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Hydrodynamics of an open vibrated granular system

J. Javier Brey, M. J. Ruiz-Montero, and F. Moreno
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Using the hydrodynamic description and molecular dynamics simulations, the steady state of a fluidized
granular system in the presence of gravity is studied. For an open system, the density profile exhibits a
maximum, while the temperature profile goes through a minimum at high altitude, beyond that the temperature
increases with the height. The existence of the minimum is explained by the hydrodynamic equations if the
presence of a collisionless boundary layer is taken into account. The energy dissipated by interparticle colli-
sions is also computed. A good agreement is found between theory and simulation. The relationship with
previous works is discussed.
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I. INTRODUCTION

The aim of this paper is to investigate the hydrodynam
description of a granular fluid in a gravitational field whe
energy is continuously provided to the system from bel
through a vibrating plate. Experiments, computer simu
tions, and also theoretical studies have revealed the exist
of a steady fluidized state under these conditions@1–8#. One
of the main conclusions of all these studies is that vibro
idized granular media show a fluidlike behavior, in the se
that their state seems to be well characterized by the pro
of the hydrodynamic fields. Of course, a different question
whether hydrodynamic equations, derived as an extensio
those for ordinary fluids, provide a quantitatively, or at le
qualitatively, accurate description of what is observed.

In a previous work@9#, we have analyzed a vibrate
granular fluid in absence of external fields, paying spe
attention to the bulk behavior of the fluid, far away from t
boundaries. The system was shown to exhibit a normal
havior, independent of the details of the boundaries, cha
terized by a closed constitutive relationship between the
form pressure and the temperature gradient. The idea he
to extend the above study to systems submitted to a unif
external field. Such an extension is not at all trivial, since
field generates spatial gradients that couple in an intric
way to those associated with the inelasticity of the syste

Most of the experimental studies deal with open syste
i.e., formally with a system of infinite height, and that is t
situation we will focus on here. It could be expected that
behavior of the system becomes simple far away from
vibrating surface at the bottom. Nevertheless, the presenc
a free surface introduces some additional complications
the description of the fluid. As the density decreases, p
ticles tend to move in a ballistic way restrained by the gra
tational force. This was already noted by Haff@1#, who con-
cluded that a hydrodynamiclike description cannot acco
for those effects.

In 1991, Clement and Rajchenbach@2# carried out an in-
teresting experimental study of a fluidized two-dimensio
vertical granular system. They measured the hydrodyna
profiles and established a series of important observati
The point we want to emphasize is presented in Fig. 4
their paper, where it is observed that the granular temp
1063-651X/2001/63~6!/061305~10!/$20.00 63 0613
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ture increases for large enough heights. Unfortunately,
authors do not comment on the origin and relevance of
finding. The same effect has been found again in exp
ments and in molecular dynamics simulations by Helalet al.
@10#. The temperature profile presents a minimum at a h
altitude, beyond that it is found to increase. In order to e
plain this behavior, the authors suggest a model that invo
two coupled differential equations for the packing fracti
and the temperature. These equations must be numeri
solved by using boundary conditions determined from
simulations. Although there is a good qualitative agreem
with the experimental and simulation results, the physi
origin of the rise in temperature as well as its compatibil
with a hydrodynamic description of the system is not cle
In particular, the continuous approach used by Helalet al.
does not include a density dependent heat flux term,
plays a relevant role in granular systems@11,12#. A detailed
discussion of these questions will be one of the main po
to be addressed in the following sections.

The most direct implication of inelasticity in collisions i
the dissipation of energy in the system. The balance betw
the energy dissipated and the energy supplied through
vibrating wall is often used to derive scaling laws for vibro
luidized granular materials, as well as boundary condition
solve the hydrodynamic equations. Warret al. @13# modeled
the vibrated granular system under gravity as an isother
fluid, with all the particles having the same velocity. Lat
on, Kumaran@14#, using a kinetic theory description, foun
that the velocity distribution function is a Maxwell
Boltzmann distribution in the limit of small inelasticity. Hi
expression for the dissipated powerD only differs from the
result derived by Warret al. @13# by a constant. Extensive
molecular dynamics simulations carried out by McNama
and Luding@5# showed that the prediction in Ref.@14# fitted
better the simulation data than the expression in Ref.@13#,
although significant discrepancies were found. In particu
the simulation values ofD indicated a dependence on th
number of particles in the system that was not accounted
by the theory. Trying to understand this dependence is on
the goals of the present work.

This paper is organized as follows. In Sec. II, the Navi
Stokes-like hydrodynamic equations for a granular gas
©2001 The American Physical Society05-1
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shortly reviewed and particularized for the steady state o
vibrated system under the influence of an homogeneous
ternal force. By introducing an appropriate scaling for t
space coordinate in the direction of the field, explicit expr
sions for the hydrodynamic profiles are obtained. They
volve two constants that must be determined from the bou
ary conditions. The limit of an infinitely high open system
considered in Sec. III. This limit does not imply that any
the two constants appearing in the general expression o
temperature profile must vanish, contrary to what has b
established in some previous works. This is due to the p
ence of a free-molecule boundary layer in the upper regio
the granular gas, so that the validity of the hydrodynam
equations cannot be extrapolated up to an infinite height,
which a divergent behavior of one of the contributions to
theoretical prediction for the temperature profile would sh
up.

A relevant consequence of the above is that the temp
ture profile exhibits a minimum, becoming an increasi
function for large enough heights. Moreover, by using m
lecular dynamics simulations, we have verified that the
gion of increasing temperature is accurately described by
hydrodynamic equations. In fact, the values of the minim
of the temperature and its position provide enough inform
tion to build up the hydrodynamic profiles in the bulk of th
system, as discussed in the last part of Sec. III. The form
the profiles for large heights, but still in the hydrodynam
regime, is analyzed in Sec. IV.

Section V is devoted to the study of the dissipation
collisions, again by means of the hydrodynamic descripti
The results are compared with previous works as well
with molecular dynamics simulations. The origin of the d
crepancies between the several theories is clarified, show
for instance, that the expression forD derived by Kumaran
@14# corresponds to the low inelasticity and small syst
limits of the more general form derived here. Finally, t
main conclusions are summarized in Sec. VI.

II. HYDRODYNAMIC EQUATIONS

We consider a granular gas composed by smooth inela
hard spheres (d53) or disks (d52) of massm and diameter
s, in presence of a uniform external forcef. The particles
collide with a constant coefficient of normal restitutiona. In
the hydrodynamic description, it is assumed that the stat
the system is characterized by the local number den
n(r ,t), velocity flow u(r ,t), and temperatureT(r ,t) @1,15#.
For a dilute gas, the time evolution of these fields is given
the equations@16,17#

] tn1“•~nu!50, ~1!

] tui1u•“ui1~mn!21¹ i p2~nm!21¹ j

~2!

3FhS ¹ iuj1¹ jui2
2

d
d i j“•uD G2m21f i50,
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] tT1u•“T12~dnkB!21p“•u22~dnkB!21¹ iuj

3FhS ¹ iuj1¹ jui2
2

d
d i j“•uD G

22~dnkB!21
“•~k“T1m“n!1Tz (0)50. ~3!

In the above equations,p5nkBT is the pressure,kB the Bolt-
zmann constant,h the shear viscosity coefficient,k the heat
conductivity coefficient, andm a new transport coefficien
that has no analogous in the elastic limit. AlthoughkB is
taken as unity in most of the literature of fluidized granu
systems, we will keep it here just to stress the analogy w
molecular fluids. Finally,z (0) is the cooling rate associated t
the energy dissipation in collisions. These quantities have
form

h5h* ~a!h0~T!, k5k* ~a!k0~T!, m5m* ~a!m0~T!,
~4!

z (0)5z* ~a!
p

h0
, ~5!

where h0 and k0 are the Boltzmann elastic values of th
shear viscosity and heat conductivity, respectively,m0
5Tk0 /n, andk* , h* , m* , andz* are dimensionless func
tions of the coefficient of normal restitutiona. For a→1,
h* and k* tend to unity, whilem* and z* vanish. The
explicit expressions of these quantities are given in App
dix A. Let us note that the existence of a transport coeffici
m giving a contribution of the density gradients to the he
flux is a peculiarity of granular fluids that has been co
firmed by molecular dynamics@11# and by Monte Carlo
simulations of the Boltzmann equation@12#.

We will consider a force of the gravitational type, name

f52mgêz , ~6!

with g a positive constant andêz the unit vector in the posi-
tive direction of thez axis. The system we will study is a
granular medium ofN particles contained in a box of sectio
S and heightL. The quantityS is an area ford53 and a
length ford52. Energy is added to the system by the botto
of the box which vibrates in a given way. Since many of t
results we will derive in the following are independent of t
specific way in which the wall is vibrated, we delay th
discussion of the details of its motion until they are need
Moreover, we are not interested in the boundary effects
sociated to the side walls and, therefore, we will conside
region of the system far away from them. In fact, in t
molecular dynamics simulations to be reported later on,
riodic boundary conditions were used in the directions p
pendicular to the external field. Then, because of symm
considerations, in the steady state only gradients in thz
direction are expected and the hydrodynamic equations
duce to

]p

]z
52nmg, ~7!
5-2
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2

dnkB

]

]z S k
]T

]z
1m

]n

]zD2Tz (0)50. ~8!

Equation~7! implies

T

n

]n

]z
52

mg

kB
2

]T

]z
, ~9!

and use of this expression into Eq.~8! together with Eqs.~4!
and ~5!, leads to,

2

dnkB
@k* ~a!2m* ~a!#

]

]z Fk0~T!
]T

]zG
2

2mg

dnkB
2

m* ~a!
]k0~T!

]z
2z* ~a!

nkBT2

h0
50.

~10!

In order to analyze the above equation, it is convenien
introduce a dimensionless length scalel by

l 5E
z

L

dz8
1

l~z8!
, ~11!

where l(z) is the local mean free path for hard disks
spheres,

l~z!5@Cnsd21#21, ~12!

with C52A2 for d52 andC5pA2 for d53. The variable
l measures the number of mean free paths from the
located atz5L to the parallel plane located at heightz. For
z50 it is

l ~z50![ l 05Csd21Nz , ~13!

Nz5N/S being the number of particles in the system per u
of section. In terms ofl, the solution of Eq.~7! can be written
as

p5
mgl

Csd21
1pL , ~14!

wherepL is the pressure of the gas next to the upper wall
particular, atz50,

p~z50![p05mgNz1pL . ~15!

Equation~10! is equivalent to

]2T1/2

] l 2
1

b~a!

l 1pL*

]T1/2

] l
2a~a!T1/250, ~16!

with

pL* 5
Csd21

mg
pL ~17!

and
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a~a!5
32~d21!pd21

C2~d12!3G~d/2!2

z* ~a!

k* ~a!2m* ~a!
, ~18!

b~a!5
2k* ~a!2m* ~a!

2@k* ~a!2m* ~a!#
. ~19!

Inspection of Eq.~16! indicates thatAa(a) determines the
coupling between gradients and dissipation that is intrinsic
granular flows, whileb(a) is a scaling factor of the inhomo
geneities associated to the external field.

It is still possible to express Eq.~16! in a more familiar
way by defining a new variablej by

j5Aa~a!~ l 1pL* !5Csd21Aa~a!F E
z

L

dz8 n~z8!1
pL

mgG .
~20!

This variable, as well asl, is a decreasing function of th
original coordinatez. Note thatj cannot be defined in the
elastic limit a→1, in which a(a) vanishes. Performing the
change, Eq.~16! becomes

j
]2T1/2

]j2
1b~a!

]T1/2

]j
2jT1/250, ~21!

whose general solution is

T1/2~j!5Aj2nI n~j!1Bj2nKn~j!, ~22!

where

n~a!5
m* ~a!

4@k* ~a!2m* ~a!#
.0, ~23!

I n andKn are the modified Bessel functions of first and se
ond kind, respectively, andA andB are constants that mus
be determined from the boundary conditions. Since the
havior of the functionsAa(a) andn(a) will play an impor-
tant role in the discussions in the following sections, we ha
plotted them in Fig. 1 ford52. Although both quantities
vanish in the elastic limit,Aa(a) grows much faster than
n(a) as a decreases in the vicinity ofa51. On the other
hand, whena becomes smaller, the behavior inverts a
n(a) presents a much larger slope.

The pressure profile in thej scale follows directly from
Eq. ~14! and ~20!,

p~j!5
mgj

Csd21Aa~a!
. ~24!

In this way, we have formally solved the hydrodynam
equations for the system under consideration. The expres
for the density follows from Eqs.~22!,~24!, and the equation
of state. Afterwards, the relationship betweenj and the origi-
nal coordinatez is obtained by solving the equation
5-3



he

th
pe

ic

n

i

the
be

rks
hat
as
e that

ic
not
l
ath

ery
de-
be

ion
on-
se
ill

ill
ic

-
of

e

-
the

tic

file
on

o-
s

an
the

en-

is

ro-

J. JAVIER BREY, M. J. RUIZ-MONTERO, AND F. MORENO PHYSICAL REVIEW E63 061305
dj

n~j!
52Aa~a!Csd21dz, ~25!

that is the differential form of the definition ofj given in Eq.
~20!. Of course, the solution of this equation involves t
pressure of the gas next to the upper wallpL , which is un-
known up to now.

III. OPEN SYSTEMS

In order to particularize the general results obtained in
previous section for a given physical situation, i.e., for s
cific forms of the walls atz50 andz5L, the crucial and
nontrivial point is the introduction of the hydrodynam
boundary conditions needed to determine the constantsA and
B appearing in Eq.~22!, as well as the value ofpL entering in
the definition ofj, Eq. ~20!. We are interested in an ope
system, i.e., in the limit of infinite heightL. In this limit, it is
obvious thatpL50, so that the lowest value ofj is now j
50, corresponding to the limitz→`. More explicitly, Eq.
~20! becomes

j5Csd21Aa~a!E
z

`

dz8n~z8!. ~26!

The behavior of the modified Bessel functions in the lim
j→0 is @18#

I n~j!;
1

G~11n! S j

2D n

, ~27!

Kn~j!;
G~n!

2 S j

2D 2n

. ~28!

Therefore, it follows from Eq.~22! that in the same limit,

T1/2~j!;
BG~n!

2 S j2

2 D 2n

, ~29!

FIG. 1. FunctionsAa(a) ~solid line! and n(a) ~dashed line!
defined in the main text, ford52.
06130
e
-

t

indicating a divergent behavior of the temperature as
limit j→0 (z→`) is approached. Nevertheless, it cannot
concluded from here that the constantB must identically
vanish, contrary to what has been inferred in other wo
@1,4#. There are two main reasons for that. First, the fact t
T formally diverges does not imply anything unphysical,
long as the density decreases fast enough as to guarante
the local kinetic energy goes to zero asz goes to infinity.
Second, Eq.~22! is based on a continuous hydrodynam
description of the granular flow, and such a description is
valid in the region in whichj is very small, so that the loca
Knudsen number, defined as the ratio of the mean free p
to the length scale of the macroscopic gradients, is v
large. There, the arguments leading from a microscopic
scription to a continuous approach fail, and the gas has to
described as a free-molecule flow, with a so-called transit
regime between the hydrodynamic region and the collisi
less one@19,20#. The detailed analysis of the gas in the
regimes is an interesting but very complex problem that w
be addressed elsewhere. So, we will keep the constantB in
Eq. ~22! different from zero, although the question is st
whether its contribution is relevant within the hydrodynam
region.

The presence of the term proportional toKn(j) in the
expression ofT1/2 implies that the temperature profile exhib
its a minimum. Using the expressions of the derivatives
the modified Bessel functions@18#, it is obtained that the
minimum is located at a valuej5jT given by the solution of
the equation

AIn11~jT!2BKn11~jT!50, ~30!

and the temperatureTm at the minimum is

Tm
1/25jT

2n@AIn~jT!1BKn~jT!#. ~31!

Therefore, if the hydrodynamic description is valid in th
vicinity of j5jT , the values ofjT and Tm allow us to de-
termine the constantsA and B characterizing the hydrody
namic profiles everywhere in the system, except in
boundary layers next toj5j0 andj50, where a more mi-
croscopic description, such as that provided by kine
theory, is needed.

As an example, in Fig. 2 we plot the temperature pro
in thej variable obtained by molecular dynamics simulati
in a two-dimensional system witha50.95 andNz56. The
wall at the bottom is vibrated with a sawtooth velocity pr
file having a velocityvW56. This means that all the particle
colliding with the wall find it with that velocity@5,21#. More-
over, the amplitude of the wall motion is much smaller th
the mean free path of the particles next to it, so that
position of the wall can be taken as fixed atz50. Periodic
boundary conditions are employed in the direction perp
dicular to the field. The units are defined bym51, ands
51. We takekB50.5, and the value of the external field
g51. For the above value ofa, it is n.0.021. From the
simulation data it is estimated thatjT.0.21 andTm.162.6,
and using Eqs.~30! and ~31! one getsA.12.2 and B
.0.76. The dashed line in the figure is the temperature p
5-4
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file obtained with these values of the constants. A quite g
agreement is observed between the constructed profile
the simulation data outside the boundary layers. In particu
the agreement extends well inside the region of small va
of j. This confirms that the hydrodynamic regime includ
the minimum of the temperature and also a part of the sys
where the temperature increases withz, i.e.,T increases asj
decreases.

In Fig. 3 the same temperature profile as in Fig. 2
shown as a function of the original variablez. It is seen that
the increase of the temperature with the height is not ju
theoretical artifact, but in practice it is observed over a w
region in real space. Similar results have been obtained
other values ofa in the interval 0.85<a<0.99. Details of
the practical limitations in the molecular dynamics simu
tions will be given in the last section of the paper.

Since the existence of a region where the tempera
increases is associated with the presence of the collision

FIG. 2. Temperature profile in units defined in the main text,
the j variable of a vibrated system witha50.95, Nz56 (j0

51.722) andvw56. The solid line is from the molecular dynamic
simulation, while the dashed line is the theoretical prediction d
cussed in the text.

FIG. 3. The same as Fig. 2, but in terms of the real sp
variablez, measured in units ofs.
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boundary layer and the transition regime, the location of
temperature minimum and, consequently, of the hydro
namic region beyond it, are expected to correspond to sm
values ofj. Therefore, to study this region we can appro
mate in Eq.~22! the modified Bessel functions by their ex
pressions in the limit of small arguments. This yields

A

B
;2122n~n11!G~n11!2jT

22(11n) ~32!

and, sincejT is small, it follows thatA/B@1. The conclu-
sion reached in this way is that the term involvingKn(j) in
Eq. ~22! is only relevant in the region in whichj is small and
Kn(j) is large. More precisely, a detailed asymptotic ana
sis of Eq.~22! indicates that the relevant increasing tempe
ture region corresponds toj2!1 but j2*n2. This range of
values of j exists as long asn is small enough, i.e., the
system be not too inelastic. Moreover, the analysis sho
that in thisj window one can approximate

Kn~j!;2 ln j. ~33!

Whenj takes values of the order of unity, the termBj2nln j
is negligible as compared withAj2nI n(j). Then, we pro-
pose, as an accurate approximation to Eq.~22!, the expres-
sion

T1/2~j!.Aj2nI n~j!2Bj2nln j. ~34!

In Fig. 4 we compare Eqs.~22! and~34! for A512.2 and
B50.26, which are the values of the constants found fr
the molecular dynamics data corresponding to the situa
described in Fig. 2. The agreement is fairly good in the pl
ted interval 1022,j,2. The accuracy is even better fo
larger values ofj, as expected from the above discussion

Let us next analyze the density profile. Equations~24! and
~34! yield

-

e

FIG. 4. Comparison of the exact theoretical expression for
temperature profile@Eq. ~22!# and the approximated expression@Eq.
~34!# for values of the parameters corresponding to the situation
Fig. 2.
5-5
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n~j!5
p~j!

kBT~j!
5

mgj112n

CkBsd21Aa~a!@AIn~j!2Bln j#2
.

~35!

The comparison of this expression with the simulation d
for the same system as in Fig. 2 is shown in Fig. 5. T
dashed line, corresponding to the theoretical prediction,
been plotted by using the values ofA and B obtained by
fitting the temperature minimum. Again, the agreement
quite good, outside the boundary layer next to the vibrat
wall.

The density profile exhibits a maximum atj5jn , that is
approximately given by the solution of the equation

I n~jn!22jnI n11~jn!50, ~36!

which can be numerically solved for each value ofn, i.e., of
a. A sketch of the derivation of Eq.~36! is given in Appen-
dix B. In Fig. 6, jn is shown as a function ofa for 0.5<a
<0.99. Let us remark that contrary to the position of t

FIG. 5. Density profile in the scaledj variable~a!, and in the
real variable~b!, for the same values of the parameters as in Fig
The solid line is from the molecular dynamics simulation, while t
dashed line is the theoretical prediction discussed in the text.
06130
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s
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temperature minimumjT , jn takes values of the order o
unity. Moreover, the dependence ofjn on a is rather weak
since it grows roughly from 1.07 to 1.46 asa decreases from
0.99 to 0.5. Nevertheless, when the values ofjn are trans-
lated into thel scale by means of Eq.~20! with pL* 50, the
position of the maximum of the density turns out to
strongly influenced by the inelasticity of the system, incre
ing very fast asa approaches unity.

One of the main implications of Eq.~36! is that the posi-
tion of the density maximum, measured in the scalej, does
not depend on the boundary conditions, i.e., on the value
the constantsA andB, or on the total number of particles i
the system, as measured for instance byNz . Of course, in
order to actually observe the maximum in an experimen
in a computer simulation, it must be

jn,j0[Aa~a!l 05CAa~a!sd21Nz . ~37!

Taking into account Eq.~11!, the total number of particles
Nz

(1) per unit of length or area of the vibrating wall abov
the position of the density maximum is

Nz
(1)5

l n

Csd21
~38!

wherel n denotes the position of the density maximum in t
l scale. This number increases asa increases. Therefore, th
more elastic the system is the larger is the number of p
ticles needed in order to see the maximum of the dens
This explains why in some molecular dynamics simulatio
the density profile shows an almost monotonic decay with
apparent maximum next to the vibrating wall. On the oth
hand, the position of the density maximum in the actual va
able z does depend on the boundary conditions, since
conversion fromj to z involves the constantsA andB, as it
follows from Eqs.~26! and ~35!. This is clearly seen, for
instance, in the experimental results shown in Fig. 2~b! of
Ref. @13#. The prediction of our theory is that the area bello
the density profile to the right of the maximum is the sam
for the several vibration amplitudes. This seems to be qu

.

FIG. 6. Theoretical value of the scaled position of the dens
maximum as a function of the coefficient of restitution,a.
5-6
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tatively true in the reported case, although the vibration a
plitude can affect the degree of fluidization of the granu
system, so that for small amplitudes the theory develo
here may not apply.

IV. THE UPPER REGION OF THE GRANULAR GAS

For largez ~small j), but still inside the region where
hydrodynamics holds, the temperature and density pro
can be approximated by

T1/2~j!;AS 1

2D n 1

G~11n!
2Bj2nln j, ~39!

n~j!;
mgj

CkBsd21Aa~a!@A22nG~11n!212Bj2nln j#2
,

~40!

respectively. Note that the own structure of Eq.~39!, that
does not present any minimum, implies that this approxim
tion only holds for values ofj smaller than the positionjT of
the temperature minimum. On the other hand,j should be
large enough as to the hydrodynamic description be accu
In the previous section we have discussed the existence
relevant region verifying both conditions. Substitution
these expressions into Eq.~25! yields

dj;2
mgjdz

kBFAS 1

2D n

G~11n!212Bj2nln jG2 ~41!

and by differentiation of Eq.~39! one gets

T1/2
dT

dz
;

2mgB

kB
j2n~12n ln j!. ~42!

For n!1, that means not very inelastic systems, the ab
equation can be approximated by

dT3/2

dz
;

3mgB

kB
. ~43!

This is compatible with what is seen in the molecular d
namics simulations, although due to the relatively sm
variation of the temperature withz in the region with positive
slope, the behavior predicted by Eq.~43! is hard to discern
from a simple linear inz profile. We have fitted the tempera
ture profiles obtained by molecular dynamics simulations
largez to the behavior predicted by Eq.~43!. The values ofB
obtained in this way were compared with those determi
from the minimum of the temperature, as discussed in S
III, and a good agreement was found. Since the constantB is
small, a good estimation of the temperature profile in t
upper region of the vibrated granular system is obtained
some cases by considering that the temperature reach
constant plateau@13,14,22#.
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Also for n!1, Eq. ~40! leads to

d ln n

dz
;2

mg

kBT
. ~44!

Therefore, if the temperature is approximately constant in
z interval considered, an apparently exponential behavio
the density can be observed. This is equivalent to saying
n(j)}j, as easily seen from Eq.~40!. Again, the simulations
have confirmed these predictions.

It is important to stress that the region in which the te
perature shows a minimum followed by an apparently lin
profile, and the density seems to decay exponentially,
only be explained correctly if the contribution of the ter
Bj2nKn(j) to the temperature profile in Eq.~22! is taken
into account. Moreover, the above discussion only expla
an approximately exponential decay of the density for val
of z lying well inside the region of increasing temperatur
but not where the temperature decreases with the height,
to the different variation rates of the temperature in bo
regions.

V. DISSIPATED POWER

An expression for the total powerD dissipated in the sys
tem is directly obtained from the hydrodynamic equation
the temperature, Eq.~3!,

D5E dr
dnkB

2
Tz (0)

5
dkBSz* ~a!T1/2

2Csd21Aa~a!h0
E

0

j0
dj p~j!T~j!1/2. ~45!

Upon writing the above expression we have taken into
count thath0 is proportional toT1/2. Using now the expres-
sions for the pressure and temperature profiles, Eqs.~22! and
~24!, respectively, one gets

D5
dkBSmgz* ~a!T1/2

2@Csd21Aa~a!#2h0
E

0

j0
dj j12n@AIn~j!1BKn~j!#.

~46!

The integral on the right hand side of this expression can
easily evaluated by employing Eqs.~B2! with the result

D5
dkBSz* ~a!mgT1/2

2@Csd21Aa~a!#2h0
H AFj0

12nI n21~j0!2
212n

G~n!G
2B@j0

12nK12n~j0!222nG~12n!#J . ~47!

This expression is an exact consequence of the hydro
namic equations for a granular gas. In particular, no assu
tion has been made about the values ofj0 , A, or B.
5-7



t
it
-
o

em
-

d
i-

he

as
n

e

d
nd

n

ile
res

re-
so

de-

s,

-
ng
rge
f

-
d in

as

J. JAVIER BREY, M. J. RUIZ-MONTERO, AND F. MORENO PHYSICAL REVIEW E63 061305
Let us define a dimensionless quantityF by

F5
D

g~NmĒj0!1/2
, ~48!

whereĒ is the total kinetic energy of the system,

Ē5E dr
d

2
nkBT5

SdkB

2Csd21Aa~a!
E

0

j0
dj j22n@AIn~j!

1BKn~j!#2. ~49!

Substitution of Eqs.~47! and ~49! into Eq. ~48! leads to an
explicit expression forF. It is a rather complicated and no
very illuminating expression. Therefore, we will not write
here explicitly, although it will be referred to in the follow
ing asFexact. Let us now suppose that we neglect the part
the profiles that are responsible for the increase of the t
perature, i.e., we formally takeB50. Because of the discus
sion in Sec. III, this could be expecteda priori to be a good
approximation as long asj0 is not small. Then, using the
explicit expression of the elastic shear viscosityh0, it is
obtained

Fapprox5
4~2d!1/2pd21/2z* ~a!

~d12!G~d/2!CAa~a!j0

j0
12nI n21~j0!2

212n

G~n!

F E
0

j0
dj j22nI n~j!2G1/2.

~50!

Although this expression is not at all simple, it only depen
on the values ofa and j0, but not on the boundary cond
tions that determine the constantsA andB, then representing
a scaling law prediction. In the limit of a large system, in t
sense thatj0@1, the asymptotic behavior of Eq.~51! is
given by

Fapprox;
8d1/2p (d21)/2z* ~a!

~d12!CG~d/2!Aa~a!
, ~51!

while for smallj0 it is

Fapprox;
2~2d!1/2p (d21)/2z* ~a!

~d12!G~d/2!CAa~a!
j0

1/2. ~52!

Kumaran@5,14# modeled the vibrated granular media
an isothermal fluid with a Maxwellian velocity distributio
and derived an expression for the dissipated powerD in a
two-dimensional system. His expression leads to a valu
the quantityF given by

F5~12a!F psNz

2A2a~a!
G 1/2

. ~53!

In the limit of quasielasticity, i.e., fora very close to unity,
this result is equivalent to Eq.~52!. Consequently, as derive
here, its applicability is restricted to small inelasticity a
small systems.
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In Fig. 7 we have plotted the functionF(j) in the interval
0<j0<10 for a50.95 (n.0.021). The solid line isFapprox
as given by Eq.~50!, while the dashed line is the expressio
derived by Kumaran, Eq.~53!. The dotted line shows the
asymptotic constant value predicted by Eq.~51!, F.0.85.
Similar behaviors are obtained for other values ofa. The
symbols are molecular dynamics simulation results. Wh
the circles are from simulations carried out by us, the squa
are from Fig. 2 in Ref.@5# by taking into account that the
quantityCpp defined there is related toF by

Cpp5~12a!21FCAa~a!

sNz
G1/2

. ~54!

Equation~53! predictsCpp5A2p. All the reported simula-
tion data in the figure correspond to the dilute fluidized
gime, i.e., for high enough velocities of the vibrating wall,
that F has already reached a steady value that does not
pend any more onvw . For smaller values of the velocity,F
is an increasing function of it@5#. The value ofj0 has been
varied by modifying the number of particlesNz . It is seen
that Eq. ~50! reproduces fairly well the simulation result
providing a definitely better approximation than Eq.~53!. In
fact, the dependence ofCpp on the size of the system, mea
sured byNz , was already realized by McNamara and Ludi
@5#. Let us also stress that the asymptotic behavior for la
systems, Eq.~51!, is only accurate for quite large values o
j0 and, therefore, it is not very useful in practice.

We have also computedFexact by using the values ofA
andB resulting from the fitting of the minimum of the tem
perature profile obtained in the simulations, as discusse
Sec. III. The results~not shown! always lie between the
simulation symbols and the curveFapprox. The discrepan-
cies betweenFapprox and the simulation results increase
the value of the coefficient of normal restitutiona decreases.

FIG. 7. Dimensionless quantityF defined in the text fora
50.95 as a function of the parameterj0. The continuous line is the
approximated expression derived in the text@Eq. ~50!#, the dashed
line the prediction by Kumaran@Eq. ~53!#, and the horizontal dotted
line, the asymptotic value forj0→`. The symbols are from mo-
lecular dynamics simulations, as discussed in the main text.
5-8
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The reason is that the energy dissipated in the region wi
positive temperature slope, which is neglected in Eq.~50!,
becomes more relevant as the inelasticity of the system
creases. This is confirmed by the fact that a much be
agreement is found if the expression ofFexact, with A andB
obtained from the simulation, is used. On the other hand,
still true that, for largevw , F reaches a value that only de
pends onj0 anda, then indicating the existence of a scalin
law. This scaling is not trivially seen in the expression
Fexact that depends on both constantA andB in a nontrivial
manner. Nevertheless, it must be realized thatA and B are
not in fact independent. They must be determined from
same boundary conditions specifying the vibrating wall,
though their calculation actually requires considering the f
particle region. If there is a proportionality relationship b
tweenA andB, it is easily seen that the expression ofFexact
turns out to be independent of them.

VI. CONCLUSIONS

In this paper, we have studied a fluidized granular sys
submitted to an external force of the gravitational type. T
general conclusion we have reached is that the hydro
namic description provided by the~inelastic! Navier-Stokes
equations is able to explain what is observed in molecu
dynamics simulations and also in experiments. We have
cused on open systems, and showed that the presence
collisionless regime in the very high region of the gas m
be taken into account when introducing the matching con
tions between the bulk of the granular medium and
boundaries. Now we summarize the most important resu

~a! The temperature profile as a function of the heig
presents a minimum, increasing monotonically afterwar
The minimum lies in the hydrodynamic region, but wh
interpreting this result it must be realized that the hydro
namic description is not valid when the density becomes
small.

~b! The density profile presents a maximum when the s
tem has a large enough number of particles. This maxim
is not associated, in principle, to any clustering hydrod
namic instability, but follows directly from the Navier
Stokes equations.

~c! The position of the density maximum is quite acc
rately only determined by the coefficient of restitution of t
system, being independent of the number of particles and
way in which the system is being vibrated.

~d! An accurate description of the energy dissipated
collisions requires considering the nonuniformity of the h
drodynamic fields. The results obtained by using the ex
hydrodynamic profiles derived from the Navier-Stokes eq
tions are in better agreement with molecular dynamics sim
lations than those using a uniform temperature and an e
nentially decreasing density.

~e! The approximations used in some previous works h
been obtained as limiting approximations of the more g
eral results obtained here. This also applies to the sca
behavior predicted by some authors. A sound justification
scaling laws can only follow from a detailed analysis of bo
boundary layers, the one next to the vibrating wall and t
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associated with the transition to the free-particle flow. Ne
ertheless, we have observed in the simulations that the
drodynamic fields seem to scale with the velocity of the
brating wall, as already found in Ref.@4#

The range of validity of the analysis we have carried o
deserves some comments. We have verified that there
reasonable good agreement between the theoretical pr
tions derived here and the molecular dynamics results
a.0.9. For smaller values of the coefficient of restitutio
the discrepancies become important and they increase
rapidly asa decreases. There are two main related reas
that restricta priori the applicability of our theory to the
small inelasticity range. For large inelasticity, the gradie
become very large and the Navier-Stokes approxima
fails. Moreover, the density in the vicinity of its maximum
becomes very high so that the low density hydrodynam
equations should be substituted by equations more accu
for dense granular fluids.
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APPENDIX A

In this Appendix, the explicit expressions for the quan
ties appearing in Eqs.~4! and ~5! are given@16,17#. The
Boltzmann elastic values for the shear viscosity and ther
conductivity are

h05
21d

8
G~d/2!p2(d21)/2~mkBT!1/2s2(d21), ~A1!

k05
d~d12!2

16~d21!
G~d/2!p2(d21)/2kBS kBT

m D 1/2

s2(d21),

~A2!

while the dimensionless functions have the form

h* ~a!5Fn1* ~a!2
z* ~a!

2 G21

, ~A3!

k* ~a!5Fn2* ~a!2
2d

d21
z* ~a!G21

@11c* ~a!#, ~A4!

m* ~a!52z* ~a!Fk* ~a!1
~d21!c* ~a!

2dz* ~a!
G

3F2~d21!

d
n2* ~a!23z* ~a!G21

, ~A5!

z* ~a!5
21d

4d
~12a2!F11

3

32
c* ~a!G . ~A6!
5-9
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Here we have introduced

n1* ~a!5
~323a12d!~11a!

4d F12
1

64
c* ~a!G , ~A7!

n2* ~a!5
11a

d21 Fd21

2
1

3~d18!~12a!

16

1
415d23~42d!a

1024
c* ~a!G , ~A8!

c* ~a!5
32~12a!~122a2!

9124d1~8d241!a130a2~12a!
. ~A9!

APPENDIX B

To determine the positionjn of the maximum of the den
sity profile, we suppose it is of the order of unity. Of cours
this is to be verified at posteriori. Then, the termB ln j in the
denominator on the right hand of Eq.~35! can be neglected
in the calculation, and the equation determiningjn reads
a A

n

.

. E

-

06130
,

d

dj

j112n

I n~j!2U
j5jn

50, ~B1!

that using@18#

d

dj
@j2nI n~j!#5j2nI n11~j!,

~B2!
d

dj
@j2nKn~j!#52j2nKn11~j!,

leads directly to Eq.~36!. SinceI n(j).0 andKn(j).0, this
equation has a solution forj.0. When the equation is nu
merically solved, see Fig. 6, it turns out thatjn is of the order
of unity, consistently with our assumption above.

Let us point out that if the termB ln j in Eq. ~35! is kept
in the calculations to determinejn , a wrong result is ob-
tained. The reason is that its contribution to the derivative
n(j) becomes very important in the vicinity ofjn , and
higher order contributions coming fromKn(j) have to be
considered for a consistent calculation.
c.

ev.
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