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Anomalous self-diffusion in a freely evolving granular gas near the shearing instability
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The self-diffusion coefficient of a granular gas in the homogeneous cooling state is analyzed near the shearing
instability. Using mode-coupling theory, it is shown that the coefficient diverges logarithmically as the instability
is approached, due to the coupling of the diffusion process with the shear modes. The divergent behavior, which
is peculiar in granular gases and disappears in the elastic limit, does not depend on any other transport coefficient.
The theoretical prediction is confirmed by molecular dynamics simulation results for two-dimensional systems.
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Granular gases are fluidized systems composed of particles
colliding inelastically. In spite of some apparent similarities,
they behave very differently from molecular fluids, and exhibit
many interesting and peculiar phenomena [1]. This includes
the spontaneous development of strong density and tem-
perature inhomogeneities, spontaneous symmetry breaking,
pattern formation, and segregation in systems composed of
different types of particles, to mention a few examples [2].
Here, another interesting feature of granular gases is addressed,
namely, the divergence of the Navier-Stokes self-diffusion
coefficient when the shearing instability is approached, in-
dicating the existence of anomalous diffusion. This effect
is quite different from the divergence of the self-diffusion
coefficient in an infinite molecular two-dimensional system, as
a consequence of the algebraical long-time tails of the velocity
autocorrelation function (VACF) [3,4]. The divergence being
discussed here occurs in rather small systems and it is due
to the singular behavior associated with the presence of a
hydrodynamic instability.

In this Rapid Communication, a granular gas is modeled
as a system of N identical smooth inelastic hard spheres or
disks of mass m and diameter σ , enclosed in a volume V ,
and with the collisions characterized by a constant coefficient
of normal restitution α. As a consequence of the energy
dissipation in collisions, granular gases are always out of
equilibrium. For isolated systems, there is a time-dependent
homogeneous cooling state (HCS), in which the granular
temperature T (t) decreases in time following Haff’s law [5],
∂tT (t) = −ζ (t)T (t), ζ (t) ∝ T (t)1/2 being the cooling rate.
This is the reference state used to derive hydrodynamic
equations for granular gases [6–8]. The predictions from these
macroscopic equations are in good agreement with simulation
and experimental results for simple situations and dilute or
moderately dense systems [2]. One important result from
hydrodynamics, confirmed by numerical simulations, is that
the HCS is unstable with regards to spatial perturbations with
wavelengths larger than some critical value that depends on the
inelasticity of the system [9,10]. The origin of the instability
is in the fluctuations of the shear mode that lead, through
nonlinear hydrodynamic contributions, to the development of
density inhomogeneities [11,12].

Self-diffusion is the prototype transport process, and the
associated diffusion equation is the prototype hydrodynamic
equation for a macroscopic description of the process. It has
been extensively investigated both in molecular and granular
fluids and, in particular, in granular gases in the HCS [13–17].

In these studies, the hydrodynamic diffusion equation has been
derived with a prediction for the self-diffusion coefficient. It
has been shown [15] that the coefficient, if it exists, is given by
a Green-Kubo-like expression. The analysis is simplified by a
change from the original time scale t to a new one s defined
by [18,19]

ω0s = ln
t

t0
, (1)

where t0 and ω0 are two arbitrary constants. In this time scale,
the original time-dependent HCS is exactly mapped on a steady
state, whose granular temperature is

T̃st = m

2

(
ω0

ζ

)2

. (2)

Here, ζ is the time-independent cooling rate,

ζ ≡ ζ (t)

2v0(t)
, (3)

with v0(t) ≡ (2T/m)1/2. The diffusion coefficient D̃ in the
steady representation of the HCS is identified from the
diffusion equation for the number density n of tagged particles,

∂n

∂s
= −D̃∇2n. (4)

At a formal level, D̃ is given by the Green-Kubo expression
[15]

D̃ =
∫ ∞

0
ds C(s), (5)

which involves the VACF in the modified dynamics C(s) for a
tagged particle, defined as

C(s) = 1

d
〈w(s) · w(0)〉, (6)

where d (2 or 3) is the dimension of the system, w(s) is the
velocity of the particle in the modified dynamics at time s,
and the angular brackets denote average with the steady HCS
distribution. Spatial perturbations of the transversal velocity
with a wave vector smaller than

k⊥ =
(

ṽstζ

η̃

)1/2

(7)

lead to the shearing instability of the HCS mentioned above. In
Eq. (7), ṽst ≡ (2T̃st/m)

1/2
and η̃ is related to the shear viscosity
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η through

η̃ = η

mn

(
T̃st

T (t)

)1/2

. (8)

It follows that systems whose linear size L is larger than Lc =
2π/k⊥ will exhibit the shearing instability. For this reason, the
previous studies of self-diffusion in the HCS we are aware of
[13–17] restrict themselves to situations in which L is much
smaller that Lc. On the other hand, here the focus is on the
peculiarities of the process when the shearing instability is
approached. The VACF can be split into a part associated
with the fast relaxation of the kinetic modes, followed by the
contribution of the slow relaxation of the hydrodynamic type,

C(s) = Ckin(s) + Chyd(s). (9)

In Ref. [20], an expression for the hydrodynamic component
was derived by using mode-coupling theory. The result reads

Chyd(s) 	 (d − 1)T̃st

mnV d

(′)∑
k

k2

k2 − k2
⊥

e−s [̃η(k2−k2
⊥)+k2D̃]. (10)

The summation extends over values of k compatible with the
employed periodic boundary conditions, and in the interval
km � k � kM , where km = 2π/L and kM is of the order of 2π

times the inverse of the mean free path. The presence of the
factor k2/(k2 − k2

⊥) is peculiar in granular gases, becoming
unity in the elastic limit, in which k⊥ = 0. It is associated
with the existence of the shearing instability. The above
expression implies that there is a time window over which the
VACF exhibits a power-law decay on the s scale having some
similarities with the long-time tails occurring in molecular
fluids [20]. Besides, for s � s0 = L2/4π2(̃η + D̃), the decay
of the VACF has the exponential form [21]

Chyd(s) 	 2(d − 1)T̃st

mnV

e−s [̃η(k2
m−k2

⊥)+k2
mD̃]

1 − (L/Lc)2 , (11)

showing that the amplitude of the decay diverges as the critical
length Lc is approached. In the following, the implications of
Eq. (10) on the behavior of the self-diffusion coefficient near
the instability will be discussed. Let us insist on the fact that the
analysis here will be for finite size L < Lc, contrary to the
analysis leading to the usual long-time tails in molecular
gases, requiring an infinite system [4]. Long-time tails in
freely cooling granular gases under conditions for which the
HCS is unstable have been investigated in Ref. [22], while in
Ref. [23] the case of a driven granular fluid is considered. The
decomposition in Eq. (9) allows us to write

D̃ = D̃kin + D̃hyd, (12)

where D̃kin is the contribution from the kinetic part of C(s)
and

D̃hyd = (d − 1)T̃st

mnV d

(′)∑
k

k2

(k2 − k2
⊥)[̃η(k2 − k2

⊥) + k2D̃]
. (13)

Upon deriving this expression, it has been taken into account
that all the terms on the right hand side of Eq. (10) decay
exponentially in time if the system is in the parameter region
in which the HCS is stable. Consider now the proximity of

the shearing instability, i.e., that L is close to (and below) Lc

or, equivalently, that km is close to (and above) k⊥. As long
as the viscosity does not diverge as the system approaches the
instability, it is η̃(k2 − k2

⊥) � k2D̃. Moreover, it will be shown
below [see Eq. (15)] that D̃hyd diverges as the instability is
approached, while D̃kin is expected to remain finite. In this way,
Eqs. (12) and (13) in the vicinity of the instability reduce to

D̃ 	 D̃hyd 	 (d − 1)T̃st

mnV dD̃hyd

(′)∑
k

1

k2 − k2
⊥

. (14)

The summation over k can be carried out by using the
continuous limit. In the following, a two-dimensional system
(d = 2) will be considered. Then, one easily gets

D̃ 	 D̃hyd 	
(

T̃st

8πmn

)1/2∣∣∣∣ln Lc − L

Lc

∣∣∣∣1/2

, (15)

indicating a logarithmic divergent behavior of the
self-diffusion coefficient as the shearing instability of
the HCS is approached. Note that this behavior differs
from the one obtained by considering only the long-time
exponential contribution given by Eq. (11).

Molecular dynamics (MD) simulations of a system of
inelastic hard disks in a square box with periodic boundary
conditions have been performed. To compare the simulation
results with the above theoretical predictions, a quite precise
value of the critical size Lc is needed for each set of parameters.
In principle, Lc is determined by Eq. (7), and the expressions
for the shear viscosity and the cooling rate as obtained by
using the Enskog theory can be used [24]. Nevertheless,
those expressions correspond to bare quantities, i.e., neglecting
hydrodynamic contributions, that can be quite relevant in the
vicinity of the instability. Then, the critical sizes of the systems
to be used in the analysis of the instability region have been
identified from the simulations. A convenient method for this
is based on the increase of the average kinetic energy of the
system near the instability. Using fluctuating hydrodynamics,
it has been shown that the average of the kinetic energy per
particle 〈e〉 in the vicinity of the shearing instability behaves
as [25]

〈e〉 − 〈e〉H
〈e〉H = Ae(L − Lc)−1, (16)

where 〈e〉H is the value of the average energy far away from
the instability, and Ae does not depend on L. This behavior
is clearly observed in the MD simulations, and a fit of the
data provides the value of Lc. In Fig. 1, the results obtained
for two values of the restitution coefficient, α = 0.99 and α =
0.98, and four densities in the range 0.231 � nσ 2 � 0.385
are shown. The symbols are from MD simulations and the
solid lines are the theoretical predictions given by Eq. (7),
using the Enskog values for the cooling rate and the shear
viscosity. It is seen that the Enskog theory provides a good
estimation of the critical size. A relevant conclusion of this is
that the shear viscosity does not have a singular behavior when
approaching the shearing instability, in agreement with the
assumption made in the theory developed above. The values of
Lc obtained in the way described will be used in the following
to determine the behavior of the self-diffusion coefficient near
L = Lc.
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FIG. 1. (Color online) Critical size Lc for the shearing instability
as a function of the number density for two values of the coefficient
of normal restitution α. The symbols are simulation results using
Eq. (16), while the lines are the theoretical predictions given by
Eq. (7), using the Enskog values for the cooling rate and the viscosity.

The diffusion coefficient can be measured in MD simula-
tions by at least three different methods. A first possibility is
based on the Einstein relation for the mean square displace-
ment of a tagged particle, which for d = 2 is [15]

D̃ = lim
s→∞

1

4s
〈[r(s) − r(0)]2〉. (17)

An alternative is to use the Green-Kubo formula, Eq. (5).
The third way of evaluating D̃ consists in considering the
steady self-diffusion state reached by a mixture of two kinds of
mechanically equivalent particles, differing only in some label
or color, which is in contact with two reservoirs for the two
types of particles. Then, the diffusion coefficient is obtained
from the values of the particle flux and the concentration
gradient, i.e., from Eq. (4) [17]. The implementations of the
three methods have been discussed in detail in the literature
[15,17], and should lead to the same value of the coefficient
of self-diffusion if the system exhibits diffusive behavior. This
consistency was confirmed in our simulations, although the
results based on the VACF seem to be somewhat more accurate
and less noisy, due to technical reasons, as it has been already
pointed out [16]. For this reason, the values being reported
in the following were obtained with the Green-Kubo formula.
Nevertheless, a potential difficulty arises with the tails of the
VACF near the shearing instability. For large times, the decay
is dominated by the hydrodynamic term with the shortest wave
vector compatible with the boundary conditions, as described
by Eq. (11). Given that the amplitude of this contribution
diverges, it could happen that the exponential long-time tail
would play a significant role in determining the self-diffusion
coefficient. In Fig. 2, the long-time behavior of the VACF
is illustrated for a system with α = 0.98, n = 0.3σ−2, and
two different system sizes. The exponential decay is clearly
identified. Then what has to be done, instead of using some
cutoff in the numerical integration of the VACF to get the
diffusion coefficient, is to choose for each system a time sE >

s0, such that the exponential decay is already clearly observed

0 30 60 90 120
s

10-4

10-3

10-2

10-1

f

L/Lc=0.82 s0=30.3
L/Lc=0.93 s0=38.9

FIG. 2. (Color online) Time evolution of the dimensionless
VACF, f ≡ mC(s)/T̃st, for a system of inelastic hard disks with
α = 0.98 and n = 0.3σ−2. The symbols are simulation results for
two different system sizes, as indicated in the inset. The time s0

characterizing the long-time regime of Eq. (10) is also given, The
solid lines are linear fits identifying the exponential decay for long
times.

for that time. For s < sE , the results of the simulations have
been integrated numerically, while for sE < s < ∞ what has
been analytically integrated is the fit of the simulation data to
an exponential, extended up to s → ∞.

In Fig. 3 the diffusion coefficient measured in a system
with n = 0.33σ−2 and different values of the coefficient of
restitution is shown as a function of the size of the system.
In the inelastic cases (α < 1), the divergence shows up
when the size of the system approaches Lc. Far from the
divergence, D̃ grows logarithmically with the size. This is
the qualitative behavior expected in the elastic limit for all L,

3 3.5 4 4.5
ln L/σ
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3
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D α=0.99
α=0.98
α=1

~

FIG. 3. (Color online) Dimensionless diffusion constant D̃ as a
function of the size of the system L for α = 0.98 (red squares),
α = 0.99 (blue circles), and α = 1 (black diamonds). In all cases, it
is n = 0.33σ−2. The critical sizes are ln Lc/σ ≈ 3.99 for α = 0.98
and ln Lc/σ ≈ 4.36 for α = 0.99. The dashed line is a linear fit of
the elastic data.
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FIG. 4. (Color online) Dimensionless diffusion constant D̃ =
I1 + I2 (black stars) as a function of (− ln 	)1/2, where 	 ≡
(Lc − L)/Lc, for a system with α = 0.95 and n = 0.144σ−2. The
solid line is a linear fit corresponding to the theoretical prediction,
Eq. (15). The component I2 (red squares) is the contribution from the
long-time exponential decay of the VACF, while I1 (blue circles) is
the contribution from shorter times.

as a consequence of the long-time tails [3]. Moreover, far from
the instability the dependence of the self-diffusion coefficient
on the inelasticity is rather weak. Similar results have been
obtained for the other densities studied.

Also, it has been investigated whether the observed di-
vergence is compatible with the logarithmic prediction in
Eq. (15). Then, in Fig. 4, D̃ is plotted as a function of
[− ln(1 − L/Lc)]1/2 for a system with n = 0.144σ−2 and
α = 0.95. The linear behavior predicted by the theory is
observed as the shearing instability is approached, although
on a rather limited scale range, due to the limitations imposed
by the instability of the HCS itself. It is interesting to analyze
the influence of the mode with the minimum wave vector km

on the divergence of D̃. In the same figure, the contributions to
D̃ from the initial decay of the VACF up to sE (I1) and from the

long-time tail described by an exponential (I2), as discussed
above, are shown. While the former increases quite fast upon
approaching Lc, the latter remains rather small. The reason is
that although the amplitude of the time exponential associated
to km diverges, as indicated in Eq. (11), its characteristic
decay time goes to zero, in such a way that the time integral
actually remains bounded in the limit L → Lc. This has been
consistently observed in all the cases investigated.

In summary, using mode-coupling theory, the self-diffusion
coefficient of a finite granular gas in the homogeneous cooling
state near the shearing instability has been investigated. In
the study, it turns out to be essential to use the macroscopic
transport coefficients and not the bare (e.g., Enskog) ones.
The result given by Eq. (14) implies to substitute D̃ by
D̃hyd on the right hand side of Eq. (13), i.e., the transport
coefficient considered is the (divergent) macroscopic one and
not its Enskog value. In this way, it has been predicted that
the diffusion constant exhibits a logarithmic divergence that
is consistent with the results obtained by molecular dynamics
simulations. The divergence is not dominated by the mode
with the shortest wave vector, but by a combination of modes
in the hydrodynamic region. As a by-product, it has been
seen that the shear viscosity remains finite at the shearing
instability. This follows from the fact that this coefficient
appears in the hydrodynamic expression of the critical size for
the system to exhibit unstable behavior. If the viscosity would
be infinite, the instability never would be observed in practice.
The same property is crucial for the derivation of Eq. (15)
from Eq. (13), and the latter has been shown to be consistent
with the behavior observed in MD simulations. More extensive
results will be published elsewhere. It is worth emphasizing
that the mode-coupling calculation used here relies solely on
the hydrodynamic modes and, therefore, its confirmation by
the simulation results is another piece of evidence for the
relevance and importance of hydrodynamics in these systems,
a fact often discussed in the literature.
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