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Brownian motion in a granular gas
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The dynamics of a heavy particle in a gas of much lighter particles is studied via the Boltzmann-Lorentz
equation with inelastic collisions among all particles. A formal expansion in the ratio of gas to tagged particle
mass transforms the Boltzmann-Lorentz equation into a Fokker Planck equation. The predictions of the latter
are tested here using direct Monte Carlo simulation of the Boltzmann-Lorentz equation. Excellent agreement is
obtained for the approach to a homogeneous cooling state, the temperature of that state, approach to diffusion,
and the dependence of the diffusion constant on dissipation parameters. Some results from molecular-dynamics
simulations are also presented and shown to agree with the theoretical pred[Sib#&3-651X99)08012-5

PACS numbegs): 81.05.Rm, 05.20.Dd, 05.40a

[. INTRODUCTION In the next section the Boltzmann-Lorentz and its Fokker-
Planck limit are recalled. A change of space and time vari-

The description of low-density, rapid granular flow by ables provides an exact map of the Fokker-Planck equation
Boltzmann kinetic theory has received much attention in refor inelastic collisions to that for elastic collisions. Conse-
cent yearg1,2]. A primary objective has been the derivation quently, all the known results from the latter case for veloc-
of hydrodynamic equations and expressions for the transpoity relaxation and the approach to a diffusive stage translate
coefficients appearing in them as functions of the coefficienexactly to the case of inelastic collisions. Several examples
of restitution. The most accurate approach uses a generalizare considered explicitly. The qualitative differences occur
tion of the Chapman-Enskog method known from the correonly through the changes in space and time scales. Some of
sponding analysis of the Boltzmann equation for elastic colthe most interesting differences are as follows.
lisions [3,4]. This method assumes the existence of a (i) The renormalized time scale is related logarithmically
“normal” solution whose space and time dependence occurto real time. Accordingly, velocity relaxation and approach
only through the hydrodynamic fields. Implicit in this as- to hydrodynamics is algebraic rather than exponential.
sumption is the rapid relaxation of nonhydrodynamic excita- (ii) The long time limit of the tagged particle distribution
tions so that the hydrodynamic description dominates on &r the homogeneous state is Gaussian, although the bath
longer time scale. Such a separation of time scales has begarticle distribution is non-Gaussian.
questioned in the case of granular flow, particularly for large (i) The time-dependent temperature of the tagged par-
degrees of inelasticit}5]. The basis for this concern seems ticle Gaussian differs from the temperature of the surround-
to be the additional time scale set by the cooling of theing bath, although the cooling rates of both become the same
homogeneous reference state, such that the hydrodynans¢ long times.
time scales are not simply determined by the degree of spa- (iv) The mean-square displacement approachesfdn
tial inhomogeneity. However, detailed study of self-diffusionlarge times with a coefficient that determines the diffusion
[6] and kinetic models based on the Boltzmann equdffgn coefficient.
suggests this concern is not justified. For these cases it is (v) The diffusion equation at long times has the usual
shown that the microscopic excitations always decay oriorm, although its solution is qualitatively different from that
times short compared to all hydrodynamic times, includingfor the elastic case due to the time dependence of the tem-
that defined by the cooling rate. perature in the diffusion coefficient.

To further reinforce the case for a hydrodynamic descrip- In Sec. Il the direct simulation Monte Carlo method to
tion, an exact analysis of the Boltzmann-Lorentz kineticobtain numerical solutions of the Boltzmann equation is de-
equation for a tagged patrticle in a freely evolving gas hascribed briefly. Comparisons are made between the simula-
been performed in the limit of asymptotically large relative tions of the Boltzmann-Lorentz equation and the predictions
mass for the tagged partidl&]. In this limit, the Boltzmann-  of the Fokker-Planck equation for a tagged particle whose
Lorentz equation reduces to a Fokker-Planck equation. Amass is 100 times that of the surrounding gas particles. The
exact analysis of the spectrum for this equation confirms thélaxwellian distribution is confirmed, as is the approach to
separation of time scales for all degrees of tagged particldifferent temperatures for the bath and tagged particle at the
inelasticity. It remains to confirm the validity of the formal same cooling rates. The mean-square displacement is mea-
asymptotic analysis leading from the Boltzmann-Lorentzsured and the diffusion coefficient extracted from its long
equation to the Fokker-Planck equation. One objective herme behavior to confirm the detailed dependence on inelas-
is to provide this confirmation on the basis of direct Monteticity as predicted by the Fokker-Planck equation. The results
Carlo simulation of the Boltzmann-Lorentz equation. provide strong support for the accuracy of the Fokker-Planck
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equation as a representation of the Boltzmann-Lorentz equaicles at timet with kg being the Boltzmann constant, and

tion for large relative mass. Ty(t) is the temperature of the gas which cools according to
Of course, all the above discussion relies on the validitythe equation

of the (inelastig Boltzmann-Lorentz equation to describe a

massive tagged particle in a freely evolving gas. While this dTy(1)

validity is well established for elastic collisions, it is some- dt — L) Ty(t). (2.9
times questioned for inelastic collisions. To provide support

for this case, we have performed molecular-dynamics simuTthe cooling ratez(t) depends on time only througfiy(t)

lations for this system in two dimensions. The results preyng is determined from the second moment of the Boltzmann
sented in Sec. IV confirm the analysis based on the kinetigquation for the gafs],

equation, indicating clearly the validity of kinetic equations

to study rapid granular flows. This section also includes a n.o9 1ty (t)mld-Dr2
summary and discussion of the main results in the paper. §(t)=(1—a§) 99 gd+3
201 &

Il. FOKKER-PLANCK EQUATION AND ITS SOLUTION

A tagged particle immersed in a low-density gas is con- Xf d f dv.a® 26
sidered. The gas is formed by hard sphems 8) or disks V] digTdv)dlva). 29

(d=2) of massm, and diametetry, and the tagged particle ] .
is also a hard sphere or disk, but with massnd diameter ~ The solution to Eq(2.5) is
o. All particles are smooth and collide inelastically. Colli-
sions are characterized by velocity-independent coefficients T.(1)=T4(0)
of normal restitution. For the collisions between the gas par- g g
ticles it will be denoted byagy, while that for collisions
between the tagged particle and gas particles will be represhowing that the temperature of the gas decreases®a®r
sented bya. large times if the system remains in the HCS. The explicit

The probability density=(r,v,t) describing the dynamics form of ¢ will be not given here, but it is known in the
of the tagged particle obeys the Boltzmann-Lorentz equatioso-called first Sonine approximati¢h,9].

In Ref. [7] it was shown that the Boltzmann-Lorentz

1+ ——t

5 (2.7)

£(0) }2

(d+v-V)F=J[r,v,t|F,f]. (2.1)  equation reduces to a Fokker-Planck equation for asymptoti-
cally smallA,
The collision operatod is given by[7,8]
G v-V)F(r,V,1) = yq(t +KeTolV a}F t
J[r,V,t|F,f]:O'g_1J dvlJ d&®(g&)(g&) ( t V- ) (r,V, )_Ye( )aav' \ m a(?V (I’,V, ),
(2.8

X[a 2F(r,v/ ,)f(r,vy 1) . - - .
where y4(t) is the same friction coefficient as for elastic

—F(r,v,t)f(r,vq,t)], (2.2 collisions, except as a function of the time-dependent tem-
peratureT(t),
wheref(r,v,t) is the corresponding distribution for the sur-
rounding gas particle® is the Heaviside step functiom: is QA= V25071
a unit vector pointing from the center of the gas particle 1 to velt)= anvg(t), (2.9

the center of the tagged particle at contact, ang= (o
+04)/2. The precollisional or restituting velocitie$ andv; wherev(t) is defined in terms oT y(t) following Eq. (2.4)

are given by above. All effects of inelastic collisions among the gas par-
ticles in Eq.(2.8) appear through the time dependence of

W (1+a)A (066, VI=vi+ 1ta (g &)6 T,4(t), while the inelasticity of collisions between the tagged
a(l+A) T (1+A) ' particle and gas particles manifests itself only through the

(2.3 parametea=(1+ a)/2.
The Fokker-Planck equatig.8) can be mapped onto the

with g=v—v, the relative velocity and=my/m the ratio  corresponding equation for elastic collisions using the di-
of gas to tagged particle mass. The surrounding gas is takgfensionless variables

to be in its homogeneous cooling sté#CS) as determined

from the solution to the nonlinear Boltzmann equation. Its v ye(t)
distribution function has the scaling for| Vi=——  r*=a(l-e)——r,
g fortd) Vo(t) ( )Vo(t)
fu(v,t)=ngvy 4(t) ¢ v (2.9 t
A vg(t))’ ' t*=a(1—e)f dt’ ye(t'), (2.10
0

whereng is the constant number density of the gag(t)
=[2kgT4(t)/my]"? is the thermal velocity of the gas par- where we have introduced
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a 1/2

1-€

Vo(t)=

2kgT4(t) | M2 () Consider first a spatially homogeneous initial state for the
T 2y tagged particléE* (r*',v*',0)=F*(v*',0). Then Eq(2.19
(2.11 simplifies to

m

Since both/(t) and y(t) are proportional tar;/qt), it fol- e [B()]Y? NN
lows thate is a time-independent quantity. The above defi- Frvet) = dv* expd —b(t*)
nitions apply only fore<1, a point discussed further in the
final section. Here we only note that it is a necessary condi- X (v —e v 2IEr (v* ' 0). (2.18
tion in the derivation of Eq(2.8). In terms of the new vari-
ables, the Fokker Planck equatitth8) becomes Fort*>1, b(t*)—1 and, consequently,
Ove +V* 07F**** K\ gk * (% 1 —d2n—v*?2
oV gy (r*,ve,t*) F* (v, t%) = FR (v )=§w e V', (219
_ ~(v* Lz _) X (1% v %), 212 where )* is the volume of the system measured in the re-
oV 2 ov* duced length scale defined in EQ.10. Thus, for general
homogeneous initial conditions, the distribution function ap-
with the scaled probability densify* given by proaches exponentially fast a stationary Maxwellian distribu-
tion in the reduced units. In terms of the original variables
vaa(t) this result is

F*(r*,v*,t*)= F(r,v,t), (2.13

[a(1-e)ye(t)]® 1 mo
- |- —mv Blw

which is also normalized to unity. Equatio2.12 is the FvO=Fu(v.t) Q{ZWkBTw(t) © ’

same as the dimensionless form of the Fokker-Planck equa- (2.20

tion for elastic collisions §=ay=1). Consequently, the )

physical properties of a massive tagged particle with inelas?ith the temperature parameter(t) given by

tic collisions moving in a gas in the HCS are the same as

those for an elastic particle in an equilibrium gas; the only T.(0=T (t)i. 2.21)

differences are the relevant space and time scales. For ex- ” o1

ample,t* =yt for elastic collisions while for inelastic col-

lisions the relationship is Interestingly, the tagged particle approaches a homoge-
neous cooling state with a scaling form similar to E2.4)

, l-e€ (0) for the gas, but with two important differences. First, the

= € Inj 1+ Tt ' (2.14 cooling state for the tagged particle is Gaussian while that

for the gas is not. Second, the cooling temperature for the

and the time scale is stretched logarithmically. tagged particle is different from that for the gas, although the
The general solution of E¢2.12 to the initial value cooling rates are the same. To elaborate on this latter feature,
problem for an unbounded system is well knojtQ]: it is convenient to define more generally the kinetic tempera-

ture for the tagged particle by
F*(r*,v*,t*)zf dr*'f dv* 'G* (r* v* t*r* v 0) d 1
EkBT(t):J drf dvEmsz(r,v,t)

XF*(r ' v*',0), (2.15
kgT4(t)a
with =%f dr*f dv* VE2F (1% vE t).
G*(r*,v*,t*;r*/,v*',O) (2.22
dr2 . . . .
e(t*)b(t* , Evaluating the integral using E€R.15 gives
| & )2( ) expi — e(t*)[r* — %' — c(t*) 9 g 9E®R1Sg
a
T(t a « T(O a
'\12 —t* ) (_): -2t |: ( ) - |- (223
X (V*+Vv* ) ]2=b(t*)(vF —e U v* )2, (2.1 Tyt) 1-€ Tg(0) 1-e€
In the above expressions we have defined The approach of the tagged particle temperature to the
asymptotic valuer,,(t) is exponentially fast on the reduced
. . time scale. Note thal..(t) # T4(t) even in the case of elastic
e(t*) = 2[t* —2¢(t*)]’ b(t*)= 1—e-2t*" collisions for the tagged particlex=1), if the gas particle
collisions are inelastic. Conversely, if gas particle collisions
1—e are elastic but the tagged particle collisions are inelastic, then
o(t*)= € . (2.17  €=0 and the tagged particle approaches the constant tem-
1+e! perature of the gas, but still differs from it by a factor af
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The result in Eq(2.23 applies even for arbitrary inhomoge-
neous states of the Brownian particle.
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this Fokker-Planck analysis are tested against direct simula-
tion of the corresponding property from the Boltzmann-

Consider next an initial state whose velocity distribution Lorentz equation.

is given by the homogeneous cooling Maxwellian but with a

spatial inhomogeneity,

F*(r* v*,0)=n*(r* )7 92 v"°  (2.29
where n*(r*,0) is the probability density for finding the
tagged particle at position* at timet=0. The correspond-
ing quantity at timet* is obtained by integration of
F*(r*,v*,t*), as given in Eq(2.195, with respect tov*,

giving
n*(r* t*)= L dlzf dr*’
’ 27 *2(t*)
xexg —d(r* —r*)221%¥2(t* ) In* (r*,0),
(2.25
where
I*2(t*)=d(t* —1+e™ ). (2.26

It is easily verified that*?(t*) is the mean-square displace-

Ill. MONTE CARLO SIMULATION OF THE
BOLTZMANN-LORENTZ EQUATION

To test the formal analysis leading from the Boltzmann-
Lorentz equation to the Fokker-Planck, the direct simulation
Monte Carlo(DSMC) method[11] has been applied to the
former. Specifically, the predictions of velocity relaxation to
a Maxwellian at a new temperature and the approach to dif-
fusion with an enhanced diffusion coefficient have been in-
vestigated for a system of hard spheres with mass tatio
=102, equal diameters for all particles, and a coefficient of
normal restitution for collisions between gas particles
=0.99. These values assure the necessary conditidhfor
0<a=<1, as shown in the Appendix. The DSMC for the
Boltzmann equation with elastic collisions is well described
in Ref. [11]. Its adaptation to the Boltzmann-Lorentz equa-
tion with inelastic collisions is straightforward. As indicated
in Eq. (2.1), the distribution function for the ga$,, is re-
quired for input, and is taken here to be the homogeneous
cooling solution to the Boltzmann equatidp . It is known
that this solution is unstable to long-wavelength spatial per-
turbations at sufficiently long times, so any possible interfer-

ment of the tagged particle in terms of the dimensionlesgnce of relaxation processes by this instability is not ad-

variables. Moreover, it follows directly from E@2.25 that
n*(r*,t*) obeys the extended diffusion equation

JeV* (r* 1) =(1—e"")D*V*2n* (r*t*), (2.27)

with D*=1/2. This equation is exact for all times if the

dressed. However, for the chosen value af, the
homogeneous cooling state is stable on the time scales stud-
ied[12].

In the simulations 19 trajectories of a tagged particle
have been generated. Independently of its position, collisions
of the tagged particle always took place with particles of a

initial condition has the assumed form, and shows most dihomogeneous gas whose velocity distribution was given by
rectly the approach to a hydrodynamic stage, i.e., the usu#q. (2.4). As already mentioned, the exact form éfis not

diffusion equation applies exponentially fast tdr=>1. The
valueD* =1/2 is consistent with the Einstein result

D*

T lim t* ~1*2(t*).
t

*

(2.28

— 00

In terms of the original variables, the asymptotic diffusion

equation is
an(r,t)=D(1)V?n(r,t), (2.29
with
D(t)= DV . (2.30
(1-e)?

Here D¢(t) =kgT4(t)/my(t) is the same as the diffusion

known, and the expression obtained in the first Sonine ap-
proximation[1,9] was used to generate the velocity of the
colliding gas particles. Thus, the trajectories of the gas par-
ticles are not required, which increases greatly the efficiency
of the numerical simulation and avoids the introduction of
specific boundary conditions—the system is formally consid-
ered as infinite. A similar method already has been used to
study self-difussion in a low-density granular flg®].

In a typical run, collisions between the tagged particle and
the fluid particles were considered as uncoupled during a
time stepty, chosen much smaller than the initial average
collision time of the tagged particle. This means that the
position of the tagged particle was changed at constant ve-
locity for an intervalt, between every two applications of
the collision algorithm. For the collisions, the velocities of
the particles were generated from the HCS distribution, as
mentioned above, with a gas temperature determined from
the law given by Eq(2.5 and considered to be constant in

coefficient for elastic collisions, except as a function of thethe time intervat,. This implies that, has to be chosen also
time-dependent gas temperature. For a given temperaturmuch smaller than the time characterizing the cooling of the
the diffusion coefficient is seen to be enhanced by a factor ofjas, 2£(0). In the simulations we report here we uségl

(1—¢€) 2, depending only on the inelasticity of gas colli-
sions.

=2x10 %/{£(0). Theinitial condition in all simulations was
a Gaussian velocity distribution with the same temperature

For more general initial conditions, the dynamics is quali-as the surrounding fluid.

tatively similar with rapid velocity relaxation followed by

As a first test of the Fokker-Planck limit, the predicted

spatial diffusion. In the next section, several predictions fromapproach to a Gaussian cooling state is studied. The associ-
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FIG. 3. Time evolution of the reduced fourth velocity moment
FIG. 1. Plot of the ratio of the tagged particle temperature to theof the tagged particle distribution. Here time is measured in units of
surrounding gas temperature as a function of the dimensionless r&/Vo, Where\ is the mean free path. The continuous line corre-
duced timet* defined in Eq.(2.10. The ratio of gas to tagged SPonds tox=0.95 and the dashed line to=0.5. The straight lines
particle mass is 10? and the coefficient of restitution for the gas represent the fourth moment of the HCS distribution for the fluid at
collisions isay=0.99. The solid lines are the predictions from the @=0.95(continuou$ and «=0.5 (dashe
Fokker-Planck equation and the symbols from the DSMC method

of the Boltzmann-Lorentz equation. A2 Interestingly, we have found that the agreement be-
tween theory and simulations improves significantly if the

ated scaling velocity is defined in terms of the temperaturenass ratioA and a4 are changed to reduce the valueeof

T(t) of the tagged particle, characterizing its kinetic energy. The Gaussian character of the tagged particle distribution

It is expected that this temperature approaches an asymptotian be studied via its fourth moment, or the normalized ex-

value proportional to the gas temperatiligt), according to  pression 8v*)/5(v?)2, which has the value unity for a

Eq. (2.23. Figure 1 shows the time evolution of the ratio Gaussian. Here it is

T(t)/T4(t) as obtained from the numerical simulation of the

Boltzmann-Lorentz equation fer=0.5, 0.7, and 0.99. In all

cases it is seen that the ratio evolves from the unit initial (V)= iJ drj dv v (r,v,t). (3.1)

condition until reaching a steady value. Also plotted is the Q v

theoretical prediction. Figure 2 shows a detailed comparison

of the numerical asymptotic values with Eg.21) over this

range of values ofr. The agreement is very good consider-

ing that corrections to the Fokker Planck limit are of order

Figure 3 shows the simulation values for the normalized mo-
ment as a function of time fax=0.5 and 0.99. Also shown
are the corresponding results for the gas distribution, i.e., for
the velocity distribution in Eq(2.4). The latter shows sig-

160 nificant deviations from unity whereas the tagged particle
results confirm the Gaussian even at strong dissipation. Al-
though we have plotted in the figure the results correspond-

1.55 ¢ ing to two extreme values af, a similar behavior has been

T/T, obtained also for several intermediate values. It could be
claimed that the Gaussian distribution observed in the simu-

1.50 | lations is in some way influenced by the initial Gaussian
distribution. To clarify this point we have also considered
initial distributions far from the Gaussian, namely a uniform

1.45 | distribution with zero mean. It was observed that the distri-
bution evolved towards a Gaussian very fast, indicating that
the use of an initial Gaussian does not limit at all the results

1.40 ‘ ‘ ‘ ‘ ‘ presented here.

0.4 0.5 0.6 0.7 0.8 0.9 1.0 The approach to diffusion can be studied via the mean-

o square displacement of the tagged particle. In Fig. 4, a com-

FIG. 2. Asymptotic value of the ratio between the tagged par-Parison of the simulations with the 'un|versal form given by
ticle temperaturd and the gas temperatufg, as a function of the ~ EJ- (2.26 for @=0.5, 0.7, and 0.99 is presented. The results
coefficient of normal restitutior for collisions between the tagged confirm both the approach to diffusion and the predicted lim-
particle and the fluid particles. The mass ratio and the coefficient ofting form with D*=1/2. Figure 5 shows a more detailed
restitution for gas collisions are the same as in Fig. 1. The solid lin€€omparison with the predicted diffusion coefficient over a
is from the Fokker-Planck equation and the dots from the numericalvide range ofa values. Again, the agreement is very good,
simulation of the Boltzmann-Lorentz equation. since the discrepancies are smaller than 2%.
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FIG. 4. Time evolution of the mean-square displacement of the  FIG. 6. Distribution function of the tagged particle normalized
tagged particle for three different values of the coefficient of resti-by the Gaussian for three different values of the restitution coeffi-
tution « for collisions between the tagged particle and the gas pareient «. For the three of them it ig>1, and the Fokker-Planck
ticles. Time and length are measured in the reduced dimensionlesgjuation is not expected to hold. The velocity is measured in the
units defined in the main text. The solid line is the theoretical prereduced units defined in Eq.10.
diction given by Eq(2.26).

variables in Eq(2.10. In the new variables, the description
IV. DISCUSSION is independent ofr and, therefore, applies for arbitrary de-
gree of dissipation for the tagged particle. However, the gas

B ;It'he Fotker-l;’lanck t_equ_atich]n, i q?te:cined flrlomt_ th]?is implicitly restricted to weak dissipation due to the condi-
oltzmann-Loreniz equation in the imit of a small ratio ot v, 1 “\wheree is defined by Eq(2.11). The explicit
gas to tagged particle mads allows an exact analysis of the E

tagged particle dynamics. The surrounding gas is assumed orm for e given in the Appendix shows that this condition

> . . 8quires T a2=A. The origin of this condition is a require-
be in the homogeneous cooling state. In particular, the stud ent that thegratio of tagaed particle temperature to gas tem-
shows the clear separation of time scales required for a hy- gged p P 9

drodynamic description. For tagged particle dynamics th&erature does not grow in time, since it appears as a factor of

latter refers to diffusion. The objective here has been to confA in the asymptotic analys§]. The relevance of this con-

: P : ; . dition for the Fokker-Planck limit is established in Fig. 6
firm the validity of the asymptotic analysis leading to the . Co : )
Fokker-Planck limit by direct Monte Carlo simulation of the showm_g”:thef d|sIr|but|on fundc_t|o_rF t_norm_agzgg byd :che
Boltzmann-Lorentz equation. The excellent agreement founésaussm m TOr stronger gas dissipation=©.95, and for

for the various properties studied provides convincing eviSeveral values of the restitution coefficient for collisions be-

dence for the validity of the Fokker-Planck equation and itstWeen the tagged particle and the fluie=0.99, 0.9, and

exact consequences. 0.8. The corresponding values fer are 1.73, 1.81, and

The separation of time scales between microscekic 1.915, respectively. The deviations from Maxwellian are
netio and diffusive modes is quite clear, once the complica-now large and the Fokker-Planck description, which predicts

. . Maxwellian velocity distribution, is no longer valid. Let us
tions due to cooling have been suppressed by the change 8f iy ’ 9
g PP y g stress that the restrictian< 1 affects only the Fokker-Planck

0.60 . ‘ ‘ ‘ limit and not the more general picture of approach to diffu-
sion, as described by the Boltzmann-Lorentz equation. This
has been demonstrated in RE8], where the mean-square
displacement has been simulated for mechanically identical

L0 particles for 0.6sag<1, which includes conditions of
D strong gas particle dissipation and conseque&tiyl .
All our previous analysis is based on the accuracy of the
0.50 . 0 —

Boltzmann-Lorentz equation to describe the time evolution
of a tagged patrticle in a low-density gas, when all the colli-
sions are inelastic. For the particular case of self-diffusion
0.45 ¢ 1 the validity of the kinetic equation has been explicitly shown
in Ref. [6], by comparing its predictions with the results
obtained from molecular-dynamics simulation of a system of
0.40 ; ‘ ‘ ‘ inelastic disks. Here we present some additional evidence
05 0.6 0.7 08 08 10 when the Brownian limit of a massive particle is considered.
¢ From a computational point of view, the study of time evo-
FIG. 5. Comparison between the numerical value of the reduceduition of a massive particle in a bath, whose state must not be
self-diffusion coefficient obtained from the Boltzmann-Lorentz perturbed by the motion of the particle, is a very demanding
equation(dotg and the predicted value* = 1/2 (solid line). simulation, requiring a lot of computing time in order to get
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FIG. 7. Time evolution of the mean-square displacement of a FIG. 8. Time evolution of the temperature of the Brownian par-
tagged disk in a low-density gas of inelastic particles, using moticle for the same system as considered in Fig. 7 with0.9. The
lecular dynamics. The mass ratioAs=2x 10" ? and two values for  temperature is scaled with the time-dependent temperature of the
the coefficient of restitution for collisions of the tagged particles gas. The solid line is the theoretical prediction given by @23.
have been considered:=0.9 (squaresand «=0.8 (circles. The  Time is measured in the reduce unit defined in the text.
coefficient of restitution for collisions among fluid particlesdg

=0.99. Quantities are measured in the dimensionless reduced uni{s th disol t in Eig. 7. In thi
defined in the main text. The solid line is the theoretical prediction or the mean-square displacement, as seen in ig. 7. in this

from the Fokker-Planck description, E€.26). sense, when comparing the results obtained by using the
' DSMC method with those from MD, we must take into ac-
a significant level of statistics. count that the number of trajectories we have considered in

We have simulated a system of hard disks in a squarghe former is 200 times larger than in the latter. Increasing
domain with periodic boundary conditions. The gas wasthe number of MD trajectories by such a factor would imply
composed of 3025 particles and the results we present agetime too long for practical computer simulations.
averages over 500 trajectories of the Brownian particle, each In summary, a formal limit of the Boltzmann-Lorentz
of them generated by a different computer run. Again theequation for a tagged particle with mass large compared to
tagged and gas particles were of the same size. The initiglarticles of the surrounding gas leads to a Fokker-Planck
condition was generated by running the gas, without taggebinetic equation. This equation can be mapped onto the cor-
particle, for a period of time large enough to allow the sys-responding equation for elastic collisions by a change of
tem to reach the homogeneous cooling state. Then, one pace and time scales whose exact solution is known. In
the gas particles, randomly selected, was substituted by thgarticular, this equation demonstrates the separation of time
tagged particle, i.e., its mass was changed to the new valugcales associated with the rapid transition from complex ini-
The simulation technique was based on the “event driven™tial transients to hydrodynamigsiffusion). The property oc-
algorithm[13]. curs independent of the degree of dissipation in the collisions

Figure 7 shows the results obtained for the time evolutiorbetween the heavy particle and surrounding gas particles. In
of the mean-square displacement of the tagged particle in te present paper, the formal analysis leading to the Fokker-
system witha,=0.99 and a mass rativ=0.02. The density Planck equation has been verified by direct simulation of the
of the gas isno?=1.322<10 3, which corresponds to a Boltzmann-Lorentz equation. Finally, the validity of the
solid fraction 1.03% 10 3. Two values of the restitution co- Boltzmann-Lorentz equation itself has been confirmed by se-
efficient for collisions of the tagged particle have been conlected molecular-dynamics simulations.
sidered,«=0.9 anda=0.8. The solid line is the prediction
given by Eq.(2.26. Again a good agreement is obtained,
providing a very strong test on the validity of the kinetic ACKNOWLEDGMENTS

equation even before the system reaches the hydrodynamic The research of J.J.B., M.J.R-M., and R.G-R. was par-
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it is observed that the discrepancy between theory and SimLNO_ PHY 9722133,

lation increases with time. This is a statistics effect which

decreases as the number of trajectories increases. This is

more clearly seen in Fig. 8, where we have represented the APPENDIX: DETAILED FORM FOR €

time evolution of the temperature of the tagged particle for

the simulations corresponding to=0.9 in Fig. 7. Although The Fokker-Planck limit leading to E@2.8) is restricted
the results are consistent with the predictions from theio small mass ratid and e<1. The parametet is defined
Fokker-Planck equation, the fluctuations are too large tdy Eq.(2.17), with the cooling ratg and friction coefficient
make a detailed quantitative comparison. This is not the casg, given by Eqs.(2.6) and(2.9), respectively,
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L(t) tailed values can be adjusted by considering particles of very
€= 2aya(t) different sizes. For simplicity, the sizes have been taken
€ equal in the simulations reported in Sec. lll. Then, for the

_ 2 d-1 chosen values in the DSMC method in Sec. d},=0.99 and

(1-agx)l'(d/2) [ oy ) , L D=
=413 |3, J va dv; g3op(v) d(vy) A=10“, the above expression fersimplifies to

16F<—)A °

2 0.704 a3
€= —,

1-a2 (og\% Y 3 Lra
== +3—zc*(ag) (A1)

4\2aA \ 90 where we have also particularized fib+= 3. Clearlye<1 for

all 0O=<a=<1 and the Fokker-Planck equation is expected to

In the .third line the integral has been perfo_rmed u;ing 8hold for arbitrary inelasticity of the collisions of the tagged
approximate solution to the Boltzmann equation obtained b¥)article with the gas particles.

expanding¢(v) in Sonine polynomials and retaining the = e reported MD simulations, we used hard disks (
first correction to the Gaussidf,9]. This approximation has =2), A=2x10"2, anda,=0.99 T’his leads to

been tested via Monte Carlo simulation and is accurate for ' ' g

the relevant velocities within a few percdid2]. The contri-

bution c*(agy) above is due to this first correction and is e~ 0.351 (Ad)
given by 1+a’
¢ (ay) 32(1— ag)(1-2aj) and, again, the conditioa<1 is fulfilled for arbitrary values
dy) = .
© 9+24d+(8d—41) ag+30a%(1-ay) of a. _ o
(A2) When carrying out the simulations, we have observed that

the agreement with the theoretical predictions inproves as the
The conditione<1 restricts the range ok, to that for  value of e decreases, although the validity of the theory re-
weak dissipation in the gas sindemust be small. The de- quires juste<1.
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