the level of absorption. Here it should be pointed out that
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Fig. 10. Magnitude of the reflection coefficient versus incidence angle. Struc-
ture parameters: mm, mm, mm, mm,

mm, , , , GHz, ,
.

the very fast numerical nature of our circuit model makes it par-
ticularly suitable for this optimization procedure. An example
under normal incidence is given in Fig. 9, where the initial con-
ductivity value given by (39) was S m, and the
final overlay conductivity that provides the good levels of ab-
sorption shown in the figure is S m (the relative
permittivity of the cover layer is taken as to simu-
late a silicon substrate). Strong dissipation is observed at cer-
tain narrow frequency bands where an AMC resonance condi-
tion exists, as expected. These bands alternate with broad bands
of high reflection when the frequency is far from the mentioned
resonance conditions.
If the incidence angle of the impinging plane wave varies,

the admittances of the lines in the model change and so does the
optimal value of the conductivity. In order to study this issue,
Fig. 10 shows an incidence angle scanning for different slab
thicknesses at the maximum-dissipation frequency (6.34 GHz).
For each substrate thickness, the conductivity of the resistive
cover layer has been optimized to obtain minimum reflection at
normal incidence. It can be observed how the absorption deteri-
orates as the incidence angle increases. Nevertheless, the reflec-
tion coefficient magnitude is kept below 0.1 ( ) for angles
up to around 35 . Thus, for incidence between and 35 , a
reflection level below is expected. Fig. 10 also shows
the remarkable fact that the angular variation of the reflection
coefficient is almost independent of the overlay thickness.
As a last example, the accuracy of our equivalent circuit to

model a cavity with ohmic losses is studied. In most practical
cases, the cavity is usually fabricated with a good conductor
and an almost negligible effect of dissipation is expected. In
the present example, a lossy conductor is used in order to in-
crease the influence of the ohmic losses. In Fig. 11 the reflec-
tion coefficient is plotted versus frequency when an oblique
plane wave impinges on an asymmetric T-shaped corrugated
structure. The dissipation level is low except around the fre-
quencies for which the structure behaves as an AMC. At these
particular frequencies, the reactive admittances of the corre-
sponding equivalent circuit cancel out, resulting in a purely re-
sistive equivalent admittance. Beyond 34 GHz, the structure
works in the first grating-lobe regime and the power is split into

Fig. 11. Magnitude of the reflection coefficient versus normalized frequency.
Structure parameters: mm, mm, mm, mm,

mm, , , , S m, ,
.

both propagative harmonics ( , ), making the ef-
fect of losses difficult to visualize. The comparison between our
model and HFSS is good for low frequencies and deteriorates at
higher frequencies because of the limitations of the model.

IV. CONCLUSION

A novel equivalent circuit approach has been presented to
deal with the scattering of a TM-polarized plane wave obliquely
incident on a 1-D periodic T-shaped corrugated surface with an
overlay. The key features of our approach are that the topology
of the circuit is deduced rigorously from a fundamental inte-
gral equation formulation and that closed-form expressions are
given for all the circuit parameters. This last feature makes that
the computational cost required by the present approach is very
low, which can be very advantageous for design and/or op-
timization purposes. The numerical results obtained with the
present circuit model have been compared with a rigorous full-
wave MoM methods and with the HFSS simulator, as well as
with other circuit approaches previously reported in the litera-
ture. The agreement is quite good with MoM and HFSS for rel-
atively narrow slits even well beyond the diffraction regime, de-
teriorating slightly as the electrical size of the corrugation aper-
ture increases. An additional advantage of our approach comes
from the fact that the equivalent circuit allows for a straight-
forward understanding of the underlying physics of some rele-
vant phenomena in terms of circuital and transmission line con-
cepts. This provides us with the capability of predicting new
interesting configurations with potential practical applications.
Some of the possible applications that have been discussed in
this work are an electrically thin HIS, a structure that avoids
specular reflection, and a very thin narrow-band absorber. The
equivalent circuit approach has also been extended to incorpo-
rate the effect of ohmic losses in the cavity walls.
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