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The Green-Kubo relations for dilute granular gases are employed to compute their transport coefficients by
means of the direct simulation Monte Carlo method. This requires not only to follow the dynamics of the
system, but also to identify some modified fluxes appearing in the time-correlation functions. The results are
compared with those obtained from the Boltzmann equation by means of the Chapman-Enskog procedure in
the first Sonine approximation. A good agreement is found for the shear viscosity over a wide range of
inelasticities. Nevertheless, for the two transport coefficients associated with the heat flux, significant discrep-
ancies appear for strong inelasticity. Their origin is discussed, showing that they are partially due to the
presence of velocity correlations in the homogeneous cooling state of a dilute granular fluid.
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I. INTRODUCTION

Hydrodynamics has been extensively used with clear suc-
cess to describe the behavior of low-density, rapid granular
flows [1–4]. From a theoretical point of view, the appropriate
context to address fundamental issues is provided by the ki-
netic theory and nonequilibrium statistical mechanics meth-
ods. This includes the existence itself of a macroscopic de-
scription analogous to the one provided by the Navier-Stokes
equations for molecular gases, the form of these equations,
and the explicit expressions of the transport coefficients ap-
pearing in them. The prototypical idealized model for a
granular gas is a system of smooth inelastic hard spheres or
disks, the inelasticity being characterized by a constant coef-
ficient of normal restitution. For this model, hydrodynamic
equations have been derived starting from the Boltzmann
equation and using the Chapman-Enskog procedure[5,6].
The accuracy of some of these results has been confirmed via
the direct Monte Carlo simulation(DSMC) method, at least
for moderate dissipation[7]. Nevertheless, and to put them in
a proper context, it must be emphasized that the method used
in the derivation is formal, in the sense that it does not de-
termine the range of validity of the obtained hydrodynamic
description[8].

A limitation of the explicit expressions for the transport
coefficients as derived in the works mentioned above, is that
it leads to rather complicated differential equations. Then, in
practice, one has to resort to expansions in orthogonal poly-
nomials, restricting the evaluation to the lowest orders, with-
out any solid justification about the accuracy of such ap-
proximation.

Recently, the transport coefficients of a granular gas fol-
lowing from the Boltzmann equation, have been expressed in
the form of low density Green-Kubo relations[9,10]. They
involve averages, with the one-particle distribution function
of the homogeneous cooling state, of the product of two
one-particle dynamical properties computed at different
times. The time dependence is defined by means of a linear
Boltzmann collision operator. As expected, they differ from
those for molecular systems in many relevant ways, due to
the energy dissipation in collisions.

Although much more complicated than the expressions
for molecular fluids, the Green-Kubo relations for a dilute

granular gas can also be transformed in a form that is suit-
able for evaluation by means ofN-particle simulation tech-
niques. The general strategy to be followed has been dis-
cussed in detail in Ref.[12]. It is based on the property that
the dynamics of a granular system in the time-dependent
homogeneous cooling state(HCS) can be exactly trans-
formed into a different dynamics around a stationary state
[13]. Moreover, in order to transform the one-particle prob-
lem into an equivalentN-particle one, the same assumptions
as needed to derive the Boltzmann equation are used. In
particular, it is assumed that velocity correlations of colliding
particles are negligible in the HCS.

In this paper, we present simulation results obtained by
employing the above method. This is relevant for several
reasons. The accuracy of truncating the polinomial expan-
sion, as carried out when deriving analytical expansions for
the transport coefficients by the Chapman-Enskog method, is
not knowna priori. There is no reason to expect the same
level of errors as in the case of elastic, molecular systems. A
second, and more fundamental, possible source of discrep-
ancy between the simulation results and the Chapman-
Enskog predictions, can be the presence of relevant velocity
correlations in the HCS, even in the very dilute limit. Al-
though it is not easy to disentangle in practice both effects
from the simulation data, it will be shown that some relevant
information can be obtained.

Moreover, the analysis presented here provides informa-
tion about the decay of the correlation functions between the
fluxes and the dynamical variables coupled to them. The lat-
ter are in fact closely related with the eigenfunctions of the
linearized Boltzmann equation corresponding to the hydro-
dynamic modes of a dilute granular gas[8,10]. The fast
enough decay of the correlation functions is a necessary con-
dition for the existence of a hydrodynamic description. Fi-
nally, although the form of the Green-Kubo relations for
dense granular fluids is not known, it can be expected, on the
basis of what happens in molecular systems, that their struc-
ture will not differ too much from their dilute limit. Conse-
quently, the present analysis may enlighten the study of
denser systems.

Green-Kubo relations for arbitrary densities have been de-
rived in Ref. [14], by considering the linear response func-
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tion to spacial perturbations of the HCS given by linear com-
binations of the local densities of mass, momentum, and
energy. The low density limit of the expressions derived in
this way differ from those being used in this work, which are
consistent with the formal Chapman-Enskog result(before
introducing any polinomial expansion). The origin of this
discrepancy is discussed in Ref.[9] and is related with the
form of the eigenfunctions of the linearized inelastic Boltz-
mann collision operator[10].

The plan of the paper is as follows. In the next section, the
Green-Kubo relations for dilute granular gases are shortly
reviewed, as well as the steady representation of the HCS
and its implementation inN-particle simulations. In Sec. III,
the DSMC method to be used in the simulations is described.
Besides, the results for the velocity distribution function
needed for the identification of the modified fluxes appearing
in the Green-Kubo relations are reported.

The evaluation of the transport coefficients is addressed in
Sec. IV. All the involved time correlation functions are found
to decay in an exponential way. Moreover, a fairly good
agreement over a wide range of values of the inelasticity is
found between the simulation results for the shear viscosity
and the theoretical predictions obtained from the Boltzmann
equation in the first Sonine approximation. Nevertheless, the
presence of relevant velocity correlations manifests itself
very clearly for small values of the restitution coefficient.
For the transport coefficients associated to the heat flux, al-
though the agreement is fairly good at low and moderate
inelasticities, systematic deviations occur for strong dissipa-
tion. The accuracy of some analytical approximations for the
modified fluxes present in the correlation functions is dis-
cussed as well. Also included is a comparison of the simula-
tion results for the transport coefficient coupling heat flux
and density gradient with some recent measurements directly
based on the hydrodynamic description of a vibrated granu-
lar gas[11]. Finally, Sec. V contains a short summary of the
results and some additional comments.

II. GREEN-KUBO EXPRESSIONS FOR THE TRANSPORT
COEFFICIENTS

The expressions for the pressure tensor,Pijsr ,td, and heat
flux, qsr ,td, to Navier-Stokes order for a dilute granular gas
of dimensiond are given by[5,6]

Pij = pdi j − hS ]ui

]r j
+

]uj

]r i
−

2

d
di j = ·uD , s1d

q = − k = T − m = n, s2d

where p is the pressure,T the temperature,u the velocity
flow, andn the number of particles density. Moreover,h is
the shear viscosity,k the (thermal) heat conductivity, andm
another transport coefficient that vanishes in the elastic limit
and will be referred to as the diffusive heat conductivity.
Explicit expressions for the above transport coefficients have
been derived from the Boltzmann equation for smooth in-
elastic hard spheressd=3d and diskssd=2d of massm and
diameters, by using the Chapman-Enskog procedure, eigen-

function expansions, and also linear response theory, finding
equivalent results. Moreover, it was shown[9,10] that the
transport coefficients can be written in the form of Green-
Kubo relations. A particularly useful representation for
N-particle simulations is obtained by exploiting an exact
mapping of the HCS of a granular fluid onto a steady state
[13] and assuming that, if there are the(one-time) velocity
correlations present in the HCS, their effect can be neglected
when computing the two-time correlation functions. The de-
tails of this steady representation for a dilute gas have been
discussed in Ref.[12], where the particular case of the self-
diffusion coefficient was addressed. The analysis of the
transport coefficients considered here proceeds in exactly the
same way and, therefore, we directly quote the final
expressions:

hsTd =
nmv0sTd

ṽ0,stN
E

0

`

dtkDxysv,tdF2,xysv/ṽ0,stdlste
−v0t, s3d

ksTd =
nkBv0sTd

N
E

0

`

dtkS̃xsv,tdF3,xsv/ṽ0,stdlste
v0t, s4d

msTd =
mv0

3sTd
N

E
0

`

dtkS̃xsv,tdF3,xsv/ṽ0,stdlstsev0t − 1d

+
mv0

3sTd
2ṽ0,stN

E
0

`

dtkS̃xsv,tdvxlst. s5d

In the above expressions,v0 is an arbitrary positive constant,
N is the number of particles in the system,kB is the Boltz-
mann constant,v0;s2kBT/md1/2 is the thermal velocity, and

ṽ0,st;s2kBT̃st/md1/2, where T̃st will be identified below.
Moreover, we have used the definitions

Dxysvd = vxvy, s6d

S̃xsvd = S v2

ṽ0,st
2 −

d + 2

2
Dvx, s7d

F2,xyscd = − cx
] ln xHCSscd

]cy
, s8d

F3,xscd = −
cx

2
Fd + c ·

] ln xHCSscd
]c

G . s9d

The functionxHCSscd is defined from the one-particle distri-
bution of the HCS,fHCSsv ,td, through

fHCSsv,td = nv0
−dfTstdgxHCSscd, c =

v

v0fTstdg
, s10d

and it is an isotropic function of the vectorc. The angular
brackets in Eqs.(3)–(5) denote averages defined by

kasv,tdbsvdlst =E dr E dv f̃ stsvdasv,tdbsvd s11d

with
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f̃ stsvd = nṽ0,st
−d xHCSS v

ṽ0,st
D . s12d

Finally, the time dependence of the dynamical variables is
given by

asv,td = etL̄stasvd. s13d

HereL̄st is some linear operator involving both a Boltzmann
collision term and also a streaming contribution proportional
to v0 [12]. Its explicit form will not be needed here.

The relevant point for the analysis to be carried out in this
paper is that, if velocity correlations in the HCS are assumed
to be negligible in the low density limit, in this limit expres-
sion (11) is equivalent to the time-correlation function

CAB,ststd = kAstdBlN,st − kAlN,stkBlN,st, s14d

where

kAlN,st =E dGrstsGdAsGd, kBlN,st =E dGrstsGdBsGd,

s15d

kAstdBlN,st =E dGrstsGdAsG,tdBsGd, s16d

with G denoting a point in the phase space of the system,
G;hRi ,V i ; i =1, . . . ,Nj, and

AsGd = o
i=1

N

asV id, BsGd = o
i=1

N

bsV id. s17d

Moreover, AsG ,td;AfGstdg is generated fromAsGd by a
modified particle dynamics consisting of an accelerating
streaming between collisions,

]

]t
Ristd = V istd, s18d

]

]t
V istd = v0V istd, s19d

while the effect of a collision between particlesi and j is to
instantaneously alter their velocities according to

V i → V i8 = V i −
1 + a

2
sŝ ·V i jdŝ,

V j → V j8 = V j +
1 + a

2
sŝ ·V i jdŝ, s20d

whereV i j ;V i −V j andŝ is the unit vector pointing from the
center of particlej to that of particlei at contact. The param-
eter a is the coefficient of normal restitution characterizing
the inelasticity of collisions. It is defined in the interval
0,aø1 and is considered here as a constant, independent
of the relative velocities. Under this dynamics, the system is
expected to reach a steady state after a short transient period
[12,13,15]. In the steady state, the energy dissipated in col-
lisions is balanced by the effect of the acceleration between

them. The functionrstsGd in Eqs. (15) and (16) is the
N-particle distribution function corresponding to this steady

state. Moreover,T̃st, introduced implicitly above through
ṽ0,st, is the temperature parameter of the steady state, i.e.,

dNkBT̃st/2=kEsGdlN,st, with E being the total kinetic energy

of the system. The value ofT̃st is related with the cooling rate
of the HCS,zHCSstd, by [12,15]

T̃st = S2v0

z̄
D2

, z̄ =
zHCSstd
THCS

1/2 std
. s21d

Since all the time dependence ofzHCSstd occurs through the

temperature and it is proportional toTHCS
1/2 , it follows that z̄

does not depend on time.
The dynamics defined by Eqs.(18)–(20) can be easily

implemented in particle simulations. Then, molecular dy-
namics(MD) simulations could be used to evaluate the trans-
port coefficients as given by Eqs.(3)–(5). Of course, in this
case one should keep in mind that Eqs.(11) and (14) are
expected to be equivalent only in the low density limit. An-
other possibility is to employ the DSMC method[16], which
is specially designed to simulate theN-particle dynamics of a
system in the low density limit. An important advantage of
the DSMC method in the present context, as compared with
MD simulations, is that it allows to particularize the dynam-
ics of the system for the case of homogeneous situations,
therefore eliminating the spontaneous development of the
spacial inhomogeneities following from the long wavelength
hydrodynamic instability exhibited by the HCS[17].

As already mentioned in the Introduction, the structure of
Eqs. (3)–(5) differs from the standard forms for the Green-
Kubo expressions for molecular(elastic) systems in several
ways. First, the averages are taken over the velocity distri-
bution corresponding to the steady state reached by the sys-
tem under the modified dynamics. This distribution is differ-
ent from the Maxwellian for alla,1. Second, the time
correlation functions appearing in the expressions are not
constructed from the momentum and energy fluxes,Dxy and

S̃x, alone. Each of them is paired with another function, a
“modified flux,” which is related with the derivative of the
velocity distribution of the HCS. Third, the time evolution of
the dynamical variables is not defined in terms of the particle
Newton equations of motion, but includes a friction term.
Finally, the time integrals contain, in addition to the time
correlation functions, exponential in time factors, due to the
collisional cooling of the HCS.

III. THE SIMULATION METHOD

In order to evaluate the transport coefficients from Eqs.
(3)–(5), we have used the DSMC method to simulate the
N-particle dynamics of a dilute granular gas[16,18]. Since
we are interested in computing averages and time correla-
tions of position-independent properties in a homogeneous
state, the positions of the particles play no role in the simu-
lations, and it is enough to consider just one cell in configu-
ration space. In other words, every pair of particles in the
system can collide with a probability depending only on their

SIMULATION STUDY OF THE GREEN-KUBO… PHYSICAL REVIEW E 70, 051301(2004)

051301-3



relative velocity. Consequently, neither the size of the system
nor boundary conditions must be specified.

In the simulations to be reported here, we have considered
a system ofN=104 hard diskssd=2d. The results will be
expressed in the following units. The unit of mass is the mass
m of a particle and the unit of length is,=snsd−1d−1, which
is proportional to the mean free path. The unit of time is

,f2kBT̃s0d /mg−1/2, where T̃s0d is the initial scaled tempera-
ture. Moreover, we setkB=1, implying that in our units it is

T̃s0d=1/2.
Starting from a Maxwellian velocity distribution, the sys-

tem is allowed to evolve with the dynamics defined by Eqs.
(18)–(20) until it reaches a steady state. Then, all the statis-
tical averages of interest are accumulated. Moreover, the re-
sults to be presented have been averaged over a number of
different trajectories of the system, typically 6000, in order
to increase the statistical accuracy. Along the simulations, the
behavior of the total momentum of the system must be con-
trolled, since it is unstable due to the presence of the friction
term in the scaled dynamics, and round-off numerical errors
propagate exponentially in time. This difficulty is eliminated
by computing the total momentum at regular time intervals
and subtracting it evenly from the momentum of each par-
ticle.

A practical important point is the choice of the parameter
v0. In principle, its value is arbitrary and determines the

value of the temperature of the steady state,T̃st, as estab-
lished by Eq.(21), and also the rate at which this steady state
is approached[12,15]. On the other hand, inspection of Eqs.
(3)–(5) shows that the numerical evaluation of the correla-
tion functions appearing in the expressions of the transport
coefficients is simplified ifṽ0,st=1. In the units we are using,

this is equivalent toT̃st=1/2 or v0= z̄ /2Î2. The problem is

that the expression ofz̄ is only partially known. In the so-
called first Sonine approximation, it is given by[19,20]

z̄ < z̄s1d =
2psd−1d/2s1 − a2d

GSd

2
D,d

SkB

m
D1/2F1 +

3

16
a2sadG ,

s22d

with

a2sad =
16s1 − ads1 − 2a2d

9 + 24d + s8d − 41da + 30a2 − 30a3 . s23d

In fact, the analytical expression of the distribution function
of the HCS,xHCS, that is needed to construct the “modified
fluxes” appearing in the expressions of the transport coeffi-
cients, is only known in the same approximation, in which it
reads

xHCSscd < xHCS
s1d scd =

e−c2

pd/2f1 + a2sadSs2dsc2dg, s24d

where

Ss2dsc2d =
c4

2
−

d + 2

2
c2 +

dsd + 2d
8

. s25d

Then, what has been done is the following. For each value
of the coefficient of restitutiona, a preliminary series of
simulations has been carried out, with the parameterv0 set to
v0= z̄s1d /2Î2. These simulations were used to determine
xHCSscd and also the actual value ofz̄, from the measured

value of T̃st through Eq.(21). Afterwards, in the second se-
ries of simulations, the value ofv0 is fixed by the same

expression as before, but now using forz̄ the result obtained

in the previous simulations. This guarantees thatT̃st=1/2
andṽ0,st=1 within the numerical errors. Once the steady state
is reached, the time correlation functions are measured.

Now we describe the results from the first series of simu-
lations. The expressions of the transport coefficients, Eqs.
(3)–(5), contain velocity derivatives ofxHCSscd that, due to
the isotropic property of this function, can be easily related
to ] ln xHCSscd /]c. To measure this quantity in the simula-
tions, the range ofc has been partitioned into nonoverlapping
bins of valueDc=8310−2, and the frequency distribution
has been built from the simulation data, measured once the
system is in the steady state. This providesxHCS, and after-
wards its logarithm is computed also numerically. In Figs. 1
and 2,] ln xHCS/]c is plotted as a function ofc for a=0.9
and a=0.6, respectively. The circles are the results from
computing the numerical derivative directly from the raw
simulation data, while the solid line has been obtained by
carrying out an interpolation of the numerical data for
ln xHCSscd to a smaller bin valuesDc=5310−3d before com-
puting its derivative. For comparison, we have also included
in the figures the derivative for the Gaussian distribution
(dashed line) as well as for the first Sonine approximation,
i.e., from Eq.(24) (dot-dashed line).

As expected, the Sonine approximation describes quite
well the behavior of the distribution function forc&2.5
(thermal region), while the discrepancy grows very fast for
larger values of the velocity. In Fig. 2, it is observed that

FIG. 1. Plot of sln Xd8;] ln xHCS/]c as a function ofc for a
=0.9. The circles are the numerical derivative of the simulation
results, the solid line the fitted function, while the dashed and dot-
dashed lines are the Gaussian and first Sonine approximations for
this quantity, respectively. Quantities are measured in the dimen-
sionless units defined in the main text.
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] ln xHCS/]c tends to a constant value for largec, consis-
tently with the known exponential decay ofxHCS for large
velocities [21,22]. This behavior is not observed in Fig. 1
because the velocity range for which the exponential decay
shows up increases very fast asa approaches unity.

As already indicated, from these simulations we also de-

termined the actual value ofz̄ from the measured value ofT̃st
and the value to be used forv0 in the second series of simu-
lations. Let us mention that the relative discrepancy between
the value obtained in this way and the prediction of the fist
Sonine approximation, Eq.(22), was always smaller than
0.2%. In the next section, these values as well as the inter-
polated results for] ln xHCS/]c, exemplified by the solid
lines in the above two figures, will be used to evaluate the
transport coefficients.

IV. TRANSPORT COEFFICIENTS

Since in the simulations where the correlation functions

are measured,v0 is set tov0= z̄ /2Î2, the steady temperature
is the same as the initial one. Of course, the velocity distri-
bution changes from the initial Gaussian to its steady form.
In Fig. 3, the time evolution of the temperature in the steady
state is plotted for several values of the coefficient of resti-
tution, namelya=0.9, 0.6 and 0.3. Time is measured by the
accumulated number of collisions per particle, and the origin
has been taken once the system is in the steady state. It is
seen that, as predicted, the temperature fluctuates around its
initial value (note the very small vertical scale used in the
figure). The physical origin of these fluctuations has been
discussed in Ref.[23]. There, it was shown that they are
intrinsically associated to the inelasticity of collisions and
that their amplitude increases asa decreases.

A. The shear viscosity

Let us define a reduced dimensionless shear viscosityh*
by

h * =
hsTd
h0sTd

, s26d

where

h0sTd =
sd + 2dGsd/2dsmkBTd1/2s−sd−1d

8psd−1d/2 s27d

is the elastic shear viscosity in the first Sonine approxima-
tion. Use of Eq.(3) yields

h * =
8Î2psd−1d/2

sd + 2dGsd/2d,ṽ0,st
E

0

`

dtJhstde−v0t, s28d

with

Jhstd =
1

N
kDxysv,tdF2,xysv/ṽ0,stdlst. s29d

In the simulations, we have measured the functionJhstd, us-
ing the stationarity of the HCS in the scaled dynamics, i.e.,
that

kasv,t + t0dbsv,t0dlst = kasv,tdbsvdlst, s30d

for arbitrary t0ù0. This allows us to average over many
different samplings along each trajectory of the system.

Figures 4 and 5 show, in a logarithmic representation, two
typical correlation functions, corresponding toa=0.95 and
0.5, obtained in this way. The symbols are the results from
the simulations, while the solid line is a fit to an exponential
function. It is seen in the figures that the decay ofJhstd is
very well fitted by an exponential at least until it decays two
orders of magnitude from its initial value. In fact, for the
times where relevant deviations from the exponential behav-
ior are observed, the statistical noise is too large as to make
a precise statement about whether the deviations are some-
thing more than just noise. In any case, the contribution to

FIG. 2. The same as Fig. 1 but fora=0.6.
FIG. 3. Time evolution of the temperature, measured in the units

defined in the text, in the steady state. Time is measured in terms of
the number of accumulated collisions per particle,t. The solid line
corresponds toa=0.9, the dotted line toa=0.6, and the dashed line
to a=0.3.
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the time integral in Eq.(28) corresponding to times where
the numerical data forJhstd differ significantly from the ex-
ponential is negligible. For these reasons, in order to calcu-
late the coefficient of shear viscosity, we have fittedJhstd to
an exponential,

Jhstd = Jhs0de−lht. s31d

Then, Eq.(28), after particularizing ford=2 and the units
defined in Sec. III, leads to

h * =
2Î2pJhs0d

lh + v0
. s32d

In Fig. 6, the values ofh* obtained in this way are plotted
as a function of the coefficient of normal restitutiona. They
are represented by the black circles. The solid line is the

theoretical prediction derived from the Boltzmann equation
by using the Chapman-Enskog procedure in the first Sonine
approximation[7]. Moreover, for comparison purposes, the
simulation results that follows from making, in the expres-
sion ofJh given in Eq.(29), each of the two approximations
discussed in the context of the velocity distribution, are also
displayed. More precisely, the expression for the modified
flux F2,xy in the first Sonine approximation has been em-
ployed, i.e.,

F2,xyscd < − cx

] ln xHCS
s1d scd

]cy
< 2DxyscdF1 − a2Sc2 −

d + 2

2
DG ,

s33d

with a2sad given by Eq.(23). In the last transformation, we
have neglected nonlinear ina2 contributions, consistently
with the approximation leading to Eq.(23) [19,20]. The
simulation results forh* in this approximation are indicated
by squares in the figure, while triangles are used for those
corresponding to the Gaussian approximation[equivalent to
formally set a2=0 in Eq. (33)]. The latter agrees with the
result that is obtained by linear response methods and con-
structing the response function for a spatial perturbation of
the HCS coupling only to the local densities of mass, mo-
mentum and energy[14].

The first conclusion following from the analysis of Fig. 6
is that the analytical expression derived in Ref.[7] fits quite
well the simulation data with no approximations for the
modified flux over the whole range of values ofa consid-
ered. In fact, for 0.65&aø1, the results obtained in the
different approximations are close, and theira-dependence
shows the same trend. Let us remark that fora=0.7 the
simulation results based on the different approximations for

FIG. 4. Time evolution of the correlation functionJhstd for a
=0.95. The circles are the results of the simulation, while the solid
line is the best fit to an exponential. Quantities are measured in the
units defined in the main text.

FIG. 5. The same as in Fig. 4 but fora=0.5.

FIG. 6. Dimensionless reduced shear viscosity coefficient,h*,
as a function ofa. The solid line is the theoretical prediction de-
rived in Ref. [7], while the symbols are from the simulations: the
circles are obtained using the true(from the simulation) velocity
distribution for the modified flux, the triangles with the Gaussian
approximation, and the squares correspond to the first Sonine
approximation.
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the modified fluxes are almost indistinguishable on the scale
used in the figure. This is not surprising, since the fourth
moment ofxHCS is known to coincide with that of the Max-
wellian approximation for a value ofa very close to 0.7[24].
On the other hand, for smaller values of the restitution coef-
ficient, theN-particle Green-Kubo expression for the shear
viscosity is overestimated if the Gaussian approximation is
used for the modified flux, and underestimated when the first
Sonine approximation is used for it. Quite interestingly, in
the latter caseh* exhibits a maximum fora.0.4, a behavior
that is qualitatively different from the numerical results with
the right expression for the modified flux.

There is a point deserving some additional comments. It
can be wondered why the analytical results show a better
agreement with the DSMC data for the exact Green-Kubo
expression than the simulation results obtained by using the
first Sonine approximation for the modified flux, since in the
analytical derivation the expansion in Sonine polynomials is
also used, and only the first order is kept. A possible reason
is that, in the Chapman-Enskog procedure, the Sonine expan-
sion is carried out not only at the level of the velocity distri-
bution of the HCS, but also when computing the dynamics of
the fluxes. The results in Fig. 6 suggest that both approxima-
tions together lead to some kind of self-consistency improv-
ing the accuracy of the results. Nevertheless, let us point out
that things are in fact much more complicated since, for low
values ofa, the simulation results clearly indicate the pres-
ence of relevant velocity correlations in the HCS, giving a
nonvanishing contribution to the Green-Kubo relations. A
more detailed discussion of this is delayed to the final section
of the paper.

B. The (thermal) heat conductivity

The dimensionless reduced heat conductivity is defined as

k * =
ksTd
k0sTd

, s34d

where

k0sTd =
dsd + 2d2Gsd/2dkBskBTd1/2s−sd−1d

16sd − 1dpsd−1d/2m1/2 s35d

is the elastic limit. Then, from Eq.(4) it is obtained that

k * =
16sd − 1dÎ2psd−1d/2

dsd + 2d2Gsd/2d, E
0

`

dtJkstdev0t, s36d

with

Jk =
1

N
kS̃xsv,tdF3,xsv/ṽ0,stdlst. s37d

As it was the case forJhstd, the simulation results also show
an exponential decay ofJkstd. Two typical examples are
given in Figs. 7 and 8 corresponding toa=0.95 anda=0.5,
respectively. Therefore, we have fitted again the simulation
data to an exponential function,

Jkstd = Jks0de−lkt. s38d

Substitution of Eq.(38) into Eq.(36), after particularizing
for d=2 and the units we are using, yields

k * = Sp

2
D1/2 Jks0d

lk − v0
. s39d

Here we have assumed thatlk.v0, otherwise the time in-
tegral would diverge and the thermal conductivity would not
exist. This condition has been fulfilled in all the cases we
have considered.

The results obtained fork* are plotted as a function of the
coefficient of restitution in Fig. 9, where also the theoretical
prediction obtained by the Chapman-Enskog procedure in
the first Sonine approximation[7] is shown. Although in
both cases the value of the heat conductivity increases asa
decreases, there is a relevant quantitative discrepancy, the
theoretical prediction growing much faster than the simula-
tion data fora&0.65. This is probably due to the fact that

FIG. 7. Decay of the time correlation functionJk, measured in
the units defined in the main text, fora=0.95. The circles are from
the simulations, while the solid line is the best exponential fit.

FIG. 8. The same as Fig. 7 but fora=0.5.
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the fluxes appearing in the expression for the heat conduc-
tivity involve higher velocity moments, as compared with the
expression for the shear viscosity. The first Sonine approxi-
mation seems not to be able to accurately describe the be-
havior of these moments. Of course, when interpreting the
above discrepancies, it must be kept in mind that a part of
them can be due to the presence of velocity correlations in
the HCS, as already mentioned. We again refer to the next
section for a further discussion of this. The results coming
from the other approximations discussed in the context of the
shear viscosity are not illuminating and will not be addressed
here.

C. The diffusive heat conductivity

The dimensionless reduced coefficientm* associated to
msTd is defined by

m * =
n

Tk0sTd
msTd, s40d

so that substitution of Eq.(5) gives

m * =
32Î2sd − 1dpsd−1d/2

dsd + 2d2Gsd/2d, FE
0

`

dtJkstdsev0t − 1d

+
1

2ṽ0,stN
E dtkS̃xsv,tdvxlstG . s41d

The simulation results show that the second term on the right
hand side is negligible, as compared with the first term. Even
more, it is seen to identically vanish within the numerical
precision of the simulation data. Since we have already
shown thatJkstd can be accurately described by Eq.(38), it is
obtained that

m * = s2pd1/2Jks0d
v0

slk − v0dlk

, s42d

where we have particularized ford=2 and the units used in
the simulations. Moreover, it has been assumed again that
lk.v0 in all the simulations being described.

The simulation results form* as a function ofa are dis-
played in Fig. 10, where they are represented by the black
circles. The solid line is, as in the previous figures, the ana-
lytical expression obtained by the Chapman-Enskog proce-
dure in the first Sonine approximation[7]. A systematic dis-
crepancy is observed fora&0.7. The theoretical prediction
grows much faster than the simulation results from the
Green-Kubo expression, a similar behavior to that exhibited
by the (thermal) heat conductivity in Fig. 9.

The value of the transport coefficientm* has been mea-
sured recently by direct application of Eq.(2) at the position
of the temperature minimum presented by a steady vibrated
granular gas in presence of gravity[11]. From DSMC mea-
surements of the heat flux and the temperature at the above
minimum, the values ofm* were obtained. They are repre-
sented by triangles in Fig. 10. Although it is not completely
clear, one is tempted to say that these “hydrodynamic” mea-
surements ofm* show a similar behavior to the Green-Kubo
expression evaluated in this paper. In particular, both grow
slower than the first Enskog approximation whena de-
creases belowa&0.75. Unfortunately, this hydrodynamic
method to measurem* cannot be extended to arbitrarily
small values ofa. In the considered steady state, there is a
coupling between inelasticity and gradients, so that for small
values ofa the system develops strong gradients and the
Navier-Stokes approximation is no longer valid.

V. SUMMARY

In this paper, the Green-Kubo expressions for the trans-
port coefficients of a dilute granular gas composed of smooth

FIG. 9. The dimensionless reduced coefficient of thermal con-
ductivity, k*, as a function ofa. The symbols are from the simula-
tions, while the solid line is the theoretical prediction derived in
Ref. [7].

FIG. 10. The dimensionless reduced coefficient of diffusive heat
conductivitym* as a function ofa. The circles are from the simu-
lations using the Green-Kubo expression, and the solid line is the
theoretical prediction derived in Ref.[7]. The triangles are from an
independent study of this transport coefficient in vibrated systems
[11].

J. J. BREY AND M. J. RUIZ-MONTERO PHYSICAL REVIEW E70, 051301(2004)

051301-8



inelastic hard disks have been evaluated by means of the
DSMC method. This N-particle algorithm is designed to
mimic the dynamics of a low density gas. The structure of
the Green-Kubo formulas is strongly modified by the inelas-
ticity of collisions. Of particular relevance for their evalua-
tion is that the correlation functions involve, in addition to
the usual microscopic fluxes, other dynamical variables that
are expressed in terms of velocity derivatives of the distribu-
tion of the HCS. Therefore, their exact analytical expressions
are not known, and their values have to be obtained from the
simulations themselves.

The simulation technique used here takes advantage of the
existence of a mapping between the homogeneous cooling
state of a dissipative hard-sphere model and the steady state
reached by the system under a modified dynamics. It has
been found that, in the steady state representation, the time
correlation functions of the fluxes and their paired dynamical
variables decay exponentially in time. Moreover, in the case
of the transport coefficients associated with the heat flux, the
relaxation time is small enough as to compensate the explicit
exponentially growing factor coming from the energy dissi-
pation in collisions. This nontrivial result provides further
support to the validity of the hydrodynamic description for
dilute granular gases even in the case of quite strong inelas-
ticity. Proving that the formal Green-Kubo relations for in-
elastic gases are amenable to computer simulation is one of
the aims of this paper.

The results for the transport coefficients show that all of
them increase as the value of the coefficient of restitutiona
decreases, in agreement with the predictions following from
the Chapman-Enskog solution of the Boltzmann equation in
the first Sonine approximation. Nevertheless, significant
quantitative discrepancies occur in the smalla region in the
case of the transport coefficients defining the heat flux, i.e.,
the thermal and diffusive heat conductivities,k and m, re-
spectively. The Sonine approximation predicts a much more
rapid increase than the one observed in the simulations. To
properly evaluate this discrepancy, two main features must

be taken into consideration. First, it must be realized that the
way in which the Sonine approximation is introduced in the
Chapman-Enskog scheme affects both, the initial form of the
dynamical variables and its time evolution.

The second point to be considered has a deeper physical
origin. The time-correlation functions appearing in the
Green-Kubo like relations derived from the Boltzmann equa-
tion are single-particle correlation functions in the HCS, i.e.,
they describe the time correlations of dynamical properties
of just one-particle in that state, as generated by the linear
Boltzmann operator. In order to transform the above expres-
sions into others involving theN-particle dynamics needed
for particle simulations, Eqs.(3)–(5), the assumption was
made that(one-time) velocity correlations are negligible in
the HCS[12]. It is possible to partially investigate whether
this property actually holds as follows. Consider the initial
value of Jhstd defined in Eq.(29). As discussed in Sec. II
what is actually computed in the simulations is

Jh8s0d =
1

N
o

i

N

o
j

N

kDxysvidF2,xysv j/ṽ0,stdlN,st

= Jh8
s1ds0d + Jh8

s2ds0d, s43d

where

Jh8
s1ds0d =

1

N
o

i

N

kDxysvidF2,xysvi/ṽ0,stdlN,st, s44d

Jh8
s2ds0d =

1

N
o

i

N

o
jÞi

N

kDxysvidF2,xysv j/ṽ0,stdlN,st. s45d

The diagonal component,Jh
8s1ds0d, is identically the same as

Jhs0d. In fact, it can be easily evaluated and, in the units used
in this paper and with our choice forv0, it is Jh

8s1ds0d=1/2.
The other component,Jh

8s2ds0d, only differs from zero if ve-
locity correlations are present in the system, and it has been
assumed to be negligible. We have measured the values of

FIG. 11. Simulation results for the correlation functionJh8s0d
defined in Eq.(43) (filled circles), and its diagonal part,Jh

8s1d (empty
circles), as a function of the restitution coefficienta. Quantities are
measured in the units defined in the text.

FIG. 12. Simulation results(filled circles) for theN-particle cor-
relation functionJk8s0d. The empty circles are its diagonal part,J8s1d.
Quantities are measured in the units defined in the main text.
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Jh8s0d in the DSMC simulations and the results are shown in
Fig. 11 as a function of the coefficient of restitution. There it
is seen that fora&0.6 no discrepancies from the value 1/2
are observed on the scale of the figure, indicating that the
contributions toJh8s0d from velocity correlations are negli-
gible. Nevertheless, for smaller values ofa the measured
values increasingly deviate from 1/2, and fora=0.2 the dis-
crepancy, due to the presence of velocity correlations, is of
the order of 10%.

A similar analysis can be carried out for the function
Jks0d. In this case, the value of the diagonal part,Jk

8s1ds0d
=Jks0d, of the N-particle correlation function is not known,
and has to be obtained from the simulations. Again, the re-
sults reported in Fig. 12 indicate the presence of relevant
velocity correlation effects for small values of the restitution
coefficient, although their relative values are smaller than in
Fig. 11.

From the above discussion it can be concluded that the
HCS exhibits relevant velocity correlations for strong inelas-
ticity, even in the low density limit. It might be argued that
this conclusion is based on DSMC results, and that the ob-
served effects could be an artifact of the simulation method.
Nevertheless, the accuracy of the DSMC method to describe

low density gases has been proven in many different prob-
lems. Moreover, the presence of fluctuations having an in-
trinsic dissipative character in granular gases, even in the
dilute limit, has been verified recently, both theoretically and
by means of molecular dynamics simulations[23].

In summary, the results reported here show the usefulness
of the Green-Kubo relations for dilute granular gases to com-
pute their transport coefficients by usingN-particle simula-
tion techniques, similarly to what happens in molecular, elas-
tic systems. Although restricted to the low-density limit, we
believe they provide the necessary guidance and caution for
a more general analysis valid for dense fluids, whose theo-
retical development must be based on the Liouville equation.
Moreover, for strong dissipation, the simulation data suggest
that velocity correlations occurring in the HCS should be
incorporated in a theoretical evaluation of the transport co-
efficients, even in the very dilute limit.
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