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Boundary conditions and normal state for a vibrated granular fluid
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The steady state of a fluidized granular system confined between a vibrating wall and a reflecting one is
analyzed in detail. The relationship between the velocity of the wall and the hydrodynamic profiles is estab-
lished. In the limit of a large system, a peculiar normal state, independent of the details of the boundaries, is
reached in the bulk. This state has a uniform pressure and a constant temperature gradient. Both quantities are
not independent, but verify a closed constitutive relationship. The generality of this state and the relevant role
it is expected to play in the description of vibrated granular systems is discussed.

PACS numbse(s): 45.70.Mg, 81.05.Rm, 51.18y, 05.20.Dd

I. INTRODUCTION relevance of the pressure to describe the effect of the thermal
wall was emphasized. All these approaches have been dis-
Due to kinetic-energy dissipation in collisions, energyCUSSGd and compared with molecular-dynamics simulations

must be continuously supplied to fluidized granular system&esults by McNamara and Ludid?2]. Let us point out that,

in order to sustain a steady state. In most of the experimentdf] SPité of the relevance of the results derived in all these

situations, this energy is given through a vibrating plate.ztl:ig'sez}%iysggtg% p;;yéggon;ggﬁfttfenﬂggJgégﬁy?;;kefff)gr'

Slayng e nure of e feacy st ey e =70 h relaonsyBenween e mechacal ropertes of e
X brating wall and the hydrodynamic profiles in the granular

bulk of the system, and also an understanding of the energy

exchange between the vibrating wall and the fluidized granu-" e e \e will present a quite detailed analysis of both the
lar medium. Both aspects can be studied by means of kinetigk of the system and the boundary conditions, and relate
theories of granular media, modeled after the kinetic theorieghe parameters defining the motion of the wall with the
of molecular gasefl-5]. Therefore, the problem is not only poundary conditions to be used when solving the hydrody-
of evident practical interest but also very relevant from anamic equations to find the profiles of the hydrodynamic
theoretical point of view, since it provides a nontrivial test of fields in the bulk, i.e., outside the “kinetic boundary layer.”
kinetic theories. In particular, it will be shown that it is important to take into
In this paper we study a granular gas between two infiniteaccount the different mean-square velocities of particles go-
parallel walls. One of the walls is moving and supplies en-ing towards the vibrating wall and particles coming from it
ergy to the system. The other one is at rest. Collisions of thafter colliding. Of course, the granular temperature of the gas
particles with the walls are elastic. Besides, for the sake ofext to the wall depends on the velocity distribution includ-
simplicity, we will consider that there is not any external ing both populations of particles.
force such as gravity acting on the system. The motion of the The plan of the paper is as follows. In Sec. Il, the Navier-
wall will be modeled in such a way that a steady state isStokes-like hydrodynamic equations for a granular gas are
reached after some transient period of time. Several versiorngarticularized for the state under consideration and explicit
of this system have already been considered in the literaturexpressions for the hydrodynamic profiles are given. The ex-
In Refs.[6—8] a granular system confined in a box, wherepressions contain, as a boundary condition, the temperature
one of the walls is kept at a given temperature, is studiedof the gas next to the vibrating wall. In the limit of a large
These kinds of “thermal” walls are far from reality for system a linear temperature profile in the bulk is obtained as
granular systems, in which the so-called granular temperawell as some scaling laws. In Sec. lll, the nature of the
ture does not have the thermodynamic meaning of the usuaibrating wall is specified. For the sake of simplicity, an
temperature. Moreover, the relationship between the temasymmetric wave form is used to drive the wall, so that
perature parameter of the wall and the granular temperaturevery particle that collides with the wall finds it with the
of the fluid next to it was not investigated. Of course, thissame constant velocif@—12]. By assuming that the velocity
does not invalidate priori the conclusions reached in these distribution function of particles approaching the wall is
works for regions of the fluid far enough from the bound- Maxwellian, a set of closed equations is constructed from
aries. which the relationship between the velocity of the wall and
A simple model leading to a relationship between the enthe temperature of the gas next to it can be obtained.
ergy input by a vibrating wall and the energy dissipation in  The above theoretical calculations are based on the valid-
collisions was developed by Waet al. [9], who modeled a ity of the Navier-Stokes-like hydrodynamic equations to de-
vibrated granular medium under gravity as an isotherm atscribe the granular system and on the accuracy of the ap-
mosphere, with all particles having the mean velocity. Thisproximations introduced to model the power input through
approach was improved by Kumargt0] who used a Max- the vibrating wall. The quantitative predictions of the theory
wellian velocity distribution. The case of absence of gravityare compared with direct Monte Carlo simulation results for
was analyzed along the same lines in Réfl] where the the Boltzmann equation in Sec. IV. A good agreement is
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obtained in the bulk of the system, i.e., outside the boundary Tro(T)

layers that appear next to the walls. In this context, it is k=" (a)ro(T),  p=p*(a)— —, 9)
worth mentioning that our results are also in qualitative

agreement with the molecular-dynamics simulations data reyhile it is

ported in Ref[7]. Finally, the main conclusions are summa-

rized and discussed in Sec. V. p

(0) =
=™

where xy and 7, are the elastic heat conductivity and shear

The balance equations for the local number densityiscosity, respectively, and* (@), v*(«a), and {*(«) are
n(r,t), velocity flow u(r,t), and temperaturd(r,t), of a  dimensionless functions of the coefficient of normal restitu-
fluid of smooth inelastic hard disksd&2) or spheresd  tion . The explicit expressions of all these quantities are
=3) of massmare given in the Appendix.

The specific problem we are interested in is a system en-
closed between two infinite parallel walls locatedxat 0
andx=L, respectively. From symmetry considerations, gra-
dients of the hydrodynamic fields are expected only inxhe
direction and Eqs(4) and (5) become

(), (10
Il. HYDRODYNAMIC DESCRIPTION

dn+V-(nu)=0, (1)
du+u-Vu+(mn) V.P=0, 2

T+u-VT+2(dnkg) Y(P:Vu+V-q)+T{=0. (3)

These equations are derived by taking velocity moments in 5p=0, (17
the pseudo-Liouville equation for the syst¢i8]. HereP is

the pressure tensay,is the heat flux, and is a cooling rate P aT\  *pT
associated to the energy dissipation in collisions. Although 2(dnk5)l[K*(a)—,u*(a’)]—< K0_> - =
they can be written as functions of theparticle distribution 2 2 7o

function of the system, these general expressions will not be (12)
given here. We have defined the temperature in the standajglis now convenient to introduce a dimensionless space vari-
way in kinetic theory, i.e., including the Boltzmann constantpe| by
kg, although in the context of granular flows it does not have
the same thermodynamic meaning as in molecular systems dx
[14]. For the particular case of a steady state with no mac- dl ANX)' (13
roscopic velocity flow, the above equations reduce to
where A(x) is the local mean-free-path for hard disks or
V.-P=0, (4 spheres,

2(dnkg) 1V-q+TZ=0. (5) Ax)=[Ca% n(x)] L. (14)

Note that the above relations are direct consequence of tHaere C is a constant depending on the dimension of the
general balance equatiofi§—(3) and, therefore, they are not System, namelyC =22 ford=2 andC= 72 ford=3. In
restricted to low density or to the lowest orders in the graditerms of the new variable, E¢12) reads

ents. For a low-density gas described by the Boltzmann

equation modified to account for inelastic collisions through % o U2
a constant coefficient of normal restitutiaf) explicit expres- ET“) =a(e)T(l) (15
sions forP, g, and{ have been obtained in the limit of small
spatial inhomogeneitigg,15]. In the Navier-Stokes approxi- with
mation, i.e., first order in the gradients of the fluxes, they are
given by 32d-1) 741 (a)
a(a)= e P " . (16
P=pl, ©6) (d+2)°CT(d2)[x*(a) — pu* ()]
The above expressions clearly indicate the intrinsic connec-
q=—«kVT—uVn, (7) " tion between gradients and dissipation in the system. In
_0) 4 #2) mean-free-path units the former are determinedyay«).
(=487 (8) Therefore, application of the Navier-Stokes equations, which

assume small gradients, to the present situation, is limited to

In Eq. (6), p=nkgT is the pressure anldhe unit tensor. The ¢ 14,y inelasticity limif 7]. The general solution of E¢L5
term ¢ in Eq. (8) is of zeroth order in the gradients of the y limig7]. g @S

fields, while {®) contains the second order in the gradients

contributions to the cooling rate. These contributions are ex- T(H)2=p e Va(@l 1 g g@(a)l (17)
pected to be very small as compared with the heat flow and

the pressure tenspt6] and, therefore, they will be neglected with A and B arbitrary factors to be determined from the
in the following. The heat conductivity and the transport boundary conditions. We are going to consider that there is a
coefficientu have the form vibrating wall atx=0 supplying energy to the system and a
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1.00 ‘ ‘ ‘ The temperature at the reflecting wall, i.e., for=L or |

=lyis

2
0.78 | ] T =To|—1 ] (22)
m
T, coshi va(a)ly]
050 | and particularization of Eq21) for x=L gives
L= L{zx/a(m +sin 2\a(a)l ]}

025 | | 4Co% p\a(a) " e
' (23

Up to this point all the results we have derived follow di-
0.00 \ \ rectly from the Navier-Stokes-like hydrodynamic equations.

0.00 0.25 0.50 0.75 1.00

No additional approximation has been introduced. Let us
now assume thalt is very large so that/a(«)l,>1. Be-
FIG. 1. Plot of Eq.(19) for a two-dimensional system wita  cause of Eq(22), this is equivalent td ,,<Ty. In fact, in this

u,

=0.99 andl ,= 80. limit Egs. (22) and(23) can be approximated by
i _ i Ty=4Toe 23(@In (24)
reflecting wall atx=L. Denoting byT, the temperature of m 0 '
the gasnext to the vibrating wall, we can express the above
boundary conditions by kgTo
P=5c a(e)od L (29
T(1=0)=T (aT) —(&T) =0 (19 o
(1=0=To. {7 o hox] T The latter is quite a surprising result since it indicates that the

m

pressure in the system, in the region in which our approxi-
mation is valid, does not depend on the total number of par-
ticles it contains, but it is determined by the “temperature
gradient” To/L. We will return to the discussion of the
above relationship in Sec. V. If, in addition to considering a
large system, we restrict ourselves to distances from the vi-
brating wall such that<l,,, it is seen that the temperature
decays exponentially within that region,

We have taken the origin for tHecoordinate ak=0, andl,

is the value ofl for x=L. Of course, there still remains the
problem of relatindl, with the parameters characterizing the
motion of the vibrating wall. This will be discussed in Sec.
[ll. When Eqgs.(18) are used to fix the values éfandB in
Eq. (17), it takes the form

2
) |cosrwa<a><lm—l>1] | 19 T(1)=Toe 2@, (26
coshva(a)l ]

and from Eq.(21) it follows that the temperature profile is

For illustration, in Fig. 1, we plot this expression for given linear in the actual space variabig
values ofa andl,.

Let N, be the number of particles in the system per unit of T(x)=T,
section perpendicular to theaxis. It is

X
1- E)' (27)

It is worth to emphasize that Eq&6) and (27), being re-
) (20) stricted to the limitx<L, cannot be applied close to the
Cod? reflecting wall. In fact, in that limit Eq(26) leads to a value
o of the temperature at the reflecting wall that differs by a
We can also define an average transversal densjty factor of 4 from the exact value given by E@4). On the
=N, /L. From Eq.(20) it follows thatl ,, grows linearly with  other hand, in the region in which both equations apply, it is

the linear sizeL of the system if the value of, is kept
constant.

Use of Eq.(19) into Eq.(13) provides an explicit relation-
ship between th& and| length scales,

Im

Nx=f dxn(x)=

n(x)= (28)

1
2CVa(a)od YL—x)

i.e., the density profile is only a function of the sizef the
kgTo system and the coefficient of restitutiany but it depends
x= ; . > -
a1 2 neither on the properties of the vibrating wall, which deter-
4Ca™Ipya(a){cosh va(a)lml} mine Ty, nor on the the number of particles in the system.
x{2+a(a)l +sinf 2 a(a)l ] The linear behavior in Eq27) was already noted by Gross-
man et al. [7] who also observed it in molecular-dynamics

—sinf 2Va(a)(I,—1)]}. (21)  simulations.
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I1l. BOUNDARY CONDITIONS (=) (=) (=) d=)
- . . . =nokgTo=dny ’kgTy '—muyng ‘uy,
In order to close the description obtained in the previous 2 07810 0 "B0 oo Tox

section, we still need an expression for the temperaliyref 2
S . mo
the gas next to the vibrating wall in terms of the parameters + dv L f$0(—v,) (36)
e . . .. Up _ 0 Uyx)s
defining the motion of the latter. For the sake of simplicity, Uy~ 20p

we will consider that the wall moves in a sawtooth manner,

i.e., all particles colliding with the wall find it with a constant (=) (=) _ -

velocity vy, in the direction of positivex [11,12. Moreover, Mo “Uox _J dvoxfo (V) 6(—vy), (37)
the amplitude of the wall motion is very small as compared

with the mean-free-path of the gas in the vicinity of the wall. d 1

As a consequence, the position of the wall can be taken as En(()_)kBTf)_)=f dv Emvzfé_)(v) 0(—vy). (39

fixed atx=0 in a good approximation. In this way, we avoid
the presence of heat pulsgs propagating from th? aall To proceed further we need the expression of
We treat the wall-particle collisions as elastic, so thatfgf)(v) 6(—v,). A simple choice, already used by prev-

xhﬁnita Ea:'de gf \\//ellouitty/,ir\:\;ltf,] vixv<g,bcollldes with the ious authorg10,17], is to assume that it factorizes and is
all, it changes 1ts velocily into™ given by Gaussian for all the components, i.e., we assume that

R @9 Hwe-v0 =20 eys(v,)
Herev, denotes the vector component of the velocity per- m 12 ~ (mo2i2kgTy)
pendicular to thec axis. The energy gained by the particle in X 27keT, e MBI f(—v,),
the collision is 39
39
AE=2m(vﬁ—vbvx). (30 (d-1)/2
m 2
— —mo 7 /2kgT
The rate of energy input through the vibrating wall per unit oma(VL) (ZkaT()) e e 40

of length (for d=2) or area(for d=3) can be expressed as

This factorization is expected to give a good approximation

to the actual distribution of the fluid, although a careful dis-

Q= f dvo(—vy)[vy fo(V)AE, (8D cussion of this point can only be carried out in the context of

a kinetic equation, what is beyond the scope of this paper.
where 6 is the Heaviside step function arfg(v) the one-  The presence af\ ) and T, in Eq. (39) is required by con-
particle distribution function of the gas next to the wall. It is sistency with the results derived in the previous section. The
important to realize that to compug@only theprecollisional  distinction between rzg*) andng on the one hand, and be-
distribution 8(—v,) fo(v) for particles approaching the wall tweenT,; andT, on the other, is a main point in the theory
is needed. In fact, if this precollisonal distribution is known, we present here. The distribution of the velocity parallel to
the collisional rule in Eqs29) determines the postcollisional the wall is also Maxwellian with the actual local temperature

distribution as a functional of it. Let us write To. It must be noticed thaT{ ), as defined in Eq(38),
- . differs from the parameteF, introduced in Eq(39).
fo(V) =5 (V) 8(—v,) + 157 (V) B(vy). (32 The form of Eq.(39) deserves an additional comment. In

principle, there is no reason to expect that the marginal ve-
Then the boundary condition implied by the vibrating wall locity distribution for v, exhibits a maximum ab,=0. In

can be expressed as fact, numerical solutions of the Boltzmann equation to be
discussed in the next section show that the maximum is lo-
f57(V) (v v =57 (20— 4, V1) O(vx— 20p) (v — 20p,). cated at a negative velocity of the order of a few tirogs

(33 This is clearly a nonhydrodynamic boundary effect and we
will neglect it in our approximation, not only for simplicity
It is easily verified that the above relationship guarantees thakasons but also because we believe it is consistent with the
the local velocity flow vanishes at the wall as it should. Forextrapolation of the linear temperature profilexe 0 pre-
the number of particles density one gets dicted by the hydrodynamic descriptipsee Eq(27)]. More
will be said about this point in the next section.
_ 1 _ When the distribution function in Eq39) is used, Egs.
n0=2n8 )+20bJ' dv UX_ZUbf(() )(V) 0(_UX) (34) (34) and (36) become

2

with © e’
p:1—2w—1’%bf do——, (41)
0 U+20b
ngﬂ:f dv 5 (V) 0(—vy). (35) B
2Ub
Lo L pﬁ:1+_l/2' (42)
Similarly, for the temperature it is found that T
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respectively, where 0.4
~ m 1/2
Vp=|m—=] v (43
° (ZkBT1> ° 03
and
No To P02t
=—, 9= (44) .
P 2n§)‘) Ty
In the same Gaussian approximation, B{) takes the form o1 |
kgT 2kgT, |12 °,
_ (-) B'1 + B'1 2 ;
Q=2m Vb e ) vp |- (45) O%o
. ) 0.0 esscooscat : S
To close the problem we need an alternative expressioQ for -6 -4 -2 0 2 4 6 8
as a function of the hydrodynamic variables in the system. v,

This follows, for instance, from Eq7) in the limit x—07, . o .
FIG. 2. Marginal distribution functiorp, of thex component of

the velocity in a layer of width 0.25 next to a vibrating wall, mov-
) ., (46)  ing with velocity v,=0.8. The length of the system is=60 and
x—07F the coefficient of restitution i&=0.975. All the quantities are mea-
sured in the units defined in the text. The points are from the simu-
lation and the continuous line is a fit to a Gaussian distribution of
the data corresponding i19<0.

aT

Q=—[K*(a)—,u*(a)]f<o(To)(ax

valid in the limit of large size.. Equating Eqs(45) and(46)
and use of Eqs(25) and(27) yields

- -1Z2_ 3/2
v+ 27 Yg=b(a) 9%, @47 Ref. [18]. In order to value the relevance of the results of the
comparison, it must be kept in mind that no hydrodynamic
where . . .
concepts are introduced externally when numerically solving
d(d+2)2212 d the Boltzmann equation. Also the walls are treated in a
b(a)= mw‘“"l)’z F(E Cva(a) purely mechanical way and the size of the boundary layers is
not knowna priori.
X[ k*(a)— p*(a)]. (48) We have simulated a system of hard diskis=2) with

several values of the coefficient of restitutianin the inter-

Equations(41), (42), and(48) give the values o%b, p,and Vval[0.9,0.99. We restrict ourselves to this interval since the
9, for a given coefficient of restitutior. No other param- Navier-Stokes equations are not expected to hold for larger
eter of the system is involved. Then, from these values anénelasticity, as discussed below Ed6). For each value of

the velocity of the vibrating walb,,, the temperature;  «, we have varied the size of the system and the velocity
and T, are obtained. This fully specifies the hydrodynamicvp Of the vibrating wall in order to test the scaling laws
profiles of the system, as discussed in Sec. II. A direct conderived in the previous sections. All the results we will
sequence of the form of the above equations is that the tenfresent in the following correspond to the steady state
peratureT, of the gas next to the vibrating wall, scales with reached by the system after a transient time that depends on
vﬁ, being independent of the average density and thelsize Parameters of the system und_er consideration. We use the
of the system. Moreover, from Eq25) it follows that also particle massn to define the unit of mass, and th_e homoge-
the pressure is proportional taw?. These scaling properties N€OUS mean-free-patky, = L/(2\2Nyo) as the unit of dis-

will be checked in the numerical simulations of the Boltz- tance. Finally, the unit of temperature is defined by the av-

mann equation to be discussed in the next section. erage kinetic energy of the initial state. N
The theoretical discussion of the boundary conditions we

have carried out is based on the assumption that the precol-
lisional marginal velocity distribution next to the vibrating
To check the accuracy of the hydrodynamic predictionswall is Gaussian and centered at the origin. Then, the post-
we have derived in the previous sections, we have comparegbllisonal velocity distribution is given by E¢33). In Fig. 2
them with numerical solutions of the Boltzmann equationwe present the marginal distribution function of theom-
constructed by means of the direct simulation Monte Carlgoonent of the velocity,
(DSMC) method[18]. The general idea in which this method
is based is to generate a Markov process that mimics the
dynamical processes described by the Boltzmann equation.
Although the method was originally devised for elastic par-
ticles, inelasticity in collisions is incorporated just by chang-next to the wall fora=0.975 and. =60. The plotted distri-
ing the expressions of the postcollisional velocities as combution function corresponds to the layex8<0.25 and the
pared with the elastic ca$&9]. We will not repeat here the velocity of the wall isv,=0.8. It is observed that the nu-
technical details of the DSMC method that can be found irmerical data for, <0 (in-flowing particleg are well fitted

IV. MONTE CARLO SIMULATIONS

1
(Px(vx):n_o f defO(V)a (49)
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6 ‘ ‘ ‘

b /Vbz N v,=0.4 L=50
2 AN b

™, N —-—- v,=0.4 =60

B N v,=0.8 L=60

18 : N
15

2 L
127 —— v,=0.2
———- v,=0.4
1.0 : L L L 0 . . L . ~
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x/L x/L

FIG. 3. Simulation results for the pressure profile scaled with  FIG. 4. Simulation results for the temperature profile scaled
the square of the velocity of the vibrating wal for a system with  with vﬁ for a system witha=0.95. Different values of. andv,
L=80 anda=0.99. Two different values aof, have been consid- have been used, as indicated in the figure.

ered. The quantities are measured in the reduced units defined in the
text. mum of the precollisional velocity distribution next to the

wall, as made in Sec. lll, is consistent with the extrapolation
by a Gaussian. Also, we have verified that the distributionof the linear bulk behavior up to the vibrating wall, since the

; - ; in the velocity distribution disappears in the bulk.
for v,>0 (out-flowing particles is accurately generated by gap In : : :
Eq. (33). Nevertheless, the maximum of the distribution for The comparison of theory and simulation for the tempera-

negative velocities is clearly displaced from the origin asture TO IS presented_ in Fig. 5. Eaph of the points has been
btained by averaging the numerical results for several val-

already mentioned in the previous section. This displacemerﬂ

tends to vanish when the distance from the wall increases. Y¢S OfL andvy,. In any case, the dispersion of these values
As a first test of the hydrodynamic predictions, we plot inwas always smaller than 5%. The agreement between theory

Fig. 3 the pressure profile for a system wlth-80 and « and sim:lgj[;?n is _S“TP”SE‘Q'V gootho unde”r_line tr|1e irrpc_)r-
=0.99. Two different values of velocity of the wall have tance of dilierentiating between the precolisonal velocity

been considered to show the scaling of the pressurewﬁith d'stt\zbu“_?_?,?e)(t dt(_)r(tor;e walrll and tlhe pcl)sg:odllltsk(]) nal og.e 't."e"
It is seen that the pressure is really constant in most of tth eenlo * an » We have aiso plotted the prediction

system, although the presence of a boundary layer is clear tained .'f a gmgle Gau_ssmn d|str!but|on s .used t_o describe
e velocity distribution in that region. This is equivalent to

identified. This boundary | tb lained by th
cenie IS hounicary ‘ayer cannot be expiainea by ut 6=p=1 in Eq.(47). From the figure it follows that this

Navier-Stokes equations and when comparing the numeric AV g L
results with the theory predictions we will consider the value/ater @pproximation introduces a significant deviation in the

of the pressure in the bulk, that in Fig. 3, correspondg®rediction forTo.
roughly to the interval 0.28x/L<0.95. Because of the 0
shape of the pressure in the boundary layer, we have pre- Ty
ferred to consider the energy flux as a function of the tem- ,
perature profile instead of the pressure in Sec. lll, since the 30 | ]
latter quantity is hard to extrapolate next to the vibrating
wall.

In Fig. 4 we present the temperature profile obtained for
a=0.95 and several values of andL. It is found thatT/v?
is a function ofx/L for given a as predicted by the theory.
Also, the temperature profile is quite linear outside the
boundary layer next to the vibrating wall. Similar results 10 ¢
have been obtained for other valuesaoin the interval stud-
ied. In fact, the numerical data show that the width of the
boundary layer becomes narrower@aslecreases. The theo- ‘ ‘ ‘ ‘ ‘
retical prediction for the temperature profile is given by Eq. 088 090 092 094 09 098 1.00
(27) with T, determined by the solution of Eq#&ll), (42), o
and (48), as discussed at the end of the previous section. G, 5. Temperaturd, of the granular gas next to vibrating
Then, we have fitted the numerical data for the temperaturgaj| scaled withv? as a function of the coefficient of restitutien
profile in the linear region to a function of the same form asthe points are from the simulations, the continuous line is the the-
Eq. (27) with only one adjustable parameter corresponding toretical prediction derived here, and the dashed line the result ob-
the temperature at the wally. In this respect, it seems sen- tained using a single Gaussian for the velocity distribution next to
sible to think that neglecting the displacement of the maxi-the wall.
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. of the Boltzmann equation for inelastic hard spheres or disks.
It plays the role of a reference state for the study of vibrated
granular systems. These points will be discussed elsewhere.

The above discussion suggests a qualitative explanation
100 © ] of the origin of the boundary layer next to the reflecting wall
observed in the simulations. Given the temperature of the gas
in the vicinity of the vibrating wall, that is determined by the
velocity of the wall as analyzed in Sec. lll, the system tries to
establish a constant-temperature gradient with a uniform
50 ¢ 1 pressure given by Ed51). Both profiles determine in turn
the density profile, through the equation of state. Neverthe-
less, such a state cannot be reached in the complete system
because, in general, the imposed total number of particles
0 . ‘ ‘ , ‘ does not fit with the density profile the system is trying to
088 090 092 094 096 098 1.00 establish. As a compromise, the system tends to the state
o defined by Eqs(50) and(51) in a region starting next to the

FIG. 6. Scaled pressure in the bulk as a function of the Coem_wbratlng wall and concentrates all the surplus particles in the

cient of restitutione. The points are from the Monte Carlo simula- opposite region, in a kind of "condensated region.” Of

tions and the continuous line from the prediction by the theory. course, the nature of this re_glon cannot be anal.yzed by
means of the Boltzmann equation that neglects the size of the

The values of the pressure, outside the boundary layer rticles. This picture is also consistent with the experimen-
' ' 1al findings as well as with the molecular-dynamics simula-

a function of the coefficient of restitution, are plotted in Fig. .
6. Again the agreement between the theoretical prediction@orlls'th. h | vzed th lationshio b
and the Monte Carlo simulations is quite good, the relative n this paper we have aiso analyzeag the refationship be-

differences being always smaller than 1%. In the simulationé\'vee.n the.velc.)cny of the viprating wall and the .hydrody—
we have noted that the boundary layer in the pressure jaamic profiles in the system. We have shown the importance

rather broader than the one in the temperature. of t_aklng into account the anisotropy of the velocity distri-
bution function next to the wall, that is a direct consequence

of the rules defining the collisions of a particle against a
moving wall.

The steady state of a granular gas confined between a
vibrating wall and a purely reflecting one has been examined
by means of the hydrodynamic equations. In the limit of a
large system and in regions located far from the boundaries, This research was partially supported by the Direacio
the state of the system becomes particularly simple. Th&eneral de Investigaaio Cientfica y Tecnica (Spain
pressure is uniform and the temperature profile is linear. Anhrough Grant No. PB98—-1124.
important point is that both quantities, pressure and gradient
of temperature, are not independent, but are related through
the parameters of the system. This can be understood as fol- APPENDIX
lows. Let us look for a solution to the hydrodynamic equa-
tions describing a state with constant presguend a tem-
perature profile of the form

pL/va

V. DISCUSSION

ACKNOWLEDGMENTS

In this appendix, the explicit expressions of the several
coefficients introduced in Eq$9) and (10) are given. The
elastic heat conductivity and shear viscosity are

T(x)=AX, x=0, A>0. (50)
d(d+2)2 (d kgT) 2
The question is whether such a solution exists. Substitution KO:¥I‘(_) w<d1)’2k5<i) o (d-1)
of Eq. (50) into Eq.(12) shows that the condition for it is that 16d-1) \2 m
the pressure has the value (A1)
kgA and
p= (51)
2Co" “Va(a)
i i 2+d d d-1)/2 1/2 d-1

that is equivalent to Eq25). Therefore, Eqs(50) and (51) n=—g"T|3 a @V2(mkgT)Y2e 47D (A2)

define an exact solution of the Navier-Stokes-like equations
for a granular gas. It is precisely this state, the one which is
observed in the simulations in the bulk of a system that igespectively. The dimensionless quantities are functions of

being supplied energy through a vibrating wall. The state ishe coefficient of restitution given by
peculiar in the sense that pressure and temperature gradient

cannot be fixed arbitrarily, but they are related by Exfl).
The relevance of this state is reinforced by the fact that it
also corresponds to exact solutions, without approximations,

-1

K*(a)= [1+c*(a)], (A3)

2d
V*(a)—d_—1§*(a)
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. . . (d—1)c*(a) *_l+a d—1+3(d+8)(1—6¥)
wr(a)=20"(a)| k (01)+W V'Ta=1| 2 16
2(d—1) -1 4+5d-3(4—d)a
x[(Tv*(a)—sg*(a) . (A% + 1024 c*(a)|, (AB)
. 2+d L. 3c*(a)
T (A9 \ 321-a)(1-2a7)

= . (A7)
2
In the above expressions, 9+24d+(8d—-41)a+30a"(1-a)
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