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Abstract—A novel balanced bandpass filter (BPF) based on
folded stepped impedance resonators (FSIR's) with modified
ground plane is presented in this work. By symmetrically in-
troducing a series-LC resonant structure below the FSIR's,
common-mode (CM) propagation can be rejected without affecting
differential-mode (DM) performance. The filter presents two main
advantages with respect to the conventional solid-ground-plane
FSIR filter: i) an important improvement of the CM rejection
level within the differential passband and ii) an enhanced filter
selectivity due to the inclusion of an extra transmission zero in the
differential passband. Both the conventional and the novel filters
have been modeled as lumped-element circuits that fully account
for DM and CM operation. Simulation and measurement results
confirm the benefits of the proposed balanced BPF.

Index Terms—Balanced filter, common-mode (CM) suppression,
double-side MIC technology, defected ground structures (DGS).

I. INTRODUCTION

OWADAYS, many approaches are available to deal with

the problem of common-mode (CM) noise suppression
in GHz differential filters. In microstrip technology, some re-
ported solutions are based on the use of synthetic differential
lines with some type of defected ground structure (DGS), which
might be periodically etched below the differential-signal cou-
pled pair [1]-[7]. With this procedure, an all-pass behavior is
ideally obtained for the differential mode (DM) while a stop
band is achieved for CM signal. The differential-lines proposed
in [1]-[7] are intended to be used as input/output lines of a dif-
ferential filter, which leads to an increase in filter size. If size is
a relevant issue, it is more convenient to design filters that si-
multaneously fulfill specifications for both the DM and the CM.
Coupled-line filters [8], coupled resonator filters [9]-[11] or
open-split-ring/complementary-split-ring resonators filters [12]
are a few examples of balanced bandpass filters (BPFs) with
good intrinsic CM rejection. In this letter, a novel and compact
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balanced BPF based on a modified version of the electrically
coupled folded stepped-impedance resonators (FSIR's) is pre-
sented together with its design procedure. Experimental vali-
dation of the proposed structure is provided through a specific
design.

II. PROPOSED STRUCTURE AND EXPERIMENTAL RESULTS

The layout of the proposed balanced BPF is shown in Fig. 1.
Two electrically coupled FSIR's printed on the top plane of the
substrate are capacitively coupled to two symmetrically placed
series-LC resonators etched in the ground plane. The design
process starts by designing a conventional (with solid ground
plane) FSIR filter using the standard procedure [13]. These are
the DM specifications: Butterworth N = 2, center frequency
fo = 2.5 GHgz, and fractional bandwidth A = 10%. The sub-
strate parameters are &, = 5.9 and thickness /» = 0.508 mm.
FSIR dimensions have been chosen to provide a first resonance
(odd symmetry) frequency at fo = 2.5 GHz. The dimensions
(in mm) that satisfy this condition are: [; = 4.75, [, = 4.71,
l3 = 281, l4 = 383, Wy = 075, wp = 06. 81 = 0.2 and
t = 2.7. Equivalent circuits can be extracted for the CM and
DM, as shown in Fig. 2. There is a clear connection between the
circuit parameters and the numbered sections in Fig. 1(a). Thus,
L is the inductance associated with Section 1 (and 6): it is a
short-ended line for the DM. Conversely, C'; is the capacitance
of those sections for the CM (AA' is a virtual-open in that case).
The remaining parameters are obviously the same for DM and
CM: L5 is the inductance of Sections 2 and 5, C5 is the coupling
capacitance between Sections 3 and 4, and Cj is the capacitance
between Sections 3 and 4 and the ground plane. The values of
the elements have been analytically approximated (each param-
eter represents an electrically short transmission line section)
and then slightly tuned with the help of Agilent ADS circuit sim-
ulator. The full-wave simulation results for this filter together
to its CM and DM equivalent-circuit responses plotted in Fig. 3
show a reasonably good agreement. It can be observed a rela-
tively poor CM rejection (around 20 dB within the differential
passband) as well as poor symmetry of the differential passband.

The next step in the design process is the introduction of two
series-LC resonant structures in the ground plane [Fig. 1(b)] to
improve the CM rejection without increasing the filter size. New
elements have to be included in the CM and DM equivalent cir-
cuits to account for the ground plane pattern (see Fig. 4). Con-
sidering that the AA' plane is a virtual open for CM operation,
the return current flows to the ground plane through the mean-
dered lines (Sections 9 and 10), whose inductance value is rep-
resented by L3. However, AA' behaves as a virtual short for DM
operation, in such a way that the displacement current flowing
between Sections 3 and 7 (or 4 and 8) has two different paths to
flow to the ground plane: a high-impedance one (sections 9 and
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Fig. 1. Layout of the proposed filter. (a) Top layer metallization and (b) bottom

layer metallization.
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Fig.2. Equivalent circuits for DM and CM operation of the conventional (solid
ground plane) FSIR filter.
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Fig. 3. Comparison between full-wave and circuit simulations for the conven-
tional balanced BPF.

10) and a low-impedance one (sections 7 and 8). The current will
then flow mainly through the low-impedance section, which is
represented by a much lower value of L3. C; accounts for the
electric coupling between sections 7 and 8 and M accounts for
the magnetic coupling between sections 9 and 10 (CM opera-
tion) or 7 and 8 (DM operation). Moreover, it should be noted
that, for the new filter geometry, C's represents the capacitance
between Sections 3 and 4 and the bottom plane patches (sections
7 and 8). The dimensions (in mm) for the new filter are:
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Fig. 4. Equivalent circuits of the novel filter for (a) differential-mode and
(b) common-mode.
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Fig. 5. Comparison between measurements, full-wave simulations and circuit
simulations for the fabricated balanced BPF.

li = 5.05, 1o = 4.21, 13 = 231, 1, = 383, l5 = 4.15,
lg = 7.9, 17 = 211, lg = 2.82, 1y = 12.1, lip = 7.42,
we = 0.2,1 = 2 and s = 0.6. The new set of dimensions
for the FSIRs is slightly different from the one corresponding
to the conventional FSIR filter in order to compensate the small
perturbation introduced in the DM by the slotted ground plane.

In order to validate our proposal, the circuit whose layout is
depicted in Fig. 1 has been fabricated and measured with an
Agilent PNA-E8363B with a Test-Set N4420B extension. Sim-
ulated and measured DM and CM responses are shown in Fig. 5.
Equivalent circuits responses are included for comparisons pur-
poses. Thanks to the introduction of two CM TZ's, CM rejection
is significantly better than for the conventional implementation.
Additionally, the DM TZ observed at 1.5 fy leads to a signif-
icant improvement of the response symmetry and selectivity.
Measured insertion losses at the center frequency are 1.57 dB.
The filter size is quite small (0.15A x 0.21A, with A being the
guided wavelength at the filter center frequency). A comparison
between our proposal and other contributions found in the liter-
ature is provided in Table I. According to the table, filter size,
CMRR and differential-mode selectivity are found to be com-
petitive in spite of the simplicity of the new design.
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TABLE I
COMPARISON OF SEVERAL BALANCED FILTERS
Si CMRR 155§ > Differential mode
1ze d 30dB a
Ref. | N o2 |@ s f& |3dB | IL |Afg
97 | (dB) (GHz) (GHz)| (A) | (dB) |Afaa
7 2 | 029 | 41 |0.99f3-1.28f¢| 242 | 6.6 | 08 | 032
[9] 2 0044 | 24 <30 dB 1.57 | 8.92 1 0.18
[10]| 4 |0.047| 31 |0.5f3-5.88f¢| 1.02 | 12 | 351 | 052
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Fig. 6. (Color online) CM TZ frequencies versus /s (EM simulation) and A
(1). The inset shows the equivalent circuit section used for the calculation of the
embedded TZ’s.

III. CONTROL OF THE TRANSMISSION ZEROS

DM and CM TZ's are determined by the values of the circuit
elements that account for the coupling between resonators as
well as for the presence of the ground plane pattern (see the inset
in Fig. 6). The characteristic equation providing the location of
the zeros is given by

2242214+ Zoa) + 2203204214
+ Z2,(2Z03 + Zoo + Zea) + ZosZa(AZpy + 2Z04)
+ Zc2Zai(Zes + Z1a) + 221420 Zoa =0 (1

where Ly = Ly — M and Zx; represents the impedance of the
X, component (X is C or L and ¢ is the index number, ¢ = 2,3
or ¢ = 4). The location of the TZ's can easily be adjusted by
proper selection of the values of the circuit components (and
the structural dimensions that give place to those values). As an
example, Fig. 6 compares the CM TZ frequencies as a function
of M using both (1) and numerical simulations. Note that M is
mainly controlled by ls, which is varied while the remaining pa-
rameters are kept constant. Fig. 6 clearly shows that there is an

apparent correlation between the geometrical parameter /g and
the circuit parameter M, as expected from our circuit interpreta-
tion of the physical structure. This figure also demonstrates the
suitability of (1) to control the position and bandwidth of the
CM rejection band.

IV. CONCLUSION

A new compact balanced BPF based on a modified version
of electrically coupled FSIR's is presented. Equivalent circuits
are provided to facilitate the design process of both DM and
CM responses. The proposed structure provides a significant
improvement of CM rejection level and a better DM symmetry
response and selectivity when compared with the conventional
FSIR filter.
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