
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 63, NO. 5, MAY 2015 1969

Analytical Multimodal Network Approach for 2-D
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Abstract—A fully analytical multimodal equivalent circuit is
presented for the modeling of the scattering of an obliquely inci-
dent plane wave by a two-dimensional (2-D) periodic array of
metallic patches (or apertures in a metallic screen) embedded
in a layered medium. The topology of the equivalent network is
rigorously derived in the analysis and all the network param-
eters are given in closed form. In contrast with the previously
reported explicit circuit models, the proposed approach accounts
for dynamical effects over a very wide frequency range, which
enables the application of the model to a great variety of situations.
The key advantages of the reported multimodal network represen-
tation are its analytical nature, its extremely low-computational
cost and that the physical phenomena involved in the scattering
can be easily understood in terms of transmission line and lumped
circuital reasonings.

Index Terms—Electromagnetic scattering by periodic struc-
tures, equivalent circuits, frequency-selective surfaces (FSS).

I. INTRODUCTION

T HE STUDY of the electromagnetic properties of one
dimensional (1-D) and two-dimensional (2-D) periodic

distributions of planar metallic scatterers (or their complemen-
tary structures consisting of apertures in thin metal screens)
embedded in layered dielectric media (see Fig. 1) is a classi-
cal topic in the microwave/antenna [1]–[5] and infrared [6]–[8]
literature. In fact, this is the generic description of the widely
used spatial filtering structures called frequency-selective sur-
faces (FSS) [9]–[13]. The study of other related devices such
as reflectarrays [14], [15], artificial impedance surfaces [16],
or resonant cavity antennas [17] would also benefit from the
modeling of the class of structures considered in this paper.
The study of this kind of problems also has a long tradi-
tion in the optics and physics communities. Indeed, in recent
years, a lot of attention has been paid to 1-D and 2-D metallic
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periodic structures in connection with the huge interest raised
by extraordinary transmission, metasurfaces, and related prob-
lems [18]–[23]. A good review of the combined interest of
physicists and engineers on this topic can be found in [24].

Although nowadays the analysis and design of 2-D periodic
arrays are frequently carried out by means of general-purpose
commercial electromagnetic solvers (or in-house specific-
purpose numerical codes), the availability of analytical or
quasi-analytical solutions adds a very convenient physical
insight and provides apparent computational advantages for
analysis/synthesis purposes. A good example of the usefulness
of such analytical tools is found, for instance, in those opti-
mization procedures that require the analysis of thousands of
different structures in the corresponding parameters space. In
this situation, the analytical expressions not only give numeri-
cal advantages but also provide a good insight in the searching
of good initial guesses. Thus, a lot of effort has been devoted to
the obtaining of approximate analytical solutions for a variety
of geometries. Many of these solutions were determined in the
frame of equivalent networks and other related approaches [1],
[2], [4], [5], [25]–[37].

In this frame, and thanks to the periodicity of the structure
and the excitation, the scattering problem under consideration
can be posed in terms of a general waveguide discontinuity
problem. An extensive literature has been developed to find
the appropriate elements and topology of the equivalent net-
work for a variety of such discontinuities [1], [38]–[42]. More
recently, this standpoint has proved to be very useful for the
treatment of extraordinary transmission in periodic structures
[43], [44], planar metallic gratings [45], and FSS-like systems
[46]–[50]. From early, finding closed-form expressions for the
network elements as well as deriving an appropriate network
topology was found to be an inherently complex task, espe-
cially for wide-band applications. Thus, most of the network
topologies are based on heuristic reasonings that require either
an a priori knowledge of the response of the structure in a
wide frequency range (namely, a complete full-wave problem
has to be solved in advance) or they work properly only under
certain limits of validity (in the long wavelength regime, for
instance). If the networks are employed beyond these limits,
it is usually assumed that the same topology still works but
then the circuit parameters have to be obtained via a fitting
procedure that requires the aid of full-wave commercial electro-
magnetic simulators or specific in-house software. This fitting
procedure certainly extends the applicability of the equivalent
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Fig. 1. Structure under study: 2-D periodic distribution of rectangular scatter-
ers (metallic patches or apertures in the metallic screen) embedded in a layered
dielectric medium. (a) Plane wave impinges obliquely on the structure with its
wavevector characterized by the angles θ and ϕ. (b) Incidence-plane cut show-
ing the possible TE and TM polarizations of the incident wave. Each dielectric

layer is characterized by its permittivity εi = ε0ε
(i)
r and thickness di. (c) Cross

views of the unit cells for the two cases (patches/apertures) considered in this
work. The boundaries of the unit cells are, in general, periodic boundary condi-
tions accounting for field polarization and the phase shift imposed by the wave
vector orientation.

network approach to many situations involving scatterers of
complex shape and/or multiresonant nature as well as to multi-
layered environment [48]. Nevertheless, the circuit models thus
obtained are usually limited to relatively low frequencies or are
of narrow-band nature. Those models need to be “redesigned”
if the geometry of the scatterers and/or the layered environment
change, in such a way that some kind of “relay-race” procedure
has to be used to cover a wide frequency band. Another typ-
ical drawback of the conventional circuit models available in
the literature comes from the inclusion of dielectric slabs. The
effect of the dielectric layers surrounding the metalized inter-
face is often partially incorporated in the equivalent network by
means of an effective dielectric medium approach [15], [46].

This procedure cannot take into account complex and exotic
effects such as those described, for instance, in [51] and [52],
where the role of the surface waves guided by the dielectric
slabs is essential. A very useful alternative to the use of complex
equivalent networks, still providing accurate enough analytical
expressions for the transmission/reflection coefficients, is based
on the use of homogenization procedures [35], [53], [54]; how-
ever, it is well known that this approach should be limited to the
long wavelength regime.

In [43], [45], and [47], very accurate and wideband circuit
models were reported to account for dynamic/distributed effects
that had not been incorporated in previous equivalent net-
work representations. Thus, very complex spectra, Rayleigh–
Wood anomalies, and extraordinary transmission/reflection
peaks were accurately reproduced by those models. However,
in these papers, as well as in many others on this topic, some
of the essential parameters of the circuit models had to be
retrieved from full-wave numerical simulations at a few arbi-
trarily chosen frequency points. Moreover, to a certain extent,
the topology of the circuits was obtained using heuristic reason-
ings. In search of a systematic procedure to obtain the topology
of the equivalent network, the authors of this paper first stud-
ied the simpler case of 1-D grating problems. The analysis of
the TE/TM oblique incidence in the principal planes of the
structure for a 1-D grating embedded in a layered medium was
reported in [55]. In that work, the topology of the equivalent
network that actually accounts for the electromagnetic behavior
of the structures was rigorously derived along with closed-form
expressions for the involved circuit parameters. [Two rigorous
method of moments (MoM) analysis of this 1-D periodic struc-
ture for conical incidence, which is a central topic to this paper,
can be found in [56] and in a recent contribution [57]]. In a pre-
liminary step, the study in [55] was applied to the 2-D case in
[58]. In this work, this last study is considerably extended in
order to find a systematic procedure to obtain the appropriate
and explicit topology of the multimodal equivalent network as
well as closed-form expressions for all the elements of this net-
work. Arbitrary angles of incidence (conical incidence) are also
considered in this theoretical frame. It will be shown that our
analytical solution, apart from preventing the need for numer-
ical full-wave simulations, completely captures the physics of
the problem over a very wide frequency region that extends
even within the grating lobe regime (free-space wavelength
shorter than the period of the structure).

The structure under analysis in this work is a 2-D periodic
distribution of rectangular scatterers (metallic patches) or aper-
tures in a metallic screen (rectangular slots) that is embedded
in a layered dielectric medium (see Fig. 1). The incident field
is assumed to be an obliquely impinging time-harmonic plane
wave (either TE or TM polarized in the incidence plane) char-
acterized by its angular frequency ω, its wavenumber in free
space k0 = ω/c, and arbitrary incidence angles θ and ϕ. The
presence of an eventual ground plane in the structure can also
be incorporated in the analysis in a straightforward way. The
case of a slot-based FSS surrounded by semi-infinite homoge-
neous dielectrics is first considered in Section II-A. After this
study, it is discussed how to incorporate the existence of a lay-
ered environment (and an eventual ground plane). The analysis
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of patch-based FSS is briefly considered in Section II-B fol-
lowing a similar rationale as that of slot-based FSS. Some
considerations on the practical and efficient computation of the
equivalent-network elements are discussed in Section III. Next,
Section IV shows the strategy to deal with the conical incidence
in terms of auxiliary problems, in which the electric field of the
incident wave is parallel to the principal planes of the struc-
ture. Some numerical validations and examples are given in
Section V, and finally, the conclusion of this work is briefly
exposed in Section VI.

II. FORMAL DERIVATION OF THE EQUIVALENT

NETWORKS

The periodic nature of the problem under study allows for
a Floquet analysis of the structure in Fig. 1(a). The scattering
analysis can then be restricted to the unit cell shown in Fig. 1(c).
This unit-cell problem can alternatively be seen as a discontinu-
ity problem in a rectangular waveguide with periodic boundary
conditions. The harmonics of the Floquet analysis can thus be
regarded as the modes of the generalized waveguide [59], so
that a microwave network approach [39] can be applied. Next,
the derivation of the circuit models is carried out separately for
slot- and patch-based FSS.

A. Slot-Based FSS

The oblique incidence of a plane wave that impinges on a
slot-based FSS is studied in this section (see Fig. 1). In most
practical cases, the impinging wave will be either the TM00

or the TE00 harmonic but, in principle, it can be any of the
harmonics of the periodic structure, i.e., any of the modes of
the generalized waveguide (unit cell) shown in Fig. 2(a). From
this waveguide standpoint, our task is to find the equivalent
network that accounts for the scattering of the incident mode,
as sketched in Fig. 2(b). Although the incident harmonic is
scattered at both the dielectric interfaces and the perforated
metallic screen, only the latter involves coupling with different
harmonics. For this reason, the problem of a perforated-screen
discontinuity between two surrounding semi-infinite homoge-
neous dielectrics shown in Fig. 3 is first considered (this is our
fundamental discontinuity problem). The presence of dielectric
slabs is left to a further step of the analysis.

The Floquet expansion of the transverse (x, y components)
electric and magnetic field at the discontinuity (z = 0) can be
written as

E(x, y) = (1 +R)e0(x, y) +
∑′

h
Vheh(x, y) (1)

H(1)(x, y) = Y
(1)
0 (1−R)[ẑ× e0(x, y)]

−
∑′

h
Y

(1)
h Vh[ẑ× eh(x, y)] (2)

H(2)(x, y) = Y
(2)
0 (1 +R) [ẑ× e0(x, y)]

+
∑′

h
Y

(2)
h Vh [ẑ× eh(x, y)] (3)

where subindex h = 0 stands here for the incident harmonic, R
is the reflection coefficient of the incident wave (this incident

Fig. 2. (a) Waveguide problem to model the scattering of a plane wave inci-
dent on a periodically perforated screen embedded in a three-layer medium (a
generalized layered medium is assumed in the analysis). (b) Our problem is to
find the topology and values of the equivalent network that accounts for the
scattering of the incident plane wave.

Fig. 3. Fundamental waveguide discontinuity problem (diaphragm) associ-
ated with a perforated-screen located between two homogeneous semi-infinite
media under plane-wave oblique incidence. For simplicity in the figure, the
incidence plane is taken as the principal yz plane.

wave has been conveniently normalized), Vh are the unknown
coefficients of the electric field expansion, the (i) super-indexes
refer to the medium and the prime in the series indicates that the
incident harmonic is excluded from the summation, which com-
prises the remaining infinite set of harmonics. Each harmonic h
is associated with a pair of integer numbers nm and its nor-
malized transverse field profile, eh(x, y), and other associated
magnitudes are

eh(x, y) =
e−jkt,h·ρ√

PxPy

êh [ρ = xx̂+ yŷ] (4)

kt,h = kxnx̂+ kymŷ (5)

= (kx0 + kn)x̂+ (ky0 + km)ŷ (6)

êh =

{
k̂t,h, TMharmonics

k̂t,h × ẑ, TEharmonics
(7)

k̂t,h =
kt,h

|kt,h| =
kxnx̂+ kymŷ√

k2xn + k2ym

(8)

with

kx0 = k0 sin θ cosϕ (9)

ky0 = k0 sin θ sinϕ (10)

kn =
2πn

Px
(11)

km =
2πm

Py
(12)
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(k0 is the vacuum wavenumber). The modal admittances Y
(i)
h

are given by

Y
(i)
h =

Ht,h

Et,h
=

1

η(i)

⎧⎨⎩k(i)/β
(i)
nm, TM harmonics

β
(i)
nm/k(i), TE harmonics

(13)

where

k(i) =

√
ε
(i)
r k0 (14)

β
(i)
h =

√
ε
(i)
r k20 − |kt,h|2 (15)

η(i) =
η0√
ε
(i)
r

(16)

with η0 being the impedance of free space.
If Ea(x, y) is the actual electric field in the aperture, (1)

must then represent the Fourier expansion of this field, whose
expansion coefficients are given by

1 +R =
1√
PxPy

Ẽa(kt,0) · ê0 (17)

Vh =
1√
PxPy

Ẽa(kt,h) · êh (18)

where the symbol˜ represents Fourier transform with respect
to x, y. The coefficients of the electric field expansion are then
related by (1 +R ≡ V0)

Vh

Nh
=

1 +R

N0
(19)

where

Nh = Ẽa(kt,h) · êh. (20)

Equation (19) already suggests a topology of the equivalent net-
work. If we associate a transmission line voltage signal Vh to
each harmonic, then (19) would be consistent with an equiva-
lent network, in which the transmission line representing each
harmonic is connected in parallel with all the others through a
transformer with turn ratio Nh. The continuity of the Poynting
vector through the aperture (ap.)∫∫

ap.

[E∗
a × (H2 −H1)] · ẑ dxdy = 0 (21)

will give us the equation for the equivalent-network currents
that is consistent with this interpretation. Thus, introducing (2)
and (3) into (21) it is obtained that

N∗
0Y

(1)
0 (1−R)−

∑′
h
N∗

h Y
(1)
h Vh

= N∗
0 Y

(2)
0 (1 +R) +

∑′
h
N∗

h Y
(2)
h Vh.

(22)

If the characteristic admittance of each transmission line is
taken as the corresponding modal admittance in (13), ±Y

(i)
h Vh

can be identified with the transmission line currents (the ± sign

Fig. 4. (a) “Top” view of the multimodal network representation of the scatter-
ing problem associated with a slot-based FSS surrounded by two homogeneous
media. The symbol −◦ ‖ ◦− stands here for a transformer. (b) “Standard”
view of the transmission line problem representing the scattering from the
p-harmonic in medium (i) to the q-harmonic in medium (j). The equiva-
lent admittance Yeq accounts for the global effect of the parallel-connected
transmission lines corresponding to all the other harmonics.

corresponds to signals propagating along the positive/negative
z direction) and (22) becomes∑

h

N∗
hI

(1)
h =

∑
h

N∗
hI

(2)
h . (23)

The above derivation thus leads unambiguously to a general
multimode equivalent transmission-line network where every
harmonic h in each medium (i) is represented by a transmis-
sion line with characteristic admittance equal to its transverse
wave admittance, Y (i)

h , which is connected in parallel through
its corresponding transformer Nh to all the other lines associ-
ated with the remaining harmonics. This network is schemat-
ically depicted in Fig. 4(a). Thus, for an input p harmonic
from medium (i) and an output q harmonic in medium (j),
the following scattering parameters can be obtained from the
equivalent network represented in Fig. 4(b)

Si(p),i(p) =
|Np|2 Y (i)

p − |Nq|2 Y (j)
q − Yeq

|Np|2 Y (i)
p + |Nq|2 Y (j)

q + Yeq

(24)

Sj(q),i(p) =
2NqN

∗
p Y

(i)
p

|Np|2 Y (i)
p + |Nq|2 Y (j)

q + Yeq

(25)

where the equivalent admittance Yeq is given by

Yeq =
∑
h

|Nh|2
[
Y

(1)
h + Y

(2)
h

]
− |Np|2Y (i)

p − |Nq|2Y (j)
q

(26)
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Fig. 5. Considering the multilayered dielectric environment in Figs. 1(b) and
2(a), this figure shows the equivalent network for the computation of the scat-
tering parameters corresponding to: (a) harmonic p and q to the left- and
right-hand side of the screen, respectively. (b) Harmonics p and q, both at the
left-hand side of the screen. (c) Definition of the input admittances associated
with the h-harmonic.

and accounts for the contribution of all the other harmonics. In
particular, the reflection coefficient for the h = 0 harmonic can
directly be obtained by introducing (2), (3), and (19) into (22)
and solving for R, which yields

R =
|N0|2 Y (1)

0 − |N0|2 Y (2)
0 − Yeq

|N0|2 Y (1)
0 + |N0|2 Y (2)

0 + Yeq

= S1(0),1(0). (27)

Once the general network has been derived for an FSS placed
between two homogeneous media, the generalization to a mul-
tilayered dielectric environment is relatively straightforward,
since it just implies to replace the transmission lines in the
model with a cascade of transmission line lengths, each one
corresponding to a dielectric layer. This concept is represented
in Fig. 5(a) and (b). The equivalent admittance appearing in
these networks must be generalized from its original form in
(26) by replacing the Y (1)

h and Y
(2)
h admittances with the corre-

sponding input admittances Y (L)
in,h and Y

(R)
in,h , which represent the

input admittances to the left/right (L/R) cascade of dielectrics
[see Fig. 5(c)]. For instance, for the case of Fig. 5(a), we have

Y (in)
eq =

∑
h

|Nh|2
[
Y

(L)
in,h + Y

(R)
in,h

]
− |Np|2Y (L)

in,p − |Nq|2Y (R)
in,q .

(28)
For any other configuration of layers, the changes should be
evident at the light of the above figure. The relative sim-
plicity of this procedure is due to the fact that the different
harmonics do not couple at the interfaces between dielectric
layers. At this point, it is worth mentioning that the pres-
ence of an electric/magnetic plane can be readily introduced

Fig. 6. Fundamental waveguide discontinuity problem (planar obstacle) asso-
ciated with the patch-based FSS surrounded by two semi-infinite homogeneous
media.

in the definition of the input admittances by transforming con-
veniently this short/open-circuit load along the corresponding
cascade of transmission lines. Thus, the presented formalism
can rigorously take into account the presence of real or virtual
electric/magnetic walls, even if they are in close proximity to
the perforated conducting surface.

B. Patch-Based FSS

The scattering of a plane wave impinging on a periodic
array of metallic scatterers embedded in a layered environment
(i.e., the structure consisting on replacing the previous perfo-
rated conducting screen by its complementary version) can be
treated in a similar way as in the previous section. The case of
homogeneous dielectrics at both sides of the periodic screen is
considered first (see Fig. 6). It should be noted that due to the
presence of dielectrics, the present problem involving an array
of patches is not dual (in the Babinet sense) to the perforated
screen case.

The starting point for this derivation is again the transverse
fields expansions in (1)–(3), but now the surface current den-
sity on the patches Jp(x, y) is employed instead of the aperture
field. The coefficients of the field expansion are related to the
surface current through the magnetic field jump condition at the
discontinuity plane (z = 0)

Jp(x, y) = ẑ×
[
H(2)(x, y)−H(1)(x, y)

]
. (29)

Introducing the magnetic field expansions (2) and (3) into (29),
the right-hand side of this last equation represents the Fourier
expansion of the surface current density. Identifying the coeffi-
cients of the Fourier expansion and after some manipulations,
it is found that

N∗
h

[
Y

(1)
h + Y

(2)
h

]
Vh = N∗

0

[
−(1−R)Y

(1)
0 + TY

(2)
0

]
(30)

N∗
p

[
Y (1)
p + Y (2)

p

]
Vp = N∗

q

[
Y (1)
q + Y (2)

q

]
Vq (31)

with p, q �= 0, T = 1 +R, and

Nh = [J̃∗
p(kt,h) · êh]−1. (32)

Although not as straightforward as (19), expressions (30) and
(31) can also be interpreted in terms of transmission-line
currents. As sketched in Fig. 7(a), these equations suggest a
parallel connection between the transmission lines represent-
ing a given harmonic with order h at both sides of the screen,
and also that each h-order subnetwork is connected in series
with all the rest through its corresponding transformer—since,
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Fig. 7. (a) Multimodal equivalent network associated with a periodic array
of metallic scatterers surrounded by two homogeneous media. (b) Equivalent
circuit for the scattering of the pth order harmonic. (c) Equivalent circuit for
the transmission/reflection from harmonic p in medium (i) to harmonic q in
medium (m), with p �= q, j �= i and n �= m (for instance, if i = 1 and m = 2,
then j = 2 and n = 1).

according to (30) and (31), the total current entering the hth
subnetwork through its associated transformer is the same for
all the harmonics. The corresponding equation for the voltages
can be obtained from the following weak form of the boundary
condition for the electric field on the metallic surface∫∫

patch

J∗
p ·E dxdy = 0. (33)

Introducing (1) into this equation, it is found that

1 +R

N0
+
∑′

h

Vh

Nh
= 0 (34)

which is fully consistent with the interpretation shown in
Fig. 7(a). The particular forms of this general equivalent net-
work for the scattering of a given p-order harmonic at both sides
of the discontinuity and for harmonic p in medium (i) to har-
monic q in medium (m) are represented in Fig. 7(b) and (c),

respectively. In these figures, the equivalent impedance Zeq is
given by the following sum:

Zeq =
∑′

h

1

|Nh|2(Y (1)
h + Y

(2)
h )

(35)

where the prime indicates that the sum extends to all the other
harmonics [i.e., harmonic p is excluded in the case of Fig. 7(b),
and both the p and q harmonics are excluded for Fig. 7(c)].
The application of the standard procedures of the transmission-
line theory [60] to this multimodal equivalent network would
provide the expressions for the generalized scattering param-
eters. Thus, the same formal expression as in (24) is again
obtained for the reflection coefficient Si(p),i(p). The expression
for Sj(q),i(p) can be obtained, for instance, by cascading the
ABCD matrices [60] corresponding to the equivalent-circuit
elements in Fig. 7(c). Finally, the presence of a layered envi-
ronment can again be introduced via transmission-line lengths
into each transmission line in the equivalent network.

III. COMPUTATION OF NETWORK ELEMENTS

The topologies of the transmission-line networks described
in previous sections have been rigorously deduced and, hence,
their corresponding scattering parameters are formally equiv-
alent to those of the original FSS problems. Although these
multimodal equivalent networks might be considered by them-
selves a relevant theoretical contribution with interesting poten-
tial applications, their practical implementation requires some
important considerations which are addressed next.

First, the transformers turns ratios Nh in (20) and (32) have
been expressed in terms of the electric field at the apertures or
the surface current density on the patches but, certainly, these
quantities are not known a priori (the knowledge of these quan-
tities implies to have already solved the scattering problem).
Nevertheless, under certain circumstances, the spatial profile
of the aperture field or patch current is not expected to change
significantly with frequency, although the complex amplitude
of such quantities does obviously change. In other words, in
such circumstances, it is appropriate to assume the following
factorization:

Ea(x, y;ω) = F (ω)Ea(x, y) (36)

Jp(x, y;ω) = G(ω)Jp(x, y). (37)

The assumption of a frequency-independent spatial profile in
the above quantities (equivalent to using just one basis func-
tion in the standard application of the MoM) makes that the
same factorization translates to all the transformer turns ratios
Nh, and thus, their frequency dependence cancels out in the
final expressions of the scattering parameters. Therefore, the
Nh parameters can be computed using the assumed spatial pro-
file of the aperture field or patch current and ignoring their
frequency-dependent amplitudes F (ω) and G(ω). The fre-
quency dependence of the scattering parameters would then
come from the input TE/TM admittances, which are explic-
itly known. For rectangular apertures/patches under oblique
incidence in the principal planes of the structure (ϕ = 0 or
ϕ = 90◦), approximate closed-form expressions for the aper-
ture field and patch surface current profiles are available [61],
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which results in a fully analytical circuit model that provides
good numerical results as shown in Section V. Unfortunately,
the factorization in (36) and (37) cannot be considered a good
approximation in the general and important case of conical inci-
dence (ϕ �= 0, ϕ �= 90◦), with independence of the simplicity
of the patch or aperture geometry. A superposition strategy is
proposed in Section IV to deal with such general situation.

A second important consideration is that the proposed
equivalent networks involve an infinite number of transmis-
sion lines, corresponding to the infinite number of harmonics
excited at the periodic screen discontinuity. In the computa-
tion of the scattering parameters, it means that the equivalent
admittance/impedance is given as an infinite double series. In
order to overcome this drawback, the same strategy previously
used by the authors in [45], [47], and [55] can be employed
here. The basic idea is to consider separately the contribution
of low- and high-order harmonics, following the same ratio-
nale used in [34] concerning the distinction of “accessible” and
“localized” modes (the “localized” modes in [34] can here be
identified with the high-order harmonics). For a given nm har-
monic operating well below its cutoff frequency (high-order
harmonic)

kxn = k0 + kn ≈ kn (38)

kym = k0 + km ≈ km (39)

it is possible to make the following approximations:

kt,h ≈ knx̂+ kmŷ = kh (40)

|kt,h| ≈
√
k2n + k2m = kh (41)

k̂h =
kh

kh
(42)

êhoh =

{
k̂h, TM harmonics

k̂h × ẑ, TE harmonics
(43)

where the label “ho” (high order) indicates in the following
that kxn, kym are substituted by kn, km, respectively. The above
approximation also allows us to write

β
(i)
h ≈ −jkh = −j

√
k2n + k2m (44)

and therefore, the wave admittances can be approximated as

Y
(i),ho
h ≈

⎧⎨⎩jω ε0ε
(i)
r /kh = jωC

(i)
h , TM harmonics

1
jω μ0/kh

= 1
jωLh

, TE harmonics
(45)

where the coefficients C
(i)
h and Lh can be interpreted, respec-

tively, as frequency-independent capacitances and inductances
associated with sufficiently high-order TM and TE harmonics
in medium (i). When a layered environment is present, each
TM high-order cascaded transmission line appears in the model
as a given frequency-independent “input capacitance,” C

(L/R)
in,h .

For high-order TE harmonics, note that the inductive admit-
tance in (45) does not depend on the medium, but only on the
order h. Therefore, the corresponding “input inductance” is not
affected by the presence of the dielectric layers and is given

directly by Lh. According to the above discussion, the global
contribution of all the high-order harmonics consists of a par-
allel LC tank for a slot-based FSS and as a series LC tank
for patch-based FSS. More specifically, given certain M such
that ∀ |n|, |m| > M the conditions (38) and (39) are satisfied,
it is possible to write the equivalent admittance (28) for the
slot-based problem as

Y (in)
eq ≈ jωCho +

1

jωLho

+
∑′

|n|,|m|≤M
|Nnm|2

[
Y

(L)
in,h + Y

(R)
in,h

] (46)

where

Cho =
∞∑

|n,m|=M+1

|Nho
nm,TM|2

[
C

(L)
in,nm + C

(R)
in,nm

]
(47)

1

Lho
=

∞∑
|n,m|=M+1

2|Nho
nm,TE|2
Lnm

. (48)

For the periodic array of patches, it is equivalently found that

Z(in)
eq ≈ jωLho +

1

jωCho

+
∑′

|n|,|m|≤M

{
|Nnm|2

[
Y

(L)
in,h + Y

(R)
in,h

]}−1
(49)

with

1

Cho
=

∞∑
|n,m|=M+1

1

|Nho
nm,TM|2

[
C

(L)
in,nm + C

(R)
in,nm

] (50)

Lho =
∞∑

|n,m|=M+1

Lnm

2|Nho
nm,TE|2

. (51)

As an example, for the layered medium at the left-hand side
of Fig. 2(a), the “input capacitance” corresponding to the nm
harmonic is

C
(L)
in,nm =

ε0ε
(1)
r

knm

ε
(0)
r + ε

(1)
r tanh(knmd1)

ε
(1)
r + ε

(0)
r tanh(knmd1)

(52)

with knm =
√

k2n + k2m.
The resulting topology of the final circuit models is illus-

trated in Fig. 8. It should be noted that although the obtaining
of the Cho and Lho parameters involves the computation of
infinite double series, these series are independent of both fre-
quency and angle of incidence. This feature is computationally
very advantageous for the usual case of frequency and/or angle
of incidence sweeps, since the series only need to be computed
once. It is interesting to consider that, provided the highest fre-
quency of interest is still low enough so that the case M =
0 yields sufficiently accurately results, the proposed equiva-
lent network would reduce to just two lumped elements: Cho

and Lho. This situation resembles the so-called homogenization
procedure reported, for instance, in [35] and [54]. However, in
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Fig. 8. Two examples of the final topology of the circuit models corresponding
to the computation of the scattering parameters of the kind of structures studied
in this paper. (a) Equivalent network to compute the zeroth-order harmonics
scattering parameters of a perforated metallic screen. (b) Equivalent network to
compute Si(p),j(p) for a patch-based FSS embedded in a layered medium.

the present M = 0 case, our inductance and capacitance ele-
ments do take into account the presence of the layered dielectric
environment, and also the eventual existence of ground planes.
Taking values of M ≥ 1 improves accuracy and extends the
validity of the model to higher frequencies, including the
diffraction regime (λ is smaller than Px and/or Py), which is
not considered by conventional circuit-like models.

IV. SUPERPOSITION STRATEGY FOR CONICAL INCIDENCE

It was already mentioned that for the general case of conical
incidence (i.e., the incidence plane does not coincide with any
of the principal planes of the structure—in our case, the x = 0
and y = 0 planes), the factorization in (36) and (37) is not a
good assumption. Even if it is assumed that, approximately, the
spatial/frequency dependence of each Cartesian component of
the field/current spatial profile can be factorized as it was done
in (36) and (37), namely

Ea(x, y;ω) = Fx(ω)Ea,x(x, y)x̂+ Fy(ω)Ea,y(x, y)ŷ (53)

Jp(x, y;ω) = Gx(ω)Jp,x(x, y)x̂+Gy(ω)Jp,y(x, y)ŷ (54)

the frequency factors affecting each of the Cartesian compo-
nents are different and there is no a priori knowledge about

the relationship between them. Hence, the very opportune
frequency-dependent cancellation in the definition of the Nh

parameters derived from (36) and (37) would not be achieved
in this case. Certainly, for incidence in the principal planes
of the structures (as those treated in our previous works [55],
[58]), the factorization shown in (36) and (37) is expected to
work properly, since it is possible to write now the field/current
profile as

Ea(x, y;ω) = F (ω)Ea(x, y)ŝ (55)

Jp(x, y;ω) = G(ω)Jp(x, y)ŝ (56)

where s stands for x or y indistinctly.
The extension of this procedure to plane-wave conical inci-

dence would be very useful in order to cover such situations
found in practical applications (for instance, a generic element
of a reflectarray illuminated by a feeding horn). Our purpose
now is then to pose the original conical-incidence problem into
a form amenable to be solved by the method in this paper. The
chosen solution is to define superpositions of incident plane
waves (auxiliary problems) leading to patch/slot excitations for
which the factorization given in (55) or (56) can be applied.
This is expected to be approximately possible for specific com-
binations of TE and TM excitations yielding strictly x̂-directed
or ŷ-directed tangential electric field over the slot or patch.
From the complex amplitudes of the TE and TM transmitted
and reflected waves in such auxiliary cases, the desired scatter-
ing parameters can be obtained by applying the superposition
principle. The algebraic details are explained in what follows.

In general, any incident plane wave at angles (θ, ϕ) can be
decomposed as a sum of incident TM and TE waves with those
same incidence angles

Einc = ETM
inc +ETE

inc (57)

where the transverse (to the plane of incidence) fields in the
above decomposition are given by

ETM
inc = ETM

inc cosϕx̂+ ETM
inc sinϕŷ (58)

ETE
inc = ETE

inc sinϕx̂− ETE
inc cosϕŷ (59)

and therefore

Einc = (ETM
inc cosϕ+ ETE

inc sinϕ)x̂

+ (ETM
inc sinϕ− ETE

inc cosϕ)ŷ.
(60)

Thus, the case

ETM
inc = E

(x)
0 cosϕ (61)

ETE
inc = E

(x)
0 sinϕ (62)

corresponds to an incident wave whose electric field is directed
along x

Einc = E
(x)
0 x̂. (63)

Similarly, the case

ETM
inc = E

(y)
0 sinϕ (64)

ETE
inc = −E

(y)
0 cosϕ (65)
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corresponds to an incident wave whose electric field is directed
along y

Einc = E
(y)
0 ŷ. (66)

The above two cases will be denoted as the x-problem and the
y-problem, respectively. Now it is assumed that the spatial pro-
files of the aperture field (or patch current) excited at the screen
by such incident fields are similar to the ones expected for inci-
dence in the principal planes. For the x-problem, it means that
the profiles are assumed to be similar to those for ϕ = 90◦ and
TE incidence or ϕ = 0 and TM incidence. For the y-problem,
the profiles are assumed to be similar to those for ϕ = 90◦ and
TM incidence or ϕ = 0 and TE incidence. Since these problems
satisfy the conditions that made it possible the factorizations
(36) and (37), the procedures of the previous sections will be
employed to deal with these auxiliary scattering problems. It
leads to an equivalent network for the x-problem and a differ-
ent one for the y-problem (the topologies are the same, but the
value of the elements in the network are different as a conse-
quence of the different spatial profiles). From these networks,
it is then possible to compute the following auxiliary scattering
parameters:

x-problem : RTM,TM
x , RTM,TE

x , RTE,TE
x , RTE,TM

x (67)

y-problem : RTM,TM
y , RTM,TE

y , RTE,TE
y , RTE,TM

y (68)

where, for instance, RTM,TE
x stands for the reflection coeffi-

cient that relates the TM component of the output wave to the
TE component of the input wave for the x problem (incident
electric field parallel to the x-axis). These auxiliary coefficients
can now be combined to obtain the actual co-pol and cross-pol
reflection coefficients for a pure TM or TE incident wave, as
shown next.

A. TM Incidence

The incident electric field can be written in this case as

ETM = ETM
0 (cosϕx̂+ sinϕŷ) = E

(x)
0 x̂+ E

(y)
0 ŷ (69)

with

E
(x)
0 = ETM

0 cosϕ (70)

E
(y)
0 = ETM

0 sinϕ. (71)

Using now (61), (62), (64), and (65), the actual co-pol
(RTM,TM) and cross-pol (RTE,TM) reflection coefficients are
then given by

RTM,TMETM
0 = RTM,TM

x E
(x)
0 cosϕ+RTM,TE

x E
(x)
0 sinϕ

+RTM,TM
y E

(y)
0 sinϕ−RTM,TE

y E
(y)
0 cosϕ

(72)

RTE,TMETM
0 = RTE,TE

x E
(x)
0 sinϕ+RTE,TM

x E
(x)
0 cosϕ

−RTE,TE
y E

(y)
0 cosϕ+RTE,TM

y E
(y)
0 sinϕ.

(73)

Finally, the substitution of (70) and (71) into the two last
expressions gives the following expressions:

RTM,TM = RTM,TM
x cos2 ϕ+RTM,TM

y sin2 ϕ

+
[
RTM,TE

x −RTM,TE
y

]
sinϕ cosϕ (74)

RTE,TM = RTE,TM
x cos2 ϕ+RTE,TM

y sin2 ϕ

+
[
RTE,TE

x −RTE,TE
y

]
sinϕ cosϕ. (75)

B. TE Incidence

In this case, the incident electric field can be written as

ETE = ETM
0 (sinϕx̂− cosϕŷ) = E

(x)
0 x̂+ E

(y)
0 ŷ (76)

with

E
(x)
0 = ETE

0 sinϕ (77)

E
(y)
0 = −ETE

0 cosϕ. (78)

Using (61), (62), (64), and (65), the actual co-pol and cross-pol
reflection coefficients are then given by

RTE,TEE
TE
0 = RTE,TE

x E
(x)
0 sinϕ+RTE,TM

x E
(x)
0 cosϕ

−RTE,TE
y E

(y)
0 cosϕ+RTE,TM

y E
(y)
0 sinϕ

(79)

RTM,TEE
TE
0 = RTM,TM

x E
(x)
0 cosϕ+RTM,TE

x E
(x)
0 sinϕ

+RTM,TM
y E

(y)
0 sinϕ−RTM,TE

y E
(y)
0 cosϕ.

(80)

Finally, substituting (77) and (78) into the two last expressions
leads to

RTE,TE = RTE,TE
x sin2 ϕ+RTE,TE

y cos2 ϕ

+
[
RTE,TM

x −RTE,TM
y

]
sinϕ cosϕ (81)

RTM,TE = RTM,TE
x sin2 ϕ+RTM,TE

y cos2 ϕ

+
[
RTM,TM

x −RTM,TM
y

]
sinϕ cosϕ. (82)

V. NUMERICAL RESULTS

Different results are presented in this section to validate the
suitability and degree of accuracy of the proposed circuit-like
model. Our closed-form results are first compared with some
examples reported in the literature that include highly accurate
data computed by means of an ad hoc MoM or MoM/BI-RME
(boundary integral-resonant mode expansion). Note that for this
class of planar structures, the results calculated with a method
of this type can be considered virtually “exact.” Comparison
examples with results obtained using a general-purpose com-
mercial electromagnetic simulator (in principle, less accurate
than an ad hoc MoM) are also included.

Previous sections have reported a procedure to obtain closed-
form expressions to compute all the parameters involved in
the corresponding equivalent networks. Basically, the usage of
the equivalent network approach comes down in employing
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the expression of the characteristic TE/TM admittances, trans-
forming the admittances to the discontinuity plane using the
well-known procedures of the transmission-line theory, and
computing the Nh coefficients. In spite of the analytical nature
of our proposal, two double infinite series with relatively poor
convergence have to be summed up. These series are required
to calculate the corresponding capacitance and inductance
associated with the contribution of the high-order harmonics.
Acceleration techniques developed in the frame of the spec-
tral domain analysis of planar structures can be used to speed
up such calculations. However, as previously discussed, these
series have to be computed only once for each geometry and
thus, even without any numerical treatment, the CPU time
required in a standard laptop to compute about the 1000 fre-
quency data points shown in each curve corresponding to our
results in this section is below 1 s.

A second important point concerning the final implementa-
tion of our method is the current/field spatial profiles employed
in the calculations. As our present purpose is to check the valid-
ity of the proposed closed-form and self-contained systematic
circuit model, we will consider the simple yet practically inter-
esting case of rectangular patches/apertures. Thus, our results
in this section have been obtained using the spatial profiles
taken from [61] and reported in Appendix A for completi-
tude, which results in a fully analytical model. As discussed
in that paper, these simple profiles have proved to be suffi-
ciently accurate to deal with rectangular patches/apertures in
many practical situations. Nevertheless, it should be noticed
that this is not an intrinsic limitation of the proposed model,
since more sophisticated profiles could be used in more com-
plex cases. For scatterers with complex geometry, it can be
challenging (if not virtually impossible) to find an approximate
analytical expression of the patch current or aperture field. In
such cases, however, these profiles could be provided by an
external numerical tool (an ad hoc implementation of the MoM
or a commercial simulator could be used to this aim). In this
way, the external code/simulator would perform the full-wave
numerical calculation at a single and relatively low frequency
value, and the profile thus obtained used later in the circuit
model to find the transmission/reflection spectrum of the struc-
ture in a given frequency band and/or for different incidence
angles.

The first example shown in Fig. 9 presents our results for
a structure previously studied by some of the authors in [47,
Fig. 10]. It shows the reflection coefficient for the oblique
TE incidence in one of the principal planes of an array of
rectangular dipoles printed on a substrate slab. In [47], the
authors reported a simplified circuit model whose topology was
heuristically obtained and the values of the circuit parameters
extracted from a number of previous full-wave simulations car-
ried out at different frequencies. This study is now repeated
in Fig. 9 with our results computed following the closed-form
expressions given in the present work and using an x-directed
patch current whose spatial profile is given in (83). Note that the
reflection-coefficient curves obtained using the analytical cir-
cuit model follow very closely the MoM results in the explored
frequency range, which includes a good portion inside the grat-
ing lobe regime. In order to give a more quantitative idea on the

Fig. 9. Magnitude of the reflection coefficient under 40◦ TE-incidence in the
yz plane (ϕ = 90◦) for the structure in [47, Fig. 10]. With reference to the top

structure in Fig. 8(b): ε(2)r = 3, d1 = 0, d2 = 0.5 mm, d3 = 0, Px = Py =
5 mm, and wy = 0.5 mm.

Fig. 10. Same as Fig. 9 with wx = 3.5 mm, but under TM-incidence in the
xz plane (ϕ = 0◦).

accuracy of the model, the relative error between both sets of
data is also shown. It can be observed that the error remains in
the order of a few percent, except for frequencies at which the
spectra exhibit narrow peaks. This is somehow expected due
to the very fast variation of the magnitudes being compared;
nevertheless the frequency shift between the maxima (which
constitutes a better indicator of the accuracy under these cir-
cumstances) is below 1.5% for any of the peaks in the plot.
(In the following plots, the errors will not be shown explicitly;
however, it has been checked that its behavior is very similar to
the present case.)

In Fig. 9, it is worth to note that the circuit-model approach
perfectly captures the first reflection peak at about 27 GHz for
the wx = 3.5-mm case. This peak is clearly associated with the
first resonance of the metallic scatterer and is well reproduced
by our procedure since the spatial profile of the current in (83)
conveniently accounts for the natural half-wavelength-like pro-
file at the first patch resonance. However, higher resonances
associated with the scatterer dimensions are not expected to
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be well characterized by the present approach since the cur-
rent profile associated with these higher resonances strongly
differs from that of the first resonance. Thus, the analytical
model obtained using the proposed “low-frequency” profile is
expected to provide accurate results up to frequencies close
to the second resonance of the patch. By this reasoning, the
wx = 3.5-mm curve in Fig. 9 should start to deviate consider-
ably from the full-wave MoM data well below 60 GHz (the
second resonance of the patch is expected at roughly twice
the first resonance frequency). However, this discrepancy is
not observed in Fig. 9, given that the second resonance of the
patches is not excited in this case due to symmetries of the
problem (the middle plane of the dipoles is an electric-wall
symmetry plane, which is incompatible with the odd parity
of the one-wavelength current profile associated with this res-
onance). Therefore, the results provided by the circuit model
are reliable in all the frequency range shown in the figure and
beyond, up to frequencies close to the first higher resonance that
is compatible with the incident plane wave.

In order to better illustrate the above discussion on the limita-
tions of the model as well as to further explore its possibilities,
Fig. 10 shows the reflection coefficient for the same struc-
ture as in Fig. 9 with wx = 3.5 mm, but now the incidence
plane is along (instead of perpendicular to) the dipoles. The
polarization of the incident wave is changed to TM so that
the tangential component of its electric field is still directed
along the dipoles. The results provided by our circuit model
are shown together with those obtained using the commercial
software Ansys HFSS [62]. The curve labeled as “even profile”
corresponds to our analytical results obtained using the same
patch current profile as in Fig. 9. These analytical results accu-
rately reproduce the first resonance of the patches (reflection
peak at about 30 GHz), but beyond 40 GHz they clearly depart
from the HFSS curve and fail to capture the second reflection
peak at about 52 GHz. This second reflection peak is associ-
ated with the second resonance of the patch, whose excitation
is not inhibited now by the incident wave. The curve labeled
as “odd profile” represents the analytical results obtained by
using an x-directed patch current with an odd x-profile given
by (85) (this profile closely resembles the one-wavelength pro-
file characteristic of the second resonance of the patch). The
results obtained using this odd profile are not valid at lower
frequencies, as expected, but they clearly reproduce the second
resonance transmission peak. The fact that they are reliable only
in a relatively narrow frequency range around the second trans-
mission peak is a clear indication that, in this case and above
40 GHz, the patch current can no longer be considered to have
a frequency-independent spatial profile over this high frequency
band.

A second example corresponds to a square lattice of rel-
atively large (w.r.t. the unit cell) square conducting patches
printed on a lossy and conductor backed substrate. Plots for
the reflection coefficient of this structure (TE/TM polarization
under oblique incidence in the principal planes) have recently
been reported in [15, Fig. 15]. Because of the presence of
dielectric losses in the grounded substrate, the magnitude of
the reflection coefficient shows a minimum at some specific
frequency (this minimum would not appear in the absence of

Fig. 11. Magnitude of the reflection coefficient under 60◦ TE/TM-incidence
(ϕ = 90◦) for the reflectarray previously considered in [15, Fig. 15]. With

reference to the top structure in Fig. 8(b), ε
(2)
r = 4.5− j0.088, d1 = 0,

d2 = 3 mm, d3 = 0, Px = Py = 10 mm, and wx = wy = 14/16Px. In
this structure, there is a ground plane backing medium (2). Solid lines: our
circuit-model results. Dotted lines: MoM results. Symbols: data of the circuit
model in [15].

losses, of course). In Fig. 11, our analytical results are com-
pared with the data in [15, Fig. 15]. This figure shows an
acceptable agreement between our results and those reported
in that paper.

The case of a slot-based FSS is illustrated in Fig. 12. The
structure considered in that figure is a periodically perforated
metallic screen (rectangular slots) backed by an electrically
thick silicon substrate (see Fig. 12(a)]. Fig. 12(b) shows the
frequency response of the magnitude of the transmission coef-
ficient of a TM plane wave that impinges obliquely on the
FSS (θ = 20◦, ϕ = 90◦). This situation was previously stud-
ied in [12, Fig. 4], where the authors reported experimental
results showing an excellent agreement with numerical calcula-
tions based on the highly accurate and efficient MoM/BI-RME.
Fig. 12(b) only includes the numerical data in [12, Fig. 4] and
our analytical results (M = 1 has been chosen for both TE and
TM contributions, i.e., only the distributed nature of the first
TE and TM high-order modes has been retained in the com-
putations, with the contribution of the remaining high-order
modes being subsumed in the lumped capacitor and inductor).
The agreement between the reported results in [12] and our
circuit-model results is very good, even in the fine details of
this complicated spectrum. Also, this structure has been cho-
sen to illustrate how the circuit model can help us to understand
the frequency response and to design the device. To that end,
a more detailed study of the application of the circuit models
to this structure is shown in Appendix B, which is based on
the minimal circuit models that yield a physically sensible and
reasonably accurate response. A similar discussion can be done
for any other given structure, but this is beyond the aim of the
present “general-purpose” work.

A case of a patch-based FSS embedded in a three-layer
dielectric environment as in Fig. 8(b) is next considered in
Fig. 13. Our results are here compared with Ansys HFSS [62].
The agreement between the two set of results is very good in
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Fig. 12. (a) Front and side views of the periodically perforated metallic
screen printed on a silicon substrate previously considered in [12, Fig. 4].
(b) Magnitude of the transmission coefficient under 20◦ TM-incidence (ϕ =

90◦). Structural parameters: ε
(2)
r = 11.8, d1 = 0, d2 = 302 μm, d3 = 0,

Px = Py = 236 μm and wx = 183 μm, wy = 30 μm. Full-wave results in
[12] are here denoted as “BIRME.” Circuit model results have been obtained
using M = 1 for both TE and TM harmonics. More details on the application
of the circuit model to this structure are given in Appendix B.

Fig. 13. Magnitude of the reflection and transmission coefficients for the
normal incidence of a TM plane wave for an array of rectangular patches
with Px = Py = 10 mm, wx = 4 mm, wy = 2 mm embedded in a lay-
ered dielectric environment as in Fig. 8(b) with d1 = 1 mm, d2 = 2.4 mm,

d3 = 1 mm, and ε
(1)
r = 2.0, ε(2)r = 4.4− j0.088, ε(3)r = 10.2.

the frequency range considered (the grating-lobe regime starts
at 30 GHz). This shows that our approach to deal with a lay-
ered dielectric medium works properly. Certainly, the presence
of several dielectric layers brings a considerable additional

Fig. 14. Magnitude of the co-pol and cross-pol transmission coefficients under
conical TE-incidence with θ = 30◦, ϕ = 60◦ for an array of rectangular

patches with ε
(2)
r = 4.4− j0.088, d1 = 0, d2 = 2.4 mm, d3 = 0, Px =

Py = 10 mm, wx = 4 mm, and wy = 2 mm.

numerical burden for most of commercial electromagnetic
simulators. In our approach, these additional dielectric layers
hardly affect the computational cost of the presented closed-
form procedure.

As a final example, a case of conical incidence is consid-
ered in Fig. 14 (the incidence plane is no longer directed along
the main axes of the structure). In this figure, the magnitude
of the reflection coefficient for a FSS under TE illumination
is plotted as a function of the frequency. Both the co-pol and
cross-pol coefficients are shown. The numerical results needed
for comparison have been generated using HFSS [62]. This
figure clearly shows that the decomposition procedure followed
in this paper to deal with conical incidence works satisfactorily
over a wide frequency region (it should be noted that the onset
of the diffraction regime is at about 15 GHz). Moreover, cross-
pol data are very well predicted by the circuit model in spite of
being at a very low power level. Small but significant discrepan-
cies between simulated and analytical data can be appreciated
above 26 GHz. But the electrical size of the rectangular patch in
this range of frequencies is well above half-wavelength, in such
a way that the current distribution profile starts to be frequency-
dependent. Even in this latter frequency region, the analytical
model still gives a reasonable approximation to the response
calculated by means of a highly intensive numerical code.

VI. CONCLUSION

An equivalent multimode transmission-line network is for-
mally derived for the scattering problem posed by the incidence
of a plane wave on a 2-D array of metal patches printed on
(or embedded in) a stratified dielectric environment. The quasi-
dual structure consisting of a 2-D array of rectangular slots
etched in a metal film coated with dielectric slabs has been
treated in a similar manner. Both TE and TM polarizations
(with respect to the incidence plane) and arbitrary angles of
incidence (conical incidence) are considered in the theoretical
formulation. The attained solutions lead themselves to equiva-
lent circuit models involving lumped capacitors, inductors, and
transmission line sections. All the parameters of the equivalent
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circuit are analytically known, provided a reasonable guess for
the field distribution in the apertures or the current distribution
on the metal patches is available. The reflection and transmis-
sion coefficients obtained with the circuit model are not very
sensitive to the details of the aforementioned field/current dis-
tributions. A key feature of the proposed circuit model when
compared with other alternatives is that the circuit topology
has been derived directly from the fundamental integral equa-
tions associated with the electromagnetic problem. Moreover,
dynamic effects that are not incorporated in other circuit models
are included in the proposed model thanks to the differentiated
treatment of low- and high-order scattered space harmonics.
In this way, the frequency-dependent contribution of the first
few modes is explicitly extracted out, while the remaining
higher order modes contribution is represented by frequency-
independent capacitors or inductors. The accuracy and suit-
ability of the model has been satisfactorily proved through a
number of comparisons with numerically generated data.

APPENDIX A

For the cases studied in Fig. 9, Fig. 10 (even profile), TE
incidence in Fig. 11, and Fig. 13, we used an x-directed patch
current whose spatial profile is given by

fe1(x, y) = cos

(
πx

wx

)[
1−

(
2x

wx

)2
]−1/2

rect

(
y

wy

)
.

(83)

This same spatial profile is used for the y-directed aperture elec-
tric field in Fig. 12(b). For the TM incidence case in Fig. 11, we
used a y-directed patch current whose spatial profile is given by
(83) but interchanging the roles of x,wx and y, wy , namely

fe2(x, y) = cos

(
πy

wy

)[
1−

(
2y

wy

)2
]−1/2

rect

(
x

wx

)
.

(84)

The odd profile used for Jx in Fig. 10 is

fo(x, y) = sin

(
2πx

wx

)[
1−

(
2x

wx

)2
]−1/2

rect

(
y

wy

)
.

(85)

Finally, in the conical incidence case in Fig. 14, we need two
different patch current profiles, according to Section IV. Thus,
for the x-problem, we use an x-directed patch current with the
spatial profile given by (83); whereas for the y-problem, we
used a y-directed current with the profile in (84).

APPENDIX B

This Appendix will show how the equivalent-circuit
approach described in this work explains, in a simple man-
ner, the observed transmission and reflection spectra and how
it can help in the design process. Let us take into considera-
tion the periodic structure studied in Fig. 12, which is one of

the structures analyzed in [12]. This filtering device consists
of a 2-D square periodic distribution of narrow slits made in
a thin metallic layer. This layer is printed on an electrically
thick silicon substrate that strongly modifies the response of the
perforated metal surface. The structure is obliquely illuminated
(θ = 20◦, ϕ = 90◦) by a TM-polarized plane wave. The sim-
plest and most intuitive equivalent circuit for this structure is
shown in Fig. 15(a). This is the kind of equivalent circuit typ-
ically used in the literature to handle this type of structures.
The LC-tank should account for the effect of the scattered
high-order harmonics and the transmission line sections would
account for the TEM propagating fundamental mode. The val-
ues of the parameters Lho and Cho are computed using (47) and
(48) with (n,m) �= (0, 0). The line characteristic admittances
and propagation constants are given by (13) taking n,m = 0.
The magnitude of the transmission coefficient (|S12|) obtained
with this simplified analytical model is plotted in Fig. 16 as
a red-color curve. By comparing this curve with the results in
Fig. 12(b), it is clear that the prediction of this simplified circuit
model is quite accurate in the low-frequency regime (roughly
speaking, below 220 GHz), but it progressively deteriorates for
higher frequencies. Nevertheless, the second transmission peak
at 294 GHz in Fig. 12(b) still appears in the red-color trans-
mission curve in Fig. 16 although strongly blue-shifted (it now
appears at 318 GHz, which means more than 8% error). The
fact that this second peak shows an apparent total transmissiv-
ity can be easily understood from the circuit in Fig. 15(a). A
trivial circuit rationale tells us that in order to avoid reflection
at a given frequency, the normalized input admittance Yin/Y

(0)
0

has to be as close to unity as possible. This condition can be
satisfied if the electrical length of the transmission line cor-
responding to the silicon region is close to nπ/2 (n being a
positive integer number) and, simultaneously, the slit is res-
onating (the LC circuit would then behave as an open circuit).
The slit resonance should occur at the frequency for which the
length of the slit is λeff/2, with λeff being the wavelength in the
effective medium whose permittivity corresponds to the aver-
age value of the dielectric constants of air and silicon (this is a
good approximation since the silicon layer is relatively thick);
namely, εeff = (11.8 + 1)/2 = 6.4 in our case. This resonance
condition is found at 314.2 GHz. At such frequency, the thick-
ness of the silicon layer is about 1.082 times the wavelength in
the transmission line representing such layer (the effect of the
incidence angle θ = 20◦, although small, is incorporated in this
calculation). The real and imaginary parts of the normalized
load admittance predicted by the circuit in Fig. 15(a) are plot-
ted in Fig. 17 (red curves). Note that the best matching happens
at about 317.5 GHz, frequency at which the imaginary part of
the input admittance vanishes.

Although the above given explanation is qualitatively satis-
factory, the shift of the resonance frequency is too large to be
considered acceptable from a practical point of view. However,
this lack of accuracy can be anticipated in the frame of our mod-
eling technique. Indeed, the problem comes from the fact that
the cutoff frequency of the first high-order harmonic involved in
the scattered field is not far enough from the second transmis-
sion peak. A simple calculation for the first relevant harmonic
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Fig. 15. (a) Standard circuit model for the study of the scattering of the funda-
mental harmonic. The contribution of the high-order diffracted harmonics are
accounted for by the frequency-independent lumped components Cho and Lho.
(b) Enhanced circuit model that takes into account the distributed effects of the
first high-order TM harmonics (n = 0, m = ±1). The characteristic admit-
tances and propagation constants of the transmission line sections are the ones
corresponding to the involved harmonics as defined in (13)–(16). Although the
effect of the first TE harmonics is much weaker, their distributed nature was
also considered in the results shown in Fig. 12(b).

Fig. 16. Transmission coefficient of the structure analyzed in Fig. 12 using the
model in Fig. 15(a) (red line) and the enhanced version (blue line) of this model
in Fig. 15(b).

(TM0,−1) yields a cutoff frequency of 336.56 GHz. It means
that the circuit model should take into account the distributed
nature of this harmonic. Thus, its contribution should not be
included in the capacitance Cho of the model in Fig. 15(a),
but implemented as a distributed transmission line, as shown
in Fig. 15(b). Since the cutoff frequency of the TM0,+1 har-
monic is 410.99 GHz and we are interested on the frequency
response up to 500 GHz, this m = +1 TM harmonic is also
considered in the same way. The analytically obtained response

Fig. 17. Real and imaginary parts of the input admittance loading the input
transmission line of our circuit models. The red line corresponds to the sim-
plified standard circuit in Fig. 15(a) and the blue line is the one corresponding
to the enhanced circuit model in Fig. 15(b). The real part is the same for both
cases.

that results after these considerations is shown in Fig. 16 in
blue. The highly accurate numerical results in Fig. 12(b) are
now analytically reproduced with a much smaller quantita-
tive error (the total transmission resonance peak is only 2.2%
blue-shifted now). Moreover, the complicated high-frequency
response above the second peak is much better reproduced. At
the new resonance frequency of 294.3 GHz, the thickness of the
silicon layer is only 1.012 times the silicon transmission line
wavelength, which is much closer to the perfect transmission
condition than the prediction of the simplified model. Actually,
at 294.3 GHz, the imaginary part of the complex admittance
loading the input transmission line in the model in Fig. 15(b)
vanishes and the computed real part is 1.0063. A plot of the
imaginary part of the normalized load impedance versus fre-
quency is shown as a blue curve in Fig. 17. Note that multiple
zeros and peaks appear above 340 GHz that were absent in the
simplified conventional circuit model. These can actually be
associated with the behavior of the first high-order TM har-
monic, which is a propagating wave in the dielectric region
above 336.56 GHz. There is a clear correspondence between
the transmission zeros in Fig. 16 and the singularities of the nor-
malized admittance in Fig. 17. This way, the analytical circuit
model in Fig. 15(b) provides much more valuable information
on the electrical response of the structure under study than
the straightforward usual approach represented by the circuit
in Fig. 15(a). Although less relevant than the above TM har-
monics, the m = ±1 TE harmonics also play some role in
the structure response within the considered frequency range.
Thus, they can also be explicitly treated as distributed contri-
butions in the same manner. By doing this, the curves reported
in Fig. 12(b) are obtained, which are indistinguishable from the
full-wave numerical data.
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