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Power-law decay of the velocity autocorrelation function of a granular fluid
in the homogeneous cooling state
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Fı́sica Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain

(Received 4 November 2014; published 23 January 2015)

The hydrodynamic part of the velocity autocorrelation function of a granular fluid in the homogeneous cooling
state has been calculated by using mode-coupling theory for a finite system with periodic boundary conditions.
The existence of the shearing instability, leading to a divergent behavior of the velocity flow fluctuations, is taken
into account. A time region in which the velocity autocorrelation function exhibits a power-law decay, when
time is measured by the number of collisions per particle, has been been identified. Also the explicit form of the
exponential asymptotic long time decay has been obtained. The theoretical prediction for the power-law decay is
compared with molecular dynamics simulation results, and a good agreement is found, after taking into account
finite size corrections. The effects of approaching the shearing instability are also explored.
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I. INTRODUCTION

Almost 45 years ago, Alder and Wainwright [1] reported,
from a molecular dynamics simulation study, the observation
of an asymptotic power-law decay of the velocity autocor-
relation function (VACF) of a tagged particle in a fluid
at equilibrium. At long times, the VACF decays as t−d/2,
where d is the dimensionality of the system. They also
proposed a simple hydrodynamic explanation, suggesting that
the power-law decay is due to the slow relaxation of the
velocity vortex that is generated by the motion of the tagged
particle in the fluid. Theoretical analysis of this effect has
been carried out since then using kinetic theory [2,3] and also
more phenomenological mode-coupling theories [4]. One of
the main implications of the long time tails is that the time
independent Navier-Stokes transport coefficients, as defined
by the Green-Kubo relations, do not exist in two-dimensional
systems, outside the limit of dilute gases, where the long time
power-law tails disappear.

Granular gases have attracted a lot of attention in recent
years, not only because of the rich phenomenology they
exhibit, but also because they are considered a proving ground
for kinetic theory and nonequilibrium statistical mechanics.
The methods used for elastic molecular fluids have been
extended to the case of particles colliding inelastically [5,6].
In particular, hydrodynamic equations to Navier-Stokes order
have been derived with formal Green-Kubo-like expressions
for the transport coefficients, both for dilute [7,8] and dense
granular gases [9,10]. The low density expressions have
been evaluated numerically by using the direct Monte Carlo
simulation method [11,12] and a satisfactory agreement has
been found with the results obtained by the Chapmann-Enskog
procedure applied to the inelastic Boltzmann equation in
the first Sonine approximation [13]. Note that in the low
density limit considered in these works, algebraical decay
of the correlation functions is not expected, by analogy
with molecular gases. We are not aware of any numeri-
cal evaluation of the formal expressions of the transport
coefficients for dense granular gases, aside from the self-
diffusion coefficient in a three-dimensional system [14].
Consequently, it is not known whether the Green-Kubo-like
expressions for the transport coefficients of granular gases do

actually exist beyond the low density limit in two-dimensional
systems.

Due to dissipation in collisions, isolated granular gases (or
with periodic boundary conditions) do not have an equilibrium
Gibbs state, but rather there is a time-dependent homogeneous
cooling state (HCS). The Navier-Stokes transport coefficients
of a granular gas are expressed as averages over the distribution
function corresponding to the HCS [7–10]. Consequently, it is
a relevant question to know whether time correlation functions
computed in this state exhibit slow decaying long time tails.

Studying the existence of hydrodynamics in a two-
dimensional molecular system can appear as a rather formal
and academic issue. Nevertheless, the situation is quite
different when dealing with granular fluids. To reach and
maintain them in a steady state, a permanent energy supply
is necessary. The usual experimental procedures are either by
means of an external field or by injecting energy through the
boundaries. The price to be paid is that the system becomes
highly inhomogeneous. Recently, a new possibility is being
explored. The idea is to place a granular gas between two
large parallel horizontal plates separated by a distance larger
than one particle diameter, but smaller than two, in such a way
that the system is actually a granular monolayer [15,16]. To
keep the system fluidized the horizontal plates are vibrated.
Then, the two-dimensional dynamics obtained by projecting
the motion of the grains on a horizontal plane is observed.
Experiments show that the behavior of the projected system
resembles that of a (two-dimensional) fluid. Developing a
self-consistent hydrodynamics for it seems an interesting and
promising topic. Of course, this requires the investigation
of the decay of the fluctuations and correlations in the
two-dimensional system. Actually, an experimental setup very
similar to the one described above has been already used to
measure velocity correlations on the hydrodynamic scale in a
two-dimensional granular gas [17].

Long time tails in granular gases have already been studied.
Kumaran [18] considered sheared granular flows and reported
the suppression of the power-law long time tail. Also, the
tail of the velocity correlation function has been analyzed in
the stationary state generated by submitting the grains to an
external noise force or thermostat [19]. Although the results
are interesting, it is worthwhile to remark that the possible
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relationship of this kind of force with real experiments has not
been established, and that the results depend strongly on the
specific form of the used force [19]. The case of an isolated
granular gas has been investigated by Ahmad and Puri [20],
by means of very extensive molecular dynamics simulations.
Although their results for the velocity autocorrelation function
in the two-dimensional case seem to suggest the existence
of a power-law long time tail of exponent −1, when time
is measured by the number of collisions per particle, they
cannot be considered as conclusive, and no comparison with
theoretical predictions is carried out. In Ref. [21], several
current autocorrelation functions have been investigated also
in freely evolving granular fluids. Using a mode-coupling
theory it is found, in particular, that the VACF has a long time
decay of the same form as in molecular systems, when again
time is measured by the number of collisions per particle.
Moreover, extensive molecular dynamics simulation results
are presented, and it is claimed that they are consistent with the
theory, although again no quantitative comparison is carried
out, other than the identification of a time region in which
the behavior of the correlation function follows the power-law
predicted by the theory for the asymptotic long time limit. In
the last two studies, very large systems are considered, actually
infinite in the theory developed in Ref. [21], so that the HCS
is highly unstable. In practice, this means that the state of the
system departs from the HCS very soon, developing velocity
vortices and later on strong density inhomogeneities [22,23].
Consequently, the physical meaning of the VACF becomes
rather uncertain after a very short period of time. In particular,
there is no reason to expect it to be related in a simple way
with the self-diffusion coefficient of the simulated system, if
this coefficient exists.

In this paper, the decay of the velocity autocorrelation
function in a granular gas in the homogeneous cooling state
(HCS) will be addressed. Both in the theory and in the
simulations only systems in that state will be considered,
although the effects of the shearing instability as it is
approached will be taken into account. Therefore, in the
systems analyzed here, the relationship between the VACF and
the self-diffusion coefficient through a Green-Kubo formula
is well established [9]. Although this implies the limitation
to finite systems, it is possible to extrapolate the results and
identify scaled behaviors that are independent from the size.
In particular, this happens with the existence of a time window
for which the VACF has an algebraic decay that is correctly
predicted by a mode-coupling theory, not only qualitatively
but also quantitatively.

The remainder of this paper is organized as follows. In
Sec. II, the definition of the self-diffusion coefficient in a
granular gas in the HCS, and the steady-state representation
of the latter, are summarized. It is important to stress that the
existence of the steady representation is not an approximation,
but an exact consequence of a change of variables. In particular,
the self-diffusion coefficient is also determined by the VACF
in the steady representation. In Sec. III, the mode-coupling
theory of Ernst, Hauge, and van Leeuwen [4] is rederived
for a finite granular gas with periodic boundary conditions in
the HCS. The peculiarity of the hydrodynamic fluctuations,
playing a fundamental role in the theory, and the effects of the
shearing instability are analyzed in Sec. IV. The existence of a

time scale over which the VACF has a power-law decay in time
is shown in Sec. V, where also discussed is the exponential
decay occurring in the asymptotic long time limit, due to the
finite size of the system. In Sec. VI, the method used to take
into account finite size effects when comparing molecular
dynamics simulation results and theoretical predictions is
described. The power-law tails from the simulations are
identified in Sec. VII. Both the power law and its amplitude are
shown to be in quite good agreement with the mode-coupling
predictions. Finally, Sec. VIII contains a short discussion of
some relevant conceptual issues addressed in the paper, as
well as some indications of possible extensions of the reported
work.

II. SELF-DIFFUSION COEFFICIENT IN THE
STEADY-STATE REPRESENTATION OF THE

HOMOGENEOUS COOLING STATE

In Ref. [9], the self-diffusion coefficient D(t) of a granular
gas of N inelastic hard spheres or disks of mass m in the HCS
is identified from the diffusion equation

∂

∂t
n1(r,t) − D(t)∇2n1(r,t) = 0, (1)

where n1(r,t) is the number density of tagged particles at
position r and time t . The formal expression of D(t) is given
in terms of the VACF by the Green-Kubo formula

D(t) = 1

d

∫ t

0
dt ′ 〈v1(t) · v1(t ′); 0〉HCS. (2)

Here, v1(t) is the velocity of a tagged particle at time t , and
the angular brackets denote average with an initial distribution
corresponding to the HCS of the system. Upon deriving the
above expression, it is assumed that the system remains in
the HCS in the time interval between 0 and t . Since all the
particles of the system are mechanically equivalent, the VACF
can be actually computed by using any of the N particles in
the system. The HCS distribution function ρHCS , giving the
probability density for finding the particles at positions {qi}
with velocities {vi}, has the scaling form [24,25]

ρHCS({qi},{vi},t) = [v0(t)]−Ndρ∗
HCS

(
{qij },

{
vi

v0(t)

})
, (3)

where qij ≡ qi − qj ,

v0(t) ≡
[

2T (t)

m

]1/2

, (4)

T (t) is the granular temperature (the Boltzmann constant is set
equal to unity upon defining the granular temperature from the
average kinetic energy), and ρ∗

HCS is a dimensionless isotropic
distribution, which is invariant under space translations. In
Eq. (3), all the time dependence due to collisional cooling
occurs through the granular temperature, that obeys the Haff
law [26]

∂v0(t)

∂t
= −1

2
ζ (t)v0(t). (5)

The cooling rate ζ (t) is proportional to v0(t). Then, it follows
that the long time behavior of the thermal velocity v0(t) of a
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granular gas in the HCS is given by

v0(t) ∼ (ζ t)−1. (6)

In this expression, a modified cooling rate coefficient,

ζ ≡ ζ (t)

2v0(t)
, (7)

which does not depend on time, has been introduced.
It is convenient to change to a new time scale in which

the intrinsic time dependence of the HCS can be scaled out
in some way. This allows us to formally eliminate one of
the two time explicit dependencies of the VACF in Eq. (2),
making the theoretical analysis simpler and more direct [9].
Moreover, a direct molecular dynamics simulation of a freely
evolving granular gas, as described by the dynamics in the
actual phase space variables, has the limitation that the typical
velocity of the particles becomes very small rather soon and,
therefore, numerical inaccuracies become very large. This is
a very serious difficulty when the interest is focused on the
long time behavior of a property of the system, as is the case
here. To circumvent this problem, the dynamics of a system of
inelastic hard spheres or disks in the HCS is exactly mapped
onto the dynamics around a steady state [27,28]. This is done
by defining a new time scale s by

ω0s = ln
t

t0
, (8)

where t0 and ω0 are two arbitrary constants. Consistently, the
velocity ωi of a particle i in the new time scale is given by

ωi(t) ≡ ∂qi

∂s
= ω0tvi(t). (9)

The particle dynamics consists now of an accelerated stream-
ing between collisions,

∂

∂s
qi = ωi(s), (10)

∂

∂s
ωi(s) = ω0ωi(s), (11)

while the collision rule in the new variables is the same as
in the original ones, as a consequence of the linearity of the
transformation given by Eq. (9) and the instantaneous character
of collisions.

The distribution function of the HCS in the transformed
phase space reads

ρ̃HCS({qi},{ωi},s)

= [v0(t)ω0t]
−Ndρ∗

HCS

(
{qij },

{
ωi

v0(t)ω0t

})
. (12)

In the long time limit, v0(t) is given by Eq. (6) and, therefore,
ρ̃HCS becomes independent from the time s, and takes the
stationary form

ρ̃st ({qi},{ωi}) =
(

ω0

ζ

)−Nd

ρ∗
HCS

(
{qij },

{
ωiζ

ω0

})
. (13)

Let us define the temperature T̃ of the HCS in the modified
dynamics by

d

2
nT̃ (s) ≡

〈
m

2
ω2

i ; s

〉
, (14)

where n is the total number of particles density of the granular
gas, and the angular brackets denote the average in the HCS
in the new phase space,

〈A({qi},{ωi}); s〉

≡
∫ (∏

i

dqidωi

)
A({qi},{ωi})ρ̃HCS({qi},{ωi},s). (15)

It follows from Eq. (13) that, after some transient time interval,
the system reaches a steady state with a temperature given by

T̃st = m

2

(
ω0

ζ

)2

. (16)

This relationship provides a very efficient way to measure the
cooling rate of a granular gas in the HCS by means of numerical
particle simulations using the steady representation [9,27,28].

The expression of the self-diffusion coefficient in the
HCS, as given by Eq. (2), becomes simpler in the steady
representation, especially when the initial time is chosen such
that the asymptotic steady state has already been reached.
Then, the Green-Kubo form for the self-diffussion coefficient
in the steady representation is trivially obtained,

D(t) = 1

d

(
T (t)

T̃st

)1/2 ∫ s

0
ds ′ 〈ω1(s ′) · ω1(0)〉st , (17)

where the ensemble average now is done with the stationary
distribution reached with the modified dynamics in the long
time limit. In the above equation, the two time scales s and t

are related by Eq. (8).

III. HYDRODYNAMIC COMPONENT OF THE VACF

Equation (17) shows that the relevant VACF for the
calculation of the self-diffusion coefficient in the steady
representation is

Cωω(s) ≡ 1

d
〈ω1(s) · ω1(0)〉st . (18)

In this function, the trivial dependence on time occurring
in Eq. (2) through the temperature of the HCS has been
eliminated. In the following, attention will be focused on
analyzing the long time behavior of Cωω(s), that is important
for the calculation of the self-diffusion coefficient as well as
for the existence of the coefficient itself.

The VACF Cωω(s) is a spatially homogeneous function, but
it can be expressed as the volume integral of an inhomogeneous
quantity,

Cωω(s) = 1

d

∫
d r

∫
d r ′ 〈J(r,s) · J(r ′,0)〉st , (19)

where J is the microscopic current density of the tagged
particle,

J(r,s) ≡ w1δ[r − q1(s)]. (20)
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Next, following the ideas of Ernst, Hauge, and van
Leeuwen [4,29], the ensemble average in Eq. (19) will be
performed in two steps. First, a partial average for fixed values
of the “relevant” magnitudes is taken. Afterwards, the average
over the fluctuations of these magnitudes is carried out. The
relevant magnitudes in the present context are those which
are coupled to the velocity of the tagged particle and relaxing
slowly. Here, it will be assumed that they are the same for the
dynamics of a tagged particle in a granular gas in the HCS as
for self-diffusion in an elastic molecular fluid at equilibrium,
namely the local number density of the tagged particle and the
local momentum density. The reason is that they are conserved
quantities and, therefore, are expected to decay on a slow or
hydrodynamic time scale.

The microscopic density of the tagged particle at point r is
given by

N1(r) ≡ δ(r − q1). (21)

Instead of the local momentum density, the local velocity flow
W (r) will be employed. It is defined as

W (r) ≡ 1

n

N∑
j=1

ωj δ(r − qj ). (22)

In Fourier space, the above two quantities read

N1k = eik·q1 , (23)

Wk = 1

n

N∑
j=1

ωj e
ik·qj . (24)

A square (d = 2) or cubic (d = 3) system of side L will be
considered, and periodic boundary conditions employed. Now,
a constrained distribution in the modified phase space �̃ ≡
{qi ,ωi ; i = 1, . . . ,N}, for given macroscopic fields n1 and ũ,
of the relevant magnitudes, is defined as

ρ̃
(c)
st (�̃; {n1k ,̃uk}) =

∏
k δ(n1k − N1k)δ(̃uk − W k)ρ̃st (�̃)

P ({n1k ,̃uk}) ,

(25)

where

P ({n1k ,̃uk}) =
∫

d�̃
∏

k

δ(n1k − N1k)δ(̃uk − W k)ρ̃st (�̃).

(26)

The distribution P ({n1k ,̃uk}) can be understood as the proba-
bility density of a fluctuation of both the number of tagged
particles density and the local velocity fields. Note that
the constrained distribution defined by Eq. (25) is trivially
normalized in the modified phase space.

The time dependence in the VACF Cωω(s) can be made
explicit by means of the pseudo-Liouville operator L̃ of the
granular system in the scaled dynamics [9],

Cωω(s) = 1

d

∫
d r

∫
d r ′

∫
d�̃ J(r) · e−sL̃[ J(r ′)ρ̃st (�̃)].

(27)

Using the constrained distribution defined by Eq. (25) this can
be rewritten as

Cωω(s) = 1

d

∫ (∏
k

dn1kd ũk

)
P ({n1k ,̃uk})

×
∫

d r
∫

d r ′
∫

d�̃ J(r) · e−sL̃

× [
J(r ′)ρ̃(c)

st (�̃; {n1k ,̃uk})
]
. (28)

Consider the average of the current density in the restricted
steady HCS ensemble,

j (c)(r) ≡
∫

d�̃ J(r)ρ̃(c)
st (�̃; {n1k ,̃uk}). (29)

It seems sensible to assume that

j (c)(r) = n1(r )̃u(r), (30)

where n1(r) and ũ(r) are the inverse Fourier transformed of
n1k and ũk, respectively. Then, using the Parceval relation, it
is found that ∫

d r j (c)(r) = 1

V

∑
k

n1kũ−k, (31)

with V = Ld the volume of the system. The crucial hypothesis
of the theory will be introduced at this point. The right hand
side of Eq. (28) is split into a fast, kinetic relaxation towards a
local steady distribution followed by a much slower relaxation
controlled by hydrodynamics,

Cωω(s) = Cωω,kin(s) + Cωω,hyd(s). (32)

The concept of local steady state is a direct extension of the
widely used local equilibrium state of molecular systems. It is
a reference state in which the system is considered to be locally
in the steady HCS, but with the hydrodynamic field density
of tagged particle and flow velocity, being functions of space
and time [30]. In the following, attention will be restricted to
the second term on the right hand side of the above equation,
that is expected to dominate for s 	 srel , where srel is some
characteristic microscopic relaxation time, i.e.,

Cωω(s) 
 Cωω,hyd(s), (33)

for s 	 srel . Moreover, in the spirit of the above time scale
separation, it is assumed that in the hydrodynamic regime,

e−sL̃[
J(r ′)ρ̃(c)

st (�̃; {n1k ,̃uk})
] 
 j (c)(r ′)e−sL̃ρ̃

(c)
st (�̃; {n1k ,̃uk}).

(34)

Substitution of this expression into Eq. (28), and use of
Eq. (31), yields

Cωω,hyd(s) 
 1

V d

∑
k1

∫ (∏
k

dn1kd ũk

)
P ({n1k ,̃uk})

× n1k1 ũ−k1 ·
∫

d r
∫

d�̃ J(r)e−sL̃ρ̃
(c)
st

× (�̃; {n1k ,̃uk}). (35)

The next approximation is based once again on the same
physical picture. Since the density of the tagged particle and
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the local velocity flow evolve very slowly for small values of
the wave-number vector, the distribution function ρ̃

(c)
st adjusts

itself continuously, remaining with the same functional form
on the long time scale,

e−sL̃ρ̃
(c)
st (�̃; {n1k ,̃uk}) 
 ρ̃

(c)
st (�̃; {n1k(s),̃uk(s)}). (36)

Moreover, n1k(s) and ũk(s) are determined by the linearized
hydrodynamic equations (to Navier-Stokes order) with the
initial conditions n1k and ũk. This seems legitimate for small
enough wave vectors k. Thus it must be verified a posteriori
whether the long time behavior of Cωω is actually governed
by small wave numbers. When Eq. (36) is substituted into
Eq. (35) one gets

Cωω,hyd(s) 
 1

V d

∑
k1

∫ (∏
k

dn1kd ũk

)

×P ({n1k ,̃uk})n1k1 ũ−k1 ·
∫

d r j (c)(r,s), (37)

where Eq. (29) has been employed. If now Eq. (31) is taken
into account, the above expression can be rewritten as

Cωω,hyd(s) 
 1

V 2d

∑
k1

∑
k2

∫ (∏
k

dn1kd ũk

)
×P ({n1k ,̃uk})n1k1 · ũ−k1n1k2 (s )̃u−k2 (s). (38)

In linear hydrodynamics around the HCS, the fluctuations of
the density of the tagged particle and of the velocity flow are
not coupled, i.e., they are statistically independent. Moreover,
different wave vectors k are also uncoupled, so that

P ({n1k ,̃uk}) =
∏

k

Pn1 (n1k)Pũk (̃uk), (39)

where the marginal probability distributions Pn1 and Puk verify
the normalization conditions∫

dn1k Pn1 (n1k) =
∫

d ũk Pũk (̃uk) = 1. (40)

In addition, the isotropy of fluctuations in the HCS implies
that the only nonvanishing contributions in Eq. (38) are those
with k1 = −k2. In this way, it is obtained that

Cωω,hyd(s) 
 1

V 2d

∑
k

∫
dn1k

∫
d ũkPn1 (n1k)

×Pũk (̃uk)n1kn1−k(s )̃uk · ũ−k(s). (41)

IV. HYDRODYNAMIC FLUCTUATIONS

As indicated above, the linearized hydrodynamic equations
for a granular fluid will be used to evaluate the time evolution
of the fluctuations of the hydrodynamic fields. The diffusion
equation (1) in the s-time scale has the form(

∂

∂s
+ D̃k2

)
n1k(s) = 0, (42)

with

D̃ =
∫ ∞

0
ds Cωω(s). (43)

Here it has been assumed that the VACF decays fast enough so
the time integral on the right hand side of the above equation
exists, leading to a time-independent transport coefficient D̃.
Integration of Eq. (42) gives

n1−k(s) = n1−k(0)e−k2D̃s . (44)

The flow velocity fluctuations ũk can be decomposed into their
longitudinal and transversal components, ũk‖ and ũk⊥, defined
by

ũk‖ = ũk · k
k2

k, (45)

ũk⊥ = ũk − ũk · k
k2

k, (46)

respectively. In the new time scale s, ũ⊥ obeys the closed
equation [13] (

∂

∂s
− ω0 + η̃k2

)
ũk⊥(s) = 0, (47)

where η̃ is defined from the shear viscosity η by

η̃ = η

mn

(
T̃st

T (t)

)1/2

. (48)

The solution of Eq. (47) is

ũk⊥(s) = ũk⊥e(ω0−η̃k2)s . (49)

In this expression, it is manifest that perturbations of the
modified transversal velocity grow in time for small wave
vectors, i.e., in large enough systems. This is the origin of the
shearing instability of the HCS [22,23], in which strong density
inhomogeneities are developed. They are generated by nonlin-
ear coupling contributions of the transversal velocity [31]. To
avoid misunderstandings, it is important to realize that the
linear stability criterion for ũk⊥ following from Eq. (49) does
not depend on the arbitrary value of ω0. The critical value of
the wave-number vector k⊥, such that transversal modes with
k < k⊥ are unstable, is given by the solution of the equation

ω0 − η̃k2
⊥ = 0, (50)

that, using Eq. (16), is seen to be equivalent to

ζ −
(

1

2mT (t)

)1/2

ηk2
⊥ = 0. (51)

It is now clear that k⊥ does not depend on ω0 or T (t), since η

is proportional to T (t)1/2.
Now, the contributions to Cωω,hyd(s) from the fluctuations

of the longitudinal component of the flow field ũk‖ should
be considered. Determining its time evolution using the linear
hydrodynamic equations for a granular fluid is a rather involved
problem, since ũk‖ cannot be associated to a unique hydrody-
namic mode, and its functional form changes depending on the
range of values of the wave number considered [13]. Here the
focus will be on small systems, in which the allowed values of
k, i.e., compatible with the periodic boundary conditions, are
such that the system exhibits a soundlike hydrodynamic mode,
at least in dilute systems [13]. Then, it will be assumed that
the contribution from the longitudinal component of the flow
velocity to Cωω(s) for large s is subdominant, as is the case
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in systems of elastic particles [4,29]. Alternatively, neglecting
the contributions from the longitudinal component of ũ can be
considered as an incompressible fluid approximation.

Substitution of Eqs. (44) and (49) into Eq. (41) and use of∫
dn1k P (n1k)|n1k|2 = 1 (52)

leads to

Cωω,hyd(s) 
 eω0s

V d

∑
k

A(k)e−k2s (̃η+D̃), (53)

where

A(k) = 1

V

∫
d ũkP (̃uk) |̃uk|2. (54)

In Eq. (53) the range of values of k is restricted by km � k �
kM , where km is set by the system size, km = 2π/L, and kM is
of the order of 2π times the inverse of the mean free path. This
upper bound condition is needed to guarantee that the local
HCS varies slowly in space.

In elastic, molecular fluids in thermal equilibrium, the cal-
culation of the second moment of the velocity field fluctuations
is trivial. However, in a granular gas in the HCS, velocity
correlations are present, rendering the computation of A(k)
more difficult. Using inelastic fluctuating hydrodynamics, van
Noije et al. [32] computed the quantity

S⊥(k,t) ≡ 1

V (d − 1)
〈uk⊥(t) · uk⊥(t); 0〉HCS. (55)

Here u is the local flow velocity fluctuation in the original time
scale t . The result, in the notation used in this paper is

S⊥(k,t) = T (t)

mn

[
1 + e2ω0s(1−k2/k2

⊥) − 1

1 − k2/k2
⊥

]
. (56)

An equivalent result was obtained by using a single relaxation
model kinetic theory [33]. Moreover, in recent years, a
description of fluctuating hydrodynamics in dilute granular
gases more rigorous and complete than the one used in
Ref. [32] has been developed [34]. Nevertheless, for the values
of the coefficient of normal restitution to be considered here,
that correspond to the quasielastic limit, both theories lead
to results quantitatively indistinguishable for S⊥(k,t). For
systems in which the HCS is stable, it is km > k⊥, and the
long time limit of the above expression is

S⊥(k,t) = T (t)

mn

k2

k2 − k2
⊥

. (57)

It is worthwhile to point out that the result given by this
equation has the scaling property implied by the assumed form
of the distribution function of the HCS, Eq. (3), while Eq. (56)
does not. Then, taking into account the relationship between
the velocity fields in the time scales t and s, it is identified that

A(k) = (d − 1)T̃st

mn

k2

k2 − k2
⊥

. (58)

Introduction of this into Eq. (53) provides the explicit
expression for the hydrodynamic part of the steady VACF

of a granular gas in the HCS,

Cωω,hyd(s) 
 (d − 1)T̃st e
ω0s

mnV d

∑(′)
k

k2e−k2s (̃η+D̃)

k2 − k2
⊥

. (59)

The prime in the sum over k indicates the restriction imposed
by the two cutoffs mentioned before. This expression leads
to an exponentially increasing VACF on the time scale s

for values of k < kc ≡ ω0/(̃η + D̃). Nevertheless, this is not
physically relevant since the HCS is unstable in systems
large enough as to allow wave vectors with these values.
This is because kc < k⊥, where k⊥, defined by Eq. (50),
is the lower bound of the wave vector for the stability of
the HCS with regards to the shearing instability. Moroever,
in Eq. (59) Cωω,hyd(s) also exhibits a divergent amplitude
when km approaches k⊥. This divergence is just the shearing
instability, and clearly implies a divergent behavior of the self-
diffusion coefficient as given by the Green-Kubo expression,
Eq. (2), as the instability is approached.

V. TWO LIMITING TIME REGIMES OF THE VACF

In this section, two particular limits of Eq. (59) will be
investigated. Suppose first that L � Lc, where Lc is the critical
size of the system for the shearing instability, i.e. [see Eq. (51)],

Lc = 2π

(
η̃

ṽst ζ

)1/2

, (60)

where ṽst ≡ (2T̃st /m)1/2. Then it is(
k

k⊥

)2

�
(

2π

Lk⊥

)2

	 1 (61)

for all the allowed values of k. It follows that Eq. (59) can be
approximated by

Cωω,hyd(s) 
 (d − 1)T̃st e
ω0s

mnV d

∑(′)
k

e−k2s (̃η+D̃). (62)

A useful representation of this expression can be obtained by
means of the d-dimensional Poisson-sum formula [35]

L−d
∑

n

g

(
n

L

)
=

∑
l

∫
d r e−2πiLl ·rg(r), (63)

where n and l are d-dimensional vectors whose components
are integers, the summations extend from −∞ to +∞ for each
of the components of n and l , and the r integration extends
over the infinite d-dimensional space. Indeed, use of Eq. (63)
into Eq. (62) yields

Cωω,hyd(s) 
 (d − 1)T̃st e
ω0s

mnd

[
1

4π (̃η + D̃)s

]d/2

×
∑

l

e−l2L2/4(̃η+D̃)s . (64)

Consider times s such that

s � s0 = L2

4(̃η + D̃)π2
. (65)

Taking into account that it has been supposed that L � Lc

and Eq. (50), it is easy to verify that the above condition also
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implies that

ω0s � 1. (66)

As a consequence, Eq. (64) reduces to

Cωω,hyd(s) 
 (d − 1)T̃st

mnd

[
1

4π (̃η + D̃)s

]d/2

. (67)

This prediction is expected to be valid for short times on
the hydrodynamic scale, in the sense of being s � s0, but,
on the other hand, the equation only holds after all the fast
nonhydrodynamic modes have decayed. It is important to
compare this result with the long time tails the of the VACF
in an equilibrium molecular system. Formally, the derived
expressions in both cases look the same [4,29], but there
are relevant conceptual differences. The time scale s used in
Eq. (67) is related with the original time scale t by Eq. (8), so
that the algebraic s−1 decay transforms into an even slower
logarithmic decay on the time scale t . Actually, the time
scale s is proportional to the cumulated number of collisions
per particle for a system of inelastic hard spheres or disks
in the HCS [9]. In a molecular system in equilibrium, this
number is just proportional to t . Another, more significant,
difference is that Eq. (67) has been obtained here as valid in an
intermediate time regime, while the corresponding expression
in a molecular system has been usually derived as valid
for asymptotically long times or, more precisely, for all the
hydrodynamic decay of the VACF. The reason for this strong
difference is that in molecular systems, the thermodynamic
limit was considered, while in the present case such a limit
cannot be taken, at least in the usual way, for the HCS due to
the shearing instability. A particularly enlightening discussion
of the finite size effects in the evaluation of the VACF in a
molecular system can be found in Ref. [36]. A final comment
on Eq. (67) seems appropriate. Although the time scale in
which the behavior predicted by this equation holds depends
on the size L of the system, the shape of the VACF in that
time region is independent of L, as long as it is well inside the
range in which the HCS is stable with regard to the shearing
instability.

The second relevant limit of Eq. (59) to be considered is its
asymptotic behavior for very large times. It will be supposed
now that s 	 s0, with s0 given by Eq. (65). In this limit, it is
evident that contributions with the smallest possible value of
k, km, will dominate in Eq. (59). Taking into account that in a
square or cubic geometry with periodic boundary conditions
there are d modes with k = km, one gets

Cωω,hyd(s) 
 (d − 1)T̃st

mnV

k2
me−[k2

m (̃η+D̃)−ω0]s

k2
m − k2

⊥
. (68)

Note that the stability condition for the HCS, η̃k2
m > ω0,

implies that Cωω,hyd(s) always decays exponentially in the
asymptotic long time limit in the scale s. On the other hand,
the amplitude of the decay diverges as the instability is
approached.

VI. MOLECULAR DYNAMICS SIMULATION RESULTS
FOR THE VACF

In order to check the accuracy of the theory developed
in the previous sections, event driven molecular dynamics
(MD) simulations of a system of inelastic hard disks have been
performed. The coefficient of restitution has been always taken
as α = 0.99, while the number density has been varied in the
interval 0.231 � nσ 2 � 0.385. The maximum and minimum
density values in the interval correspond to densities studied
by Alder and Wainwright in their seminal paper [1], so a
direct comparison with their results for elastic systems is
possible. Simulations with different numbers of particles in
the range 500 � N � 1000 have been carried out for each
density, modifying accordingly the size L of the system. By
estimating the critical wave number for the shearing instability
of the HCS, k⊥, using the transport coefficients and the cooling
rate obtained by means of the revised Enskog theory for
inelastic hard disks [37], it is found that in all the simulations
considered, the minimum wave number allowed, km, is
significantly larger than k⊥. Moreover, it was always checked
in the simulations that the system remained homogeneous and
with no appreciable velocity vortices. This latter condition is
especially relevant in the present context, since the fluctuations
of the transversal velocity play a dominant role in the long time,
hydrodynamic behavior of the VACF. Attention has also been
paid to consider times such that the particles do not interact
with their images in other cells. To avoid it, Erpenbeck and
Wood [36] suggested to consider times smaller than the time
a sound wave takes to travel a distance equal to the linear size
of the system L. This criterium is adopted in most studies of
the VACF; see for instance [38], and has also been used here.

In the simulations, the steady representation of the HCS
discussed in Sec. II has been used. Although it is not relevant
for the results presented below, let us mention that the value of
the parameter ω0 was chosen such that, if the Enskog theory
were exact, the value of the steady temperature, as predicted
by Eq. (16), would be the same as the initial one T̃st = T̃ (0). In
all the simulations, the applied procedure was as follows. The
system was prepared in an initial spatially homogeneous state,
with a Gaussian velocity distribution. This initial state was
allowed to evolve with the modified dynamics and periodic
boundary conditions, until a steady state was reached. Then,
the VACF was measured. The results were averaged over
several trajectories, typically a few hundreds.

As already pointed out, the prediction about the existence
of a hydrodynamic period over which the VACF exhibits a
power-law decay in the s time scale, and the specific form
of this decay, do not involve the size of the system, aside
from requiring it to be smaller than the critical size for the
shearing instability, as can be seen in Eq. (67). Nevertheless,
when computing the VACF from MD simulations, there are
two main (related) reasons for which the finite size of the
system must be taken into account to compare numerical
results with the theoretical predictions. The first reason is due
to conservation of the total momentum of the system [39], that
implies that a given particle is actually moving in a fluid with
a nonzero average velocity. The second cause is the difference
between the ensemble in which the theory is developed and
the one used in the simulations [36]. Both effects have been
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FIG. 1. (Color online) Dimensionless normalized VACF fω(s)
for a system of inelastic hard disks in the HCS. Time s is measured in
units of [T̃ (0)/mσ 2]1/2, where T̃ (0) is the initial granular temperature
of the system. The coefficient of normal restitution is α = 0.99 and
the density is nσ 2 = 0.385. Different numbers of particles (and sizes
of the system) have been used in the simulations, as indicated in the
inset.

analyzed and quantified for molecular systems in equilibrium,
but the arguments used in this case are not easy to extend to
the present intrinsic nonequilibrium system with the particles
submitted to an effective acceleration. Then, a heuristic view
will be adopted. It will be assumed, as is the case in elastic
systems, that both effects scale with N−1 to leading order,
and the proportionality constant will be determined from
the simulations themselves. Of course, the simulations also
provide a test, a posteriori, of whether the leading dependence
on N is indeed the assumed one.

In Fig. 1, the results obtained for the decay of the VACF
in a system with density nσ 2 = 0.385 and different values of
the number of particles N are shown. The quantity actually
plotted is the dimensionless VACF, fω(s), defined as

fω(s) ≡ mCωω(s)

T̃st

. (69)

Although small, the dependence of the results on the number
of particles is clearly identified in the figure and, at a given time
s, the VACF is smaller the smaller the system. To investigate
the dependence on N , three different times, representative of
the hydrodynamic relaxation of the VACF, were considered.
At each of these times, the values of the VACF, obtained
in systems with different sizes but the same density, were
analyzed. The results are given in Fig. 2. The solid lines are
linear fits at each time, the slope of the fitting being very similar
for the three times considered, namely 2.93 ± 0.08. This slope
is about three times the one predicted and observed in elastic
systems at equilibrium, showing that the dependence on the
number of particles is larger for inelastic particles in the HCS
than for molecular systems at equilibrium.

Denoting the VACF measured in the MD simulations with
N particles by fω,N (s), it is concluded that the extrapolated
value, for an infinite system, is given by

fω(s) 
 fω,N (s) + 2.93N−1. (70)

0.001 0.0015 0.002
1/N

0.01

0.02

0.03

0.04

fω

FIG. 2. (Color online) Values of the dimensionless normalized
VACF fω as a function of the inverse of the number of particles
N of the system. The coefficient of normal restitution is α = 0.99
and the density nσ 2 = 0.385. The symbols are simulation results
at three different times, namely s = 2.6 (black), s = 5.0 (red), and
s = 7.2 (green), from top to bottom. Time s is measured in units of
[T̃ (0)/mσ 2]1/2, where T̃ (0) is the initial granular temperature of the
system. The straight lines are linear fits of the simulation data. The
values of the slopes of the three lines are very close.

The modified curves, obtained by adding this correction
to the measured VACF reported in Fig. 1, are plotted in
Fig. 3. It is observed that the collapse of the several curves
is very good, especially for s � 20[T̃ (0)/mσ 2]1/2. Similar
results have been obtained for other densities in the interval
considered. Moreover it is found that the prefactor of N−1 in
the finite size correction term increases as the density increases.
On the other hand, in the elastic case, it is always equal to unity,
independent of the density.

Before proceeding any further, the above limiting process
must be put in a proper context. It is not claimed that the
derived results hold in the limit of an infinite system. This
is not true, since an infinite system of inelastic hard spheres

0 5 10 15 20
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0.06

0.08
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fω

N=1000
N=900
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N=600
N=500

FIG. 3. (Color online) The same as in Fig. 1, but now the finite
size correction given in Eq. (70) has been added to each curve.
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or disks cannot exist in the HCS, because it is very unstable.
What has been done is to take into account the conceptual
differences between theory and MD simulations, due to the
use of different physical conditions as indicated above, realize
that they scale with the inverse of the number of particles, and
eliminate those differences to carry out a fair comparison.

VII. POWER-LAW TAIL OF THE VACF

Once it is known how to translate the MD numerical results
for the VACF into results corresponding to the conditions under
which the theory is developed, the existence of a time region in
which the VACF presents a power-law time tail, as predicted
by Eq. (67), will be investigated. As mentioned in the previous
section, the observation time in the simulations is limited by
the size of the system. Since, once corrected, the resulting
VACF does not depend on the number of particles used, only
results with the largest number of particles compatible with the
stability of the system, namely N = 1000, will be presented
from now on. In any case, only results for times s shorter than
the time it takes a sound wave to cross the system will be
shown.

In Fig. 4, the scaled VACF of a system of inelastic hard disks
is shown, both as a function of time s/sE and as a function
of (s/sE)−1, for two different densities, nσ 2 = 0.231 and
nσ 2 = 0.385, respectively. Here

sE ≡
(

m

πT̃st

)1/2 1

2σnχ
(71)

is the mean free time between collisions in the steady
representation of the HCS and computed using the Esnskog
theory, so that χ is the equilibrium pair distribution for hard
disks at contact. This is a convenient dimensionless time scale
to compare results corresponding to different densities, since
it is proportional to the cumulative number of collisions per
particle which is the relevant time scale for the relaxation of
the system. As expected, the velocity correlations are more
persistent, i.e., they decay slower, the denser the system.
Moreover, a clear region exhibiting a linear dependence on
s−1 is identified, in qualitative agreement with the theoretical
prediction. To carry out a quantitative comparison between
the simulation results and Eq. (67), the latter (with d = 2) is
substituted into Eq. (69), and the result is rewritten in the form

fω,hyd 
 αD

(
s

sE

)−1

, (72)

where the amplitude αD of the tail is given by

αD = 1

8πnsE (̃η + D̃)
. (73)

Equation (72) is of the form considered in the original paper
by Alder and Wainwright [1], and also by other authors [3].

The slope of the fits to straight lines of the linear in (s/sE)−1

regions observed in the decay of the dimensionless VACF fω(s)
obtained in the MD simulations, provides the values of the tail
amplitude. In Fig. 5, αD is plotted as a function of the number
density nσ 2 of the system. The symbols are the results from
the MD simulations. In addition to the results for inelastic
disks with a coefficient of normal restitution α = 0.99 (red

0 10 20 30 40
s/sE

0
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0.2

fω

n    =0.231
n    =0.385

σ2

σ2

0 0.05 0.1 0.15

(s/sE)
-1

0

0.01
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fω
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n    =0.385
σ2

σ2

FIG. 4. (Color online) VACF for an inelastic system of hard disks
with a coefficient of normal restitution α = 0.99 and two different
values of the density, as indicated in the inset. The results have been
obtained in a system with 1000 particles, and finite size effects have
been corrected as discussed in the main text.

squares), MD values for a system of elastic hard disks (black
circles) have also been included. The latter agree with those
reported by Alder and Wainwright many years ago [1,36]. The
solid line is the theoretical prediction given by Eq. (73), using
the expressions for the inelastic transport coefficients derived
in the Enskog approximation [37,40], and the Henderson
value [41] for the pair distribution function at contact. The
consistency of using the bare transport coefficients to compute
the algebraical tails will be discussed in the last section of
the paper. For the sake of completeness, these expressions
are reproduced in the Appendix. Actually, the theoretical
prediction for the amplitude of the tail for an inelastic
system with α = 0.99 is undistinguishable from the theoretical
prediction for a system of elastic hard disks. However, the
different physical nature of the states considered in both cases
must be kept in mind. In particular, it is worthwhile to insist
on that a s−1 decay of the scaled VACF corresponds to a decay
(t ln t)−1 of the VACF in the original time (and velocities)
scale. As already known [3], the agreement between theory
and simulations is quite good in the elastic case. For inelastic
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FIG. 5. (Color online) Tail amplitude αD as a function of the
number density of the system. The symbols are simulation results:
the (black) circles are for a system of elastic hard disks and the (red)
squares for a system of inelastic hard disks with a coefficient of normal
restitution α = 0.99. The solid line is the theoretical prediction using
the mode-coupling theory developed in the main text and the transport
coefficients obtained from the revised Enskog theory. On the scale of
the figure, the predictions for the elastic and the inelastic systems are
undistinguishable.

systems, the comparison can still be considered as satisfactory,
although it is clear that the effects of the inelasticity are much
larger than predicted by the theory; the inelastic tail amplitude
is up to 15% larger than the elastic value at the highest density
considered.

VIII. CONCLUDING REMARKS

Using mode-coupling theory, an approximate expression
for the hydrodynamic, long time, part of the relaxation of the
VACF of a finite granular gas in the HCS has been derived.
The analysis parallels in several aspects the one carried out
for elastic systems, but there are many relevant quantitative
and conceptual differences. First, the correlation function
considered here corresponds to the modified dynamics defined
by Eqs. (10) and (11), in which the particles are submitted to
an acceleration, as a consequence of a change in the original
time scale. The new time scale measures the average number of
collisions per particle, and plays a crucial role for the study of
response functions in nonequilibrium systems [7,9,12]. The
self-diffusion transport coefficient of the granular gas can
be expressed in terms of a one-time VACF computed in a
steady state only in the modified dynamics. Then, it is the time
behavior of the correlation function in the modified dynamics
that is relevant for computing the transport coefficient by
means of the Green-Kubo expression.

Another important difference between molecular systems
at equilibrium and granular gases in the HCS lies in the
meaning of taking the thermodynamic limit in the MD
simulations. At a theoretical level, the HCS can be considered
and analyzed at arbitrary size, density, and value of the
coefficient of normal restitution, and this legitimates its use
as a reference homogeneous state. On the other hand, in
the simulations a very serious limitation shows up due to

0.001 0.0015 0.002 0.0025
1/N
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0.03
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0.09

fω

FIG. 6. (Color online) Values of the dimensionless normalized
VACF fω as a function of the inverse of the number of particles N

of the system. The coefficient of normal restitution is α = 0.98 and
the density nσ 2 = 0.3. The symbols are simulation results at three
different times, namely s = 2.4 (black), s = 5 (red), and 10 (green),
from top to bottom. Time s is measured in units of [T̃ (0)/mσ 2]1/2,
where T̃ (0) is the initial granular temperature of the system. The
straight lines are linear fits of the simulation data in the region where
this behavior is observed. The values of the slopes of the three lines
are very close.

the shearing instability. At fixed density, as the coefficient of
normal restitution decreases, the size of the system for which
the HCS remains stable decreases rather fast. At moderate
densities, only granular gases of inelastic hard spheres or disks
with a very small number of particles can be simulated in the
HCS. This limitation is especially severe when the interest is
on the long time behavior of a given property, as is the case
here. Actually, it is quite difficult to reach the time window
for which the velocity-autocorrelation function has a power-
law decay for values of the restitution coefficient not very
close to 1.

To illustrate the effect of approaching the instability, in
Fig. 6 the VACF of a system in the HCS with α = 0.98 is
shown at three different times as a function of the inverse of
the number of particles N . The density of the system is in
all cases nσ 2 = 0.3. For small enough systems (N � 700),
a linear in N−1 fit is accurate, similar to what happens for
α = 0,99 and nσ 2 = 0.385 in Fig. 2. The measured slope now
is 5.17 ± 0.69, which is two times the value for α = 0.99 and
the same density. On the other hand, for N � 700, a departure
from the linear dependence is clearly observed. We expect this
behavior to be due to the proximity of the instability and the
presence of large fluctuations of the transversal velocity field,
as predicted by the factor of (k2 − k2

c )−1 in the addends in
Eq. (59). All the results reported in the figure correspond to
states in which all the hydrodynamic fields were observed to
stay homogeneous. Therefore, it seems that the hydrodynamic
part of the VACF has a divergent behavior as the shearing
instability is approached. The same must happen with the
(apparent) self-diffusion coefficient.

In two-dimensional molecular systems, it was realized
that the analysis similar to the one reported in this paper is
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internally inconsistent. The reason is that it is assumed in the
derivation that a finite self-diffusion constant D exists. But
the asymptotic t−1 long time tail of the VACF implies that
the Green-Kubo expression for the self-diffusion coefficient
diverges as ln t . It is worthwhile to mention that more refined
mode-coupling theories using a time-dependent expression
for the self-diffusion coefficient have led to the prediction
that the t−1 decay corresponds to intermediate times, while
a slightly faster decay, namely as (t

√
ln t)−1 is expected at

later times. Nevertheless, this has never been confirmed by
numerical simulations [42,43]. The view adopted here, and
consistent with the results reported, is that the influence
of the time tail on the observed value of the self-diffusion
coefficient remains negligible over a time scale going well
into the time scale in which the s−1 tails can be observed.
On this scale, D, given by the Green-Kubo expression,
appears as constant, the contribution from the tails remaining
very small. What happens at the far end of the region in
which the self-diffusion coefficient seems to be constant
remains an open question, except by the mentioned theoretical
predictions.

A completely different question is the influence of the
clustering instability on the observed self-diffusion coefficient
in a finite system as the shearing instability is approached. This
is a very interesting issue that deserves further investigation.
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APPENDIX: COOLING RATE AND TRANSPORT
COEFFICIENTS IN ENSKOG THEORY

In this Appendix, the expressions for the cooling rate
and the transport coefficients of a system of inelastic hard
spheres or disks of mass m, diameter σ , and constant
coefficient of restitution α, obtained by using the Enskog
approximation [37], are given for the sake of completeness.
The cooling rate ζ is

ζ = ζ ∗ nT

η0
, (A1)

where η0 is the elastic value of the shear viscosity in the dilute
limit,

η0 = (d + 2) �(d/2)

8π (d−1)/2
(mT )1/2σ−(d−1). (A2)

The reduced cooling rate ζ ∗ is given by

ζ ∗ = χ
d + 2

4d
(1 − α2)

(
1 + 3

16
a2

)
, (A3)

with a2 the first coefficient of the Sonine expansion of the HCS
distribution [24,44],

a2 = 16(1 − α)(1 − 2α2)

9 + 24d + (8d − 41)α + 30(1 − α)α2
. (A4)

The shear viscosity η is

η = ηk

[
1 + 2d−1

d + 2
φχ (1 + α)

]
+ d

d + 2
γ, (A5)

where ηk is the kinetic contribution to the viscosity,

ηk = η0
1

ν∗
η − 1

2ζ ∗

[
1 − 2d−2

d + 2
(1 + α)(1 − 3α)φχ

]
, (A6)

while γ is the bulk viscosity, that vanishes in the dilute limit,

γ = η0
22d+1

(d + 2)π
φ2χ (1 + α)

(
1 − 1

16
a2

)
. (A7)

In the above expressions, ν∗
η is

ν∗
η = χ

3

4d

(
1 − α + 2d

3

)
(1 + α)

(
1 − a2

32

)
, (A8)

and φ is the volume fraction,

φ = πd/2

2d�
(
1 + d

2

)nσd. (A9)

Finally, the bare self-diffusion coefficient is given by [45]

D = 4

(1 + α)2
(
1 + 3a2

16

) �(d/2)d

4π (d−1)/2nχσd−1

(
T

m

)1/2

. (A10)

In the particular case of hard disks, d = 2, the pair
distribution function at contact χ is [41]

χ = 1

(1 − φ)2

(
1 − 7φ

16

)
. (A11)
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