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Boundary conditions and normal state for a vibrated granular fluid

J. Javier Brey, M. J. Ruiz-Montero, and F. Moreno
Fı́sica Teo´rica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain

~Received 27 March 2000!

The steady state of a fluidized granular system confined between a vibrating wall and a reflecting one is
analyzed in detail. The relationship between the velocity of the wall and the hydrodynamic profiles is estab-
lished. In the limit of a large system, a peculiar normal state, independent of the details of the boundaries, is
reached in the bulk. This state has a uniform pressure and a constant temperature gradient. Both quantities are
not independent, but verify a closed constitutive relationship. The generality of this state and the relevant role
it is expected to play in the description of vibrated granular systems is discussed.

PACS number~s!: 45.70.Mg, 81.05.Rm, 51.10.1y, 05.20.Dd
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I. INTRODUCTION

Due to kinetic-energy dissipation in collisions, ener
must be continuously supplied to fluidized granular syste
in order to sustain a steady state. In most of the experime
situations, this energy is given through a vibrating pla
Studying the nature of the steady state reached by the sy
requires both a macroscopic continuous theory describing
bulk of the system, and also an understanding of the ene
exchange between the vibrating wall and the fluidized gra
lar medium. Both aspects can be studied by means of kin
theories of granular media, modeled after the kinetic theo
of molecular gases@1–5#. Therefore, the problem is not onl
of evident practical interest but also very relevant from
theoretical point of view, since it provides a nontrivial test
kinetic theories.

In this paper we study a granular gas between two infin
parallel walls. One of the walls is moving and supplies e
ergy to the system. The other one is at rest. Collisions of
particles with the walls are elastic. Besides, for the sake
simplicity, we will consider that there is not any extern
force such as gravity acting on the system. The motion of
wall will be modeled in such a way that a steady state
reached after some transient period of time. Several vers
of this system have already been considered in the literat
In Refs. @6–8# a granular system confined in a box, whe
one of the walls is kept at a given temperature, is stud
These kinds of ‘‘thermal’’ walls are far from reality fo
granular systems, in which the so-called granular temp
ture does not have the thermodynamic meaning of the u
temperature. Moreover, the relationship between the t
perature parameter of the wall and the granular tempera
of the fluid next to it was not investigated. Of course, th
does not invalidatea priori the conclusions reached in the
works for regions of the fluid far enough from the boun
aries.

A simple model leading to a relationship between the
ergy input by a vibrating wall and the energy dissipation
collisions was developed by Warret al. @9#, who modeled a
vibrated granular medium under gravity as an isotherm
mosphere, with all particles having the mean velocity. T
approach was improved by Kumaran@10# who used a Max-
wellian velocity distribution. The case of absence of grav
was analyzed along the same lines in Ref.@11# where the
PRE 621063-651X/2000/62~4!/5339~8!/$15.00
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relevance of the pressure to describe the effect of the the
wall was emphasized. All these approaches have been
cussed and compared with molecular-dynamics simulati
results by McNamara and Luding@12#. Let us point out that,
in spite of the relevance of the results derived in all the
studies, they do not pay too much attention to the bulk pr
erties of the system, as opposed to the ‘‘boundary layer,’
to the relationship between the mechanical properties of
vibrating wall and the hydrodynamic profiles in the granu
system.

Here we will present a quite detailed analysis of both
bulk of the system and the boundary conditions, and re
the parameters defining the motion of the wall with t
boundary conditions to be used when solving the hydro
namic equations to find the profiles of the hydrodynam
fields in the bulk, i.e., outside the ‘‘kinetic boundary layer
In particular, it will be shown that it is important to take int
account the different mean-square velocities of particles
ing towards the vibrating wall and particles coming from
after colliding. Of course, the granular temperature of the
next to the wall depends on the velocity distribution inclu
ing both populations of particles.

The plan of the paper is as follows. In Sec. II, the Navie
Stokes-like hydrodynamic equations for a granular gas
particularized for the state under consideration and exp
expressions for the hydrodynamic profiles are given. The
pressions contain, as a boundary condition, the tempera
of the gas next to the vibrating wall. In the limit of a larg
system a linear temperature profile in the bulk is obtained
well as some scaling laws. In Sec. III, the nature of t
vibrating wall is specified. For the sake of simplicity, a
asymmetric wave form is used to drive the wall, so th
every particle that collides with the wall finds it with th
same constant velocity@9–12#. By assuming that the velocity
distribution function of particles approaching the wall
Maxwellian, a set of closed equations is constructed fr
which the relationship between the velocity of the wall a
the temperature of the gas next to it can be obtained.

The above theoretical calculations are based on the va
ity of the Navier-Stokes-like hydrodynamic equations to d
scribe the granular system and on the accuracy of the
proximations introduced to model the power input throu
the vibrating wall. The quantitative predictions of the theo
are compared with direct Monte Carlo simulation results
the Boltzmann equation in Sec. IV. A good agreement
5339 ©2000 The American Physical Society
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5340 PRE 62J. JAVIER BREY, M. J. RUIZ-MONTERO, AND F. MORENO
obtained in the bulk of the system, i.e., outside the bound
layers that appear next to the walls. In this context, it
worth mentioning that our results are also in qualitat
agreement with the molecular-dynamics simulations data
ported in Ref.@7#. Finally, the main conclusions are summ
rized and discussed in Sec. V.

II. HYDRODYNAMIC DESCRIPTION

The balance equations for the local number den
n(r ,t), velocity flow u(r ,t), and temperatureT(r ,t), of a
fluid of smooth inelastic hard disks (d52) or spheres (d
53) of massm are

] tn1“•~nu!50, ~1!

] tu1u•“u1~mn!21
“•P50, ~2!

] tT1u•“T12~dnkB!21~P:“u1“•q!1Tz50. ~3!

These equations are derived by taking velocity moment
the pseudo-Liouville equation for the system@13#. HereP is
the pressure tensor,q is the heat flux, andz is a cooling rate
associated to the energy dissipation in collisions. Althou
they can be written as functions of theN-particle distribution
function of the system, these general expressions will no
given here. We have defined the temperature in the stan
way in kinetic theory, i.e., including the Boltzmann consta
kB , although in the context of granular flows it does not ha
the same thermodynamic meaning as in molecular syst
@14#. For the particular case of a steady state with no m
roscopic velocity flow, the above equations reduce to

“•P50, ~4!

2~dnkB!21
“•q1Tz50. ~5!

Note that the above relations are direct consequence o
general balance equations~1!–~3! and, therefore, they are no
restricted to low density or to the lowest orders in the gra
ents. For a low-density gas described by the Boltzma
equation modified to account for inelastic collisions throu
a constant coefficient of normal restitutiona, explicit expres-
sions forP, q, andz have been obtained in the limit of sma
spatial inhomogeneities@4,15#. In the Navier-Stokes approxi
mation, i.e., first order in the gradients of the fluxes, they
given by

P5pI, ~6!

q52k“T2m“n, ~7!

z5z (0)1z (2). ~8!

In Eq. ~6!, p5nkBT is the pressure andI the unit tensor. The
term z (0) in Eq. ~8! is of zeroth order in the gradients of th
fields, whilez (2) contains the second order in the gradie
contributions to the cooling rate. These contributions are
pected to be very small as compared with the heat flow
the pressure tensor@16# and, therefore, they will be neglecte
in the following. The heat conductivityk and the transpor
coefficientm have the form
ry
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k5k* ~a!k0~T!, m5m* ~a!
Tk0~T!

n
, ~9!

while it is

z (0)5
p

h0~T!
z* ~a!, ~10!

wherek0 andh0 are the elastic heat conductivity and she
viscosity, respectively, andk* (a), n* (a), and z* (a) are
dimensionless functions of the coefficient of normal resti
tion a. The explicit expressions of all these quantities a
given in the Appendix.

The specific problem we are interested in is a system
closed between two infinite parallel walls located atx50
andx5L, respectively. From symmetry considerations, g
dients of the hydrodynamic fields are expected only in thx
direction and Eqs.~4! and ~5! become

]

]x
p50, ~11!

2~dnkB!21@k* ~a!2m* ~a!#
]

]x S k0

]T

]x D2
z* pT

h0
50.

~12!

It is now convenient to introduce a dimensionless space v
able l by

dl5
dx

l~x!
, ~13!

where l(x) is the local mean-free-path for hard disks
spheres,

l~x!5@Csd21n~x!#21. ~14!

Here C is a constant depending on the dimension of
system, namely,C52A2 for d52 andC5pA2 for d53. In
terms of the new variable, Eq.~12! reads

]2

] l 2
T~ l !1/25a~a!T~ l !1/2 ~15!

with

a~a!5
32~d21!pd21z* ~a!

~d12!3C2G~d/2!2@k* ~a!2m* ~a!#
. ~16!

The above expressions clearly indicate the intrinsic conn
tion between gradients and dissipation in the system.
mean-free-path units the former are determined byAa(a).
Therefore, application of the Navier-Stokes equations, wh
assume small gradients, to the present situation, is limite
the low-inelasticity limit@7#. The general solution of Eq.~15!
is

T~ l !1/25A e2Aa(a) l1B eAa(a) l ~17!

with A and B arbitrary factors to be determined from th
boundary conditions. We are going to consider that there
vibrating wall atx50 supplying energy to the system and
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PRE 62 5341BOUNDARY CONDITIONS AND NORMAL STATE FOR A . . .
reflecting wall atx5L. Denoting byT0 the temperature o
the gasnext to the vibrating wall, we can express the abo
boundary conditions by

T~ l 50!5T0 , S ]T

] l D
l 5 l m

5S ]T

]x D
x5L

50. ~18!

We have taken the origin for thel coordinate atx50, andl m
is the value ofl for x5L. Of course, there still remains th
problem of relatingT0 with the parameters characterizing th
motion of the vibrating wall. This will be discussed in Se
III. When Eqs.~18! are used to fix the values ofA andB in
Eq. ~17!, it takes the form

T~ l !5T0H cosh@Aa~a!~ l m2 l !#

cosh@Aa~a!l m#
J 2

. ~19!

For illustration, in Fig. 1, we plot this expression for give
values ofa and l m .

Let Nx be the number of particles in the system per unit
section perpendicular to thex axis. It is

Nx5E dxn~x!5
l m

Csd21
. ~20!

We can also define an average transversal densityn̄x
5Nx /L. From Eq.~20! it follows that l m grows linearly with
the linear sizeL of the system if the value ofn̄x is kept
constant.

Use of Eq.~19! into Eq.~13! provides an explicit relation-
ship between thex and l length scales,

x5
kBT0

4Csd21pAa~a!$cosh@Aa~a!l m#%2

3$2Aa~a!l 1sinh@2Aa~a!l m#

2sinh@2Aa~a!~ l m2 l !#%. ~21!

FIG. 1. Plot of Eq.~19! for a two-dimensional system witha
50.99 andl m580.
e

f

The temperature at the reflecting wall, i.e., forx5L or l
5 l m is

Tm5T0H 1

cosh@Aa~a!l m#
J 2

~22!

and particularization of Eq.~21! for x5L gives

L5
kBTm

4Csd21pAa~a!
$2Aa~a!l m1sinh@2Aa~a!l m#%.

~23!

Up to this point all the results we have derived follow d
rectly from the Navier-Stokes-like hydrodynamic equation
No additional approximation has been introduced. Let
now assume thatL is very large so thatAa(a) l m@1. Be-
cause of Eq.~22!, this is equivalent toTm!T0. In fact, in this
limit Eqs. ~22! and ~23! can be approximated by

Tm.4T0 e22Aa(a) l m, ~24!

p.
kBT0

2CAa~a!sd21L
. ~25!

The latter is quite a surprising result since it indicates that
pressure in the system, in the region in which our appro
mation is valid, does not depend on the total number of p
ticles it contains, but it is determined by the ‘‘temperatu
gradient’’ T0 /L. We will return to the discussion of the
above relationship in Sec. V. If, in addition to considering
large system, we restrict ourselves to distances from the
brating wall such thatl ! l m , it is seen that the temperatur
decays exponentially withl in that region,

T~ l !.T0 e22Aa(a) l , ~26!

and from Eq.~21! it follows that the temperature profile i
linear in the actual space variablex,

T~x!.T0S 12
x

L D . ~27!

It is worth to emphasize that Eqs.~26! and ~27!, being re-
stricted to the limitx!L, cannot be applied close to th
reflecting wall. In fact, in that limit Eq.~26! leads to a value
of the temperature at the reflecting wall that differs by
factor of 4 from the exact value given by Eq.~24!. On the
other hand, in the region in which both equations apply, i

n~x!5
1

2CAa~a!sd21~L2x!
, ~28!

i.e., the density profile is only a function of the sizeL of the
system and the coefficient of restitutiona, but it depends
neither on the properties of the vibrating wall, which dete
mine T0, nor on the the number of particles in the syste
The linear behavior in Eq.~27! was already noted by Gross
man et al. @7# who also observed it in molecular-dynamic
simulations.
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III. BOUNDARY CONDITIONS

In order to close the description obtained in the previo
section, we still need an expression for the temperatureT0 of
the gas next to the vibrating wall in terms of the paramet
defining the motion of the latter. For the sake of simplici
we will consider that the wall moves in a sawtooth mann
i.e., all particles colliding with the wall find it with a constan
velocity vb in the direction of positivex @11,12#. Moreover,
the amplitude of the wall motion is very small as compar
with the mean-free-path of the gas in the vicinity of the wa
As a consequence, the position of the wall can be take
fixed atx50 in a good approximation. In this way, we avo
the presence of heat pulses propagating from the wall@11#.

We treat the wall-particle collisions as elastic, so th
when a particle of velocityv, with vx,0, collides with the
wall, it changes its velocity intov8 given by

vx852vb2vx , v'8 5v' . ~29!

Here v' denotes the vector component of the velocity p
pendicular to thex axis. The energy gained by the particle
the collision is

DE52m~vb
22vbvx!. ~30!

The rate of energy input through the vibrating wall per u
of length ~for d52) or area~for d53) can be expressed a

Q5E dvu~2vx!uvxu f 0~v!DE, ~31!

whereu is the Heaviside step function andf 0(v) the one-
particle distribution function of the gas next to the wall. It
important to realize that to computeQ only theprecollisional
distributionu(2vx) f 0(v) for particles approaching the wa
is needed. In fact, if this precollisonal distribution is know
the collisional rule in Eqs.~29! determines the postcollisiona
distribution as a functional of it. Let us write

f 0~v!5 f 0
(2)~v!u~2vx!1 f 0

(1)~v!u~vx!. ~32!

Then the boundary condition implied by the vibrating w
can be expressed as

f 0
(1)~v!u~vx!vx5 f 0

(2)~2vb2vx ,v'!u~vx22vb!~vx22vb!.
~33!

It is easily verified that the above relationship guarantees
the local velocity flow vanishes at the wall as it should. F
the number of particles density one gets

n052n0
(2)12vbE dv

1

vx22vb
f 0

(2)~v!u~2vx! ~34!

with

n0
(2)5E dv f 0

(2)~v!u~2vx!. ~35!

Similarly, for the temperature it is found that
s

s
,
r,

d
.
as

t

-

t

,

at
r

d

2
n0kBT05dn0

(2)kBT0
(2)2mvbn0

(2)u0,x
(2)

1vbE dv
mv'

2

vx22vb
f 0

(2)u~2vx!, ~36!

n0
(2)u0,x

(2)5E dv vxf 0
(2)~v!u~2vx!, ~37!

d

2
n0

(2)kBT0
(2)5E dv

1

2
mv2f 0

(2)~v!u~2vx!. ~38!

To proceed further we need the expression
f 0

(2)(v)u(2vx). A simple choice, already used by pre
ious authors@10,17#, is to assume that it factorizes and
Gaussian for all the components, i.e., we assume that

f 0
(2)~v!u~2vx!52n0

(2)wMB~v'!

3S m

2pkBT1
D 1/2

e2(mvx
2/2kBT1)u~2vx!,

~39!

wMB~v'!5S m

2pkBT0
D ~d21!/2

e2mv'
2 /2kBT0. ~40!

This factorization is expected to give a good approximat
to the actual distribution of the fluid, although a careful d
cussion of this point can only be carried out in the context
a kinetic equation, what is beyond the scope of this pap
The presence ofn0

(2) andT1 in Eq. ~39! is required by con-
sistency with the results derived in the previous section. T
distinction between 2n0

(2) and n0 on the one hand, and be
tweenT1 andT0 on the other, is a main point in the theor
we present here. The distribution of the velocity parallel
the wall is also Maxwellian with the actual local temperatu
T0. It must be noticed thatT0

(2) , as defined in Eq.~38!,
differs from the parameterT1 introduced in Eq.~39!.

The form of Eq.~39! deserves an additional comment.
principle, there is no reason to expect that the marginal
locity distribution for vx exhibits a maximum atvx50. In
fact, numerical solutions of the Boltzmann equation to
discussed in the next section show that the maximum is
cated at a negative velocity of the order of a few timesvb .
This is clearly a nonhydrodynamic boundary effect and
will neglect it in our approximation, not only for simplicity
reasons but also because we believe it is consistent with
extrapolation of the linear temperature profile tox50 pre-
dicted by the hydrodynamic description@see Eq.~27!#. More
will be said about this point in the next section.

When the distribution function in Eq.~39! is used, Eqs.
~34! and ~36! become

r5122p21/2ṽbE
0

`

dv
e2v2

v12ṽb

, ~41!

rq511
2ṽb

p1/2
, ~42!
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respectively, where

ṽb5S m

2kBT1
D 1/2

vb ~43!

and

r5
n0

2n0
(2)

, q5
T0

T1
. ~44!

In the same Gaussian approximation, Eq.~31! takes the form

Q52mn0
(2)FkBT1

m
vb1S 2kBT1

pm D 1/2

vb
2G . ~45!

To close the problem we need an alternative expression foQ
as a function of the hydrodynamic variables in the syste
This follows, for instance, from Eq.~7! in the limit x→01,

Q52@k* ~a!2m* ~a!#k0~T0!S ]T

]x D
x→01

, ~46!

valid in the limit of large sizeL. Equating Eqs.~45! and~46!
and use of Eqs.~25! and ~27! yields

ṽb12p21/2ṽb
25b~a!q3/2r, ~47!

where

b~a!5
d~d12!221/2

16~d21!
p2~d21!/2 GS d

2DCAa~a!

3@k* ~a!2m* ~a!#. ~48!

Equations~41!, ~42!, and~48! give the values ofṽb , r, and
q, for a given coefficient of restitutiona. No other param-
eter of the system is involved. Then, from these values
the velocity of the vibrating wallvb , the temperaturesT1
and T0 are obtained. This fully specifies the hydrodynam
profiles of the system, as discussed in Sec. II. A direct c
sequence of the form of the above equations is that the t
peratureT0 of the gas next to the vibrating wall, scales wi
vb

2 , being independent of the average density and the siL
of the system. Moreover, from Eq.~25! it follows that also
the pressurep is proportional tovb

2 . These scaling propertie
will be checked in the numerical simulations of the Bolt
mann equation to be discussed in the next section.

IV. MONTE CARLO SIMULATIONS

To check the accuracy of the hydrodynamic predictio
we have derived in the previous sections, we have comp
them with numerical solutions of the Boltzmann equati
constructed by means of the direct simulation Monte Ca
~DSMC! method@18#. The general idea in which this metho
is based is to generate a Markov process that mimics
dynamical processes described by the Boltzmann equa
Although the method was originally devised for elastic p
ticles, inelasticity in collisions is incorporated just by chan
ing the expressions of the postcollisional velocities as co
pared with the elastic case@19#. We will not repeat here the
technical details of the DSMC method that can be found
.

d

-
m-

s
ed

o

e
n.
-
-
-

n

Ref. @18#. In order to value the relevance of the results of t
comparison, it must be kept in mind that no hydrodynam
concepts are introduced externally when numerically solv
the Boltzmann equation. Also the walls are treated in
purely mechanical way and the size of the boundary layer
not knowna priori.

We have simulated a system of hard disks (d52) with
several values of the coefficient of restitutiona in the inter-
val @0.9,0.99#. We restrict ourselves to this interval since th
Navier-Stokes equations are not expected to hold for lar
inelasticity, as discussed below Eq.~16!. For each value of
a, we have varied the sizeL of the system and the velocit
vb of the vibrating wall in order to test the scaling law
derived in the previous sections. All the results we w
present in the following correspond to the steady st
reached by the system after a transient time that depend
parameters of the system under consideration. We use
particle massm to define the unit of mass, and the homog
neous mean-free-pathlH5L/(2A2Nxs) as the unit of dis-
tance. Finally, the unit of temperature is defined by the
erage kinetic energy of the initial state.

The theoretical discussion of the boundary conditions
have carried out is based on the assumption that the pre
lisional marginal velocity distribution next to the vibratin
wall is Gaussian and centered at the origin. Then, the p
collisonal velocity distribution is given by Eq.~33!. In Fig. 2
we present the marginal distribution function of thex com-
ponent of the velocity,

wx~vx!5
1

n0
E dvy f 0~v!, ~49!

next to the wall fora50.975 andL560. The plotted distri-
bution function corresponds to the layer 0,x,0.25 and the
velocity of the wall isvb50.8. It is observed that the nu
merical data forvx,0 ~in-flowing particles! are well fitted

FIG. 2. Marginal distribution functionwx of thex component of
the velocity in a layer of width 0.25 next to a vibrating wall, mo
ing with velocity vb50.8. The length of the system isL560 and
the coefficient of restitution isa50.975. All the quantities are mea
sured in the units defined in the text. The points are from the sim
lation and the continuous line is a fit to a Gaussian distribution
the data corresponding tovx,0.
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by a Gaussian. Also, we have verified that the distribut
for vx.0 ~out-flowing particles! is accurately generated b
Eq. ~33!. Nevertheless, the maximum of the distribution f
negative velocities is clearly displaced from the origin
already mentioned in the previous section. This displacem
tends to vanish when the distance from the wall increase

As a first test of the hydrodynamic predictions, we plot
Fig. 3 the pressure profile for a system withL580 anda
50.99. Two different values of velocity of the wall hav
been considered to show the scaling of the pressure withvb

2 .
It is seen that the pressure is really constant in most of
system, although the presence of a boundary layer is cle
identified. This boundary layer cannot be explained by
Navier-Stokes equations and when comparing the nume
results with the theory predictions we will consider the va
of the pressure in the bulk, that in Fig. 3, correspon
roughly to the interval 0.25,x/L,0.95. Because of the
shape of the pressure in the boundary layer, we have
ferred to consider the energy flux as a function of the te
perature profile instead of the pressure in Sec. III, since
latter quantity is hard to extrapolate next to the vibrati
wall.

In Fig. 4 we present the temperature profile obtained
a50.95 and several values ofvb andL. It is found thatT/vb

2

is a function ofx/L for given a as predicted by the theory
Also, the temperature profile is quite linear outside t
boundary layer next to the vibrating wall. Similar resu
have been obtained for other values ofa in the interval stud-
ied. In fact, the numerical data show that the width of t
boundary layer becomes narrower asa decreases. The theo
retical prediction for the temperature profile is given by E
~27! with T0 determined by the solution of Eqs.~41!, ~42!,
and ~48!, as discussed at the end of the previous sect
Then, we have fitted the numerical data for the tempera
profile in the linear region to a function of the same form
Eq. ~27! with only one adjustable parameter corresponding
the temperature at the wallT0. In this respect, it seems sen
sible to think that neglecting the displacement of the ma

FIG. 3. Simulation results for the pressure profile scaled w
the square of the velocity of the vibrating wallvb for a system with
L580 anda50.99. Two different values ofvb have been consid
ered. The quantities are measured in the reduced units defined
text.
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mum of the precollisional velocity distribution next to th
wall, as made in Sec. III, is consistent with the extrapolat
of the linear bulk behavior up to the vibrating wall, since t
gap in the velocity distribution disappears in the bulk.

The comparison of theory and simulation for the tempe
ture T0 is presented in Fig. 5. Each of the points has be
obtained by averaging the numerical results for several
ues ofL andvb . In any case, the dispersion of these valu
was always smaller than 5%. The agreement between th
and simulation is surprisingly good. To underline the impo
tance of differentiating between the precollisonal veloc
distribution next to the wall and the postcollisonal one, i.
betweenT0

(2) and T(0), we have also plotted the predictio
obtained if a single Gaussian distribution is used to desc
the velocity distribution in that region. This is equivalent
put u5r51 in Eq. ~47!. From the figure it follows that this
latter approximation introduces a significant deviation in t
prediction forT0.

h

the

FIG. 4. Simulation results for the temperature profile sca
with vb

2 for a system witha50.95. Different values ofL and vb

have been used, as indicated in the figure.

FIG. 5. TemperatureT0 of the granular gas next to vibratin
wall scaled withvb

2 as a function of the coefficient of restitutiona.
The points are from the simulations, the continuous line is the t
oretical prediction derived here, and the dashed line the result
tained using a single Gaussian for the velocity distribution nex
the wall.
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The values of the pressure, outside the boundary laye
a function of the coefficient of restitution, are plotted in F
6. Again the agreement between the theoretical predict
and the Monte Carlo simulations is quite good, the relat
differences being always smaller than 1%. In the simulati
we have noted that the boundary layer in the pressur
rather broader than the one in the temperature.

V. DISCUSSION

The steady state of a granular gas confined betwee
vibrating wall and a purely reflecting one has been exami
by means of the hydrodynamic equations. In the limit o
large system and in regions located far from the boundar
the state of the system becomes particularly simple.
pressure is uniform and the temperature profile is linear.
important point is that both quantities, pressure and grad
of temperature, are not independent, but are related thro
the parameters of the system. This can be understood as
lows. Let us look for a solution to the hydrodynamic equ
tions describing a state with constant pressurep and a tem-
perature profile of the form

T~x!5Ax, x>0, A.0. ~50!

The question is whether such a solution exists. Substitu
of Eq. ~50! into Eq.~12! shows that the condition for it is tha
the pressure has the value

p5
kBA

2Csd21Aa~a!
, ~51!

that is equivalent to Eq.~25!. Therefore, Eqs.~50! and ~51!
define an exact solution of the Navier-Stokes-like equati
for a granular gas. It is precisely this state, the one whic
observed in the simulations in the bulk of a system tha
being supplied energy through a vibrating wall. The state
peculiar in the sense that pressure and temperature gra
cannot be fixed arbitrarily, but they are related by Eq.~51!.
The relevance of this state is reinforced by the fact tha
also corresponds to exact solutions, without approximatio

FIG. 6. Scaled pressure in the bulk as a function of the coe
cient of restitutiona. The points are from the Monte Carlo simula
tions and the continuous line from the prediction by the theory.
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of the Boltzmann equation for inelastic hard spheres or dis
It plays the role of a reference state for the study of vibra
granular systems. These points will be discussed elsewh

The above discussion suggests a qualitative explana
of the origin of the boundary layer next to the reflecting w
observed in the simulations. Given the temperature of the
in the vicinity of the vibrating wall, that is determined by th
velocity of the wall as analyzed in Sec. III, the system tries
establish a constant-temperature gradient with a unifo
pressure given by Eq.~51!. Both profiles determine in turn
the density profile, through the equation of state. Nevert
less, such a state cannot be reached in the complete sy
because, in general, the imposed total number of parti
does not fit with the density profile the system is trying
establish. As a compromise, the system tends to the s
defined by Eqs.~50! and~51! in a region starting next to the
vibrating wall and concentrates all the surplus particles in
opposite region, in a kind of ‘‘condensated region.’’ O
course, the nature of this region cannot be analyzed
means of the Boltzmann equation that neglects the size o
particles. This picture is also consistent with the experim
tal findings as well as with the molecular-dynamics simu
tions.

In this paper we have also analyzed the relationship
tween the velocity of the vibrating wall and the hydrod
namic profiles in the system. We have shown the importa
of taking into account the anisotropy of the velocity dist
bution function next to the wall, that is a direct consequen
of the rules defining the collisions of a particle against
moving wall.
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APPENDIX

In this appendix, the explicit expressions of the seve
coefficients introduced in Eqs.~9! and ~10! are given. The
elastic heat conductivity and shear viscosity are

k05
d~d12!2

16~d21!
GS d

2Dp2~d21!/2kBS kBT

m D 1/2

s2(d21)

~A1!

and

h05
21d

8
GS d

2Dp2~d21!/2~mkBT!1/2s2(d21), ~A2!

respectively. The dimensionless quantities are functions
the coefficient of restitution given by

k* ~a!5Fn* ~a!2
2d

d21
z* ~a!G21

@11c* ~a!#, ~A3!

-
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m* ~a!52z* ~a!Fk* ~a!1
~d21!c* ~a!

2dz* ~a!
G

3F2~d21!

d
n* ~a!23z* ~a!G21

, ~A4!

z* ~a!5
21d

4d
~12a2!F11

3c* ~a!

32 G . ~A5!

In the above expressions,
, J

al

. E
n* 5
11a

d21 Fd21

2
1

3~d18!~12a!

16

1
415d23~42d!a

1024
c* ~a!G , ~A6!

c* 5
32~12a!~122a2!

9124d1~8d241!a130a2~12a!
. ~A7!
A
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