
PHYSICAL REVIEW E 84, 031302 (2011)

Cooling rates and energy partition in inhomogeneous fluidized granular mixtures
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The local cooling rates of the components of a vibrated binary granular mixture in a steady state are investigated.
The accuracy of the expression obtained by assuming a local homogeneous cooling state distribution of the gas is
analyzed by comparing it with molecular dynamics simulation results. A good agreement is observed. Also, the
profiles of the partial temperatures are compared with the theoretical prediction following from the application
of the Chapman-Enskog method to solve the kinetic Enskog equations of the mixture. In this case, the agreement
is satisfactory if the boundary layers near the walls are excluded. The implications of the results are discussed.
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I. INTRODUCTION

As a consequence of the inelasticity of collisions, granular
fluids exhibit a series of behaviors that are in sharp contrast
with those of molecular fluids. One of them is the violation
of the energy equipartition theorem in a granular mixture of
mechanically different species. The granular temperatures of
the components of the mixture, defined from the average
kinetic energies, are different. Although this possibility was
already pointed out many years ago [1], it has not been until
recently that a systematic study of the effect has been started.
For the homogeneous state of a freely cooling binary mixture
of inelastic hard spheres or disks, an explicit expression for
the ratio of the temperatures of the two components has
been obtained from an approximated solution of the kinetic
Enskog equations [2]. The accuracy of this prediction for weak
dissipation and low density has been confirmed by molecular
dynamics (MD) simulations [3].

The above homogeneous cooling state (HCS) is not acces-
sible experimentally since it is of too short a duration to be
observed. In order to maintain a granular system fluidized, an
external energy supply is required. This is often carried out
in experiments by means of vibrating walls or external fields,
which generate macroscopic gradients in the system because of
the inelasticity. At a theoretical level, homogeneously driven
granular fluids have also been considered. In these models,
external stochastic forces giving energy to the particles are
added, thus allowing a system of inelastic particles otherwise
isolated to reach a steady state. The lack of energy equipartition
in the steady state of homogeneously driven granular mixtures
has been also analyzed [4] by extending the methods of [2].
Nevertheless, the relationship between this kind of driving
and actual experiments is uncertain. The nonequipartition
has also been identified in simple shear flows in which the
density and the temperature are uniform [5] and observed
in MD simulations of vibrated granular gases [6,7]. In the
latter cases, the parameter characterizing the departure from
energy equipartition, for instance, the ratio of the partial
temperatures of the components, exhibits a local, position
dependent behavior.

In addition, experimental evidence of the coexistence of
different temperatures in strongly vibrated granular mixtures
has been reported in both two- [8] and three-dimensional [9]
systems and the dependence of the temperature ratio on

the several parameters characterizing the system has been
investigated.

Theoretical predictions for the local value of the tem-
perature ratio in a binary mixture of granular gases in
inhomogeneous states follow as a by-product in the derivation
of hydrodynamic equations in the context of kinetic theory
[10–12]. This feature is often forgotten, although it is closely
related with important conceptual issues dealing with the
existence itself of a hydrodynamic description and with
the Chapman-Enskog method to derive the corresponding
macroscopic equations. One of the aims of this paper is
to emphasize the generality of the theoretical prediction for
the partial temperatures of the components of a mixture in
states that are described by the hydrodynamic equations to
Navier-Stokes order. Quite peculiarly, the expression for the
temperature ratio turns out to be independent of the gradients
of the hydrodynamic fields, only depending on the local values
of the densities of the two components.

The qualitative and quantitative validity of the theory
will be investigated by comparing it with MD simulation
results for a vibrated granular gas of inelastic hard disks in
a highly inhomogeneous state. In the analysis, a crucial role
is played by the local cooling rates of the fluid and of each
of the components. In most of the hydrodynamic theories
of monocomponent and multicomponent granular gases, the
exact local cooling rates are approximated, without any well
founded justification, by its zeroth order in the gradients of
the hydrodynamic fields, which, in addition, is computed
by using a Gaussian approximation for the local velocity
distributions [13]. The issue of the validity of this assumption
is also addressed in the MD analysis being reported below.
It will be shown that the actual local energy dissipation in
the system is very well described by assuming local Gaussian
distributions for the components, at least for not too strong
inelasticity. Neither zeroth order in the gradients’ deviations
from a Gaussian nor corrections associated with the gradients
of the hydrodynamic fields seem to be quantitatively relevant
to describe the cooling rate of the system. This provides
justification for the expression of the cooling rate generally
used in the hydrodynamic equations for systems of smooth
inelastic hard spheres and disks.

The remainder of the paper is organized as follows. In the
next section, the theoretical results for the cooling rates and
the partial temperatures are reviewed. They follow from the
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application of the Chapman-Enskog method to the Enskog
equations of the system. It is emphasized as to which aspects
have a justification on physics grounds, and as to which ones
are a consequence of some mathematical approximation or
choice. This is important to understand the basis of the equation
determining the ratio of the partial local temperatures of the
components as a function of the concentration profiles. In
Sec. III, MD simulation results are presented for a vibrated
system of inelastic hard disks in a steady state. The partial
cooling rates and temperatures are measured, and the results
compared with the theoretical predictions. The final section
of the paper contains a short summary of the results, and also
the comparison of the theory with some previous simulation
results and experiments.

II. BOLTZMANN-ENSKOG EQUATION AND
CHAPMAN-ENSKOG SOLUTION

We consider a mixture of smooth inelastic hard spheres
(d = 3) or disks (d = 2) of masses m1 and m2 and diameters
σ1 and σ2. The inelasticity of collisions is modeled by constant
coefficients of normal restitution. There are three of them: α11,
α22, and α12 = α21, where αij refers to collisions between
a particle of species i and a particle of species j . They are
defined in the interval 0 < αij � 1. We also introduce σij =
(σi + σj )/2. The particles are submitted to an external field,
so the force acting on a particle of species i is Fi .

The Enskog equations for the one-particle distribution
functions fi(r,v,t), i = 1,2, have the form [14](

∂t + v · ∇ + Fi

mi

· ∂

∂v

)
fi(r,v,t) =

∑
j=1,2

Jij [r,v|fi,fj ],

(1)

where Jij is the inelastic Enskog collision operator for the
scattering of a particle of species i and a particle of species j .
Below, the application of the Chapman-Enskog algorithm to
Eq. (1), as carried out in Ref. [10], will be shortly reviewed.
Emphasis will be put on those conceptual issues and hypothesis
motivating the study presented here.

The important first step in any derivation of macroscopic
continuum equations is the choice of the fields. And it
must be stressed that the Chapman-Enskog procedure does
not make any explicit limitation on the fields to be used.
The only required condition is the existence of a uniform
reference state than can be expressed in terms of the chosen
fields. In particular, for granular mixtures, two sets of fields
have been considered for hydrodynamic descriptions. One
is formed by the number densities of the species, the flow
velocity associated with the total momentum, and the granular
temperature defined from the total energy density [10]. The
second set consists of the number densities, species flow
velocities defined from the species momenta, and species
granular temperatures defined from the local species energies
[1,15]. The point of view adopted here is that the expanded set
does not have a larger predictive value on the relevant large
space and time scales. A discussion of this issue is carried out
in Ref. [16]. Here, let us mention that the accuracy of using
the reduced set has been confirmed by molecular dynamics

simulations both in the homogeneous case [3,17] and also in
inhomogeneous vibrated mixtures [18].

The macroscopic field’s number density of species i,
ni(r,t), flow velocity u(r,t), and granular temperature T (r,t),
are defined in the usual way:

ni =
∫

dv fi(r,v,t), ρu =
∑

i

∫
dv mivfi(r,v,t),

(2)

nT =
∑

i

∫
dv

miV
2(r,t)
d

fi(r,v,t).

Here, ρ = m1n1 + m2n2 is the total mass density, n = n1 + n2

is the total number density, and V = v − u is the peculiar
velocity. Balance equations for the above fields are derived
from the set of Enskog equations (1):

∂tni + ∇ · (nu) + m−1
i ∇ · j i = 0, (3)

∂t u + u · ∇u + ρ−1∇ · P − ρ−1
∑

i

ni Fi = 0, (4)

∂tT + u · ∇T − n−1
∑

i

m−1
i [T ∇ + 2(d)−1 Fi] · j i

+ 2(nd)−1 (∇ · q + P : ∇u) + T ζ = 0, (5)

where j i is the mass flow for species i relative to the local flow,
P is the pressure tensor, and q is the heat flux. The definitions
of these fluxes will not be needed in the following. In addition,
Eq. (5) contains the cooling rate ζ due to the inelasticity of
collisions,

ζ (r,t) = −(nT d)−1
∑
i,j

∫
dv miv

2Jij [r,v|fi,fj ]. (6)

The balance equations become a closed set of hydrodynamic
equations for the macroscopic fields once j i , P, q, and ζ are
expressed as functionals of these fields. This requires us to find
a solution to the Enskog equations such that all the space and
time dependence occurs through the hydrodynamic fields [10]

fi(r,v,t) = fi [v|n1(r,t),n2(r,t),u(r,t),T (r,t)] . (7)

In the Chapman-Enskog procedure, this “normal solution” is
generated by representing it as a series expansion in a formal
nonuniformity parameter ε, fi = f

(0)
i + εf

(1)
i + ε2f

(2)
i + · · · ,

where each factor of ε indicates an implicit gradient of a
macroscopic field. Use of this expansion in the definition of the
fluxes and the cooling rates gives a corresponding expansion
for them. In this way, the time derivatives of the fields can also
be expanded in powers of ε. Then, to zeroth order in ε, it is
easily obtained [12]:

−ζ (0)T
∂

∂T
f

(0)
i =

∑
j

J
(0)
ij

[
v
∣∣f (0)

i ,f
(0)
j

]
, (8)

J
(0)
ij

[
v
∣∣f (0)

i ,f
(0)
j

] = gij (σij )JB,ij

[
v
∣∣f (0)

i ,f
(0)
j

]
, (9)

where JB,ij is the inelastic Boltzmann collision operator for
particles of species i and j , and gij (σij ) is the equilibrium
pair distribution function for species i and j at contact and
evaluated at the local densities ni(r,t). The lowest order

031302-2



COOLING RATES AND ENERGY PARTITION IN . . . PHYSICAL REVIEW E 84, 031302 (2011)

cooling rate ζ (0) is obtained by particularizing Eq. (6) to zeroth
order in the gradients:

ζ (0)(r,t) = −(nT d)−1
∑
i,j

∫
dv miv

2J
(0)
ij

[
v
∣∣f (0)

i ,f
(0)
j

]
. (10)

The solutions to Eq. (8) are chosen such that they have the
same moments as in Eq. (2) for all r ,t :∫

dv f
(0)
i = ni, (11)

∑
i

∫
dv mivf

(0)
i = ρu, (12)

∑
i

∫
dv miV

2f
(0)
i = dn T . (13)

The above conditions are the generalization of those verified
in the elastic case, guaranteeing the existence and uniqueness
of solutions to the equations generated to all orders in ε by the
Chapman-Enskog method [19].

The functions f
(0)
i are easily constructed from the distribu-

tion functions defining the HCS, through the replacements of
the constant uniform fields number densities and temperature
by ni(r,t) and T (r,t), and substituting v by V (r,t). This
gives the local HCS distributions, which play a role similar
to the local equilibrium distributions in molecular gases.
Dimensional analysis requires [2]

f
(0)
i (r,v,t) = niv

−d
0 (t)χi

[
V/v0(t),n1σ

d
1 ,n2σ

d
2

]
, (14)

where χi is an isotropic function of V and v0(t) = [2T (m1 +
m2)/m1m2]1/2 is a local thermal velocity of the mixture.
Zeroth-order partial temperatures of the species T

(0)
i (r,t) can

be defined through∫
dv V 2f

(0)
i (r,v,t) = m−1

i dniT
(0)
i . (15)

From Eqs. (13) and (15), it follows that n1T
(0)

1 + n2T
0)

2 =
nT . Moreover, Eq. (14) and the definition of the partial
temperatures T

(0)
i imply that γ (0) ≡ T

(0)
1 (r,t)/T

(0)
2 (r,t) is a

function of only the local densities n1 and n2. This function
can be determined as follows. Use of Eq. (14) into Eq. (10)
shows that the latter is equivalent to [2]

ζ0

2

∂

∂V
· [

Vf
(0)
i (r,v,t)

] =
∑

j

J
(0)
ij

[
v
∣∣f (0)

i ,f
(0)
j

]
. (16)

Then, multiplication by miV
2 and integration over V yields

ζ (0)(r,t) = ζ
(0)
i (r,t) (17)

with

ζ
(0)
i (r,t) = −(

niT
(0)
i d

)−1 ∑
j

∫
dv miV

2J
(0)
ij

[
v
∣∣f (0)

i ,f
(0)
j

]
.

(18)

If this expression is particularized for the HCS, ζ
(0)
i becomes

the partial cooling rate associated with the temperature T
(0)
i (t).

The evaluation of ζ
(0)
i requires us to solve consistently

the coupled set of equations (8). This can be done in a

systematic way by expanding f
(0)
i in terms of an ensemble

of orthogonal polynomials [2]. Here, we will use a leading
order approximation, which is expected to give quite accurate
results, at least for not very strong inelasticity. The lowest order
distribution functions appearing in Eq. (17) are approximated
by Gaussians

f
(0)
i (r,v,t) = ni(r,t)

[
2πT

(0)
i (r,t)
mi

]−d/2

e−mV 2/2T
(0)
i (r,t).

(19)

Using this expression, it is straightforward to calculate the
right-hand side of Eq. (17). The technical details needed to
evaluate the integrals have already been given several times
[2,4,20] and will be not reproduced here. The result is

ζ
(0)
1 = 2π (d−1)/2

�(d/2)d

{[
T

(0)
1

m1

]1/2(
1 − α2

11

)
σd−1

11 n1g11

+ 4
√

2

[
T

(0)
2

m2

]1/2

σd−1
ij n2g12h12

×
[

1 − h12(1 + φ)

φ

]
(1 + φ)1/2

}
, (20)

where

hij ≡ mj (1 + αij )

2
(21)

and

φ ≡ m2T
(0)

1

m1T
(0)

2

. (22)

Of course, the expression for ζ
(0)
2 follows from Eq. (20) by

interchanging 1 and 2 and, consistently, changing φ into φ−1.
Thus, the requirement ζ

(0)
1 = ζ

(0)
2 leads to

φ1/2(1 − α2
11)

( σ1

σ12

)d/2 n1

n2
g11(σ1)

+ 4
√

2h12

[
1 − h12(1 + φ)

φ

]
(1 + φ)1/2g12(σ12)

− (
1 − α2

22

) (
σ2

σ12

)d−1

g22(σ2) − 4
√

2
n1

n2
h21

× [1 − h21(1 + φ)] (1 + φ)1/2g12(σ12) = 0. (23)

This equation is formally the same as for the homogeneous
cooling state [2], but with the global fields substituted by
the local ones as first noticed in Ref. [10]. The solution of
this equation provides γ (0) ≡ T

(0)
1 (r,t)/T

(0)
2 (r,t) as a function

of n1(r,t)/n2(r,t) and the values of the equilibrium pair
correlations at contact, consistently with the discussion below
Eq. (12). In principle, this result is not very useful for granular
mixtures that are not in the HCS since the temperature
parameters T

(0)
i do not provide the actual energy densities

of the components of the mixture, but their lowest order
approximation in some gradient expansion. The case of a
mixture in the tracer limit n1/n2 → 0 has been previously
considered in [21,22]. There, an equation corresponding to
the appropriate limit of Eq. (23) was derived. In addition, the

031302-3



J. JAVIER BREY AND M. J. RUIZ-MONTERO PHYSICAL REVIEW E 84, 031302 (2011)

property T
(0)
i = Ti is verified, where Ti is the actual partial

granular temperature of species i defined by

∫
dv V 2fi(r,v,t) = m−1

i dniTi . (24)

Therefore, Eq. (23) determines the local energy partition in
the system. Moreover, these predictions were shown to be
in quite good agreement with MD results for a vibrated
low-density granular gas [gij (σij ) = 1] in the presence of
gravity.

What about the general case wherein the composition of
the mixture does not correspond to the tracer limit? Note
that the solubility conditions given by Eqs. (11)–(13) do
not imply any relationship between the lowest order param-
eters T

(0)
i and the actual partial temperatures Ti , other than

n1T
(0)

1 + n2T
(0)

2 = nT . Nevertheless, additional information
follows from the derivation of the hydrodynamic equations
with explicit expressions for the transport coefficients. The
practical implementation of the Chapman-Enskog procedure
requires us to expand the distribution functions in some set
of orthogonal polynomials in order to get explicit expressions
for the hydrodynamic fluxes and the cooling rate. Usually,
the Sonine polynomial expansion is employed [23,24]. This
is what is also done in Refs. [10–12] for granular mixtures
of inelastic hard spheres or disks. And, it happens that the
corrections to the lowest order distribution functions f

(0)
i do

not contribute to the second velocity moment, i.e., T
(0)
i = Ti ,

as a consequence of the orthogonality property of the Sonine
polynomials. The conclusion is that Eq. (23) also determines
the ratio γ ≡ T1/T2 since it agrees with γ (0).

Equation (23) may appear as surprisingly simple, especially
taking into account its generality. No particular state of
the mixture has been considered. This is a consequence
of the assumption that there is a hydrodynamic description
in terms of only n1, n2, u, and T , as well as of the use of
the Chapman-Enskog procedure, including the expansion in
orthogonal polynomials, to generate it. Although the partial
temperatures Ti of the two components are different, they are
not needed to specify the macroscopic state of the mixture.
Moreover, the theory provides a relationship to determine them
as a function of the assumed hydrodynamic fields. This relation
has a local character and does not involve the gradients of
those fields nor the external force. The local relation between
the partial temperatures is the same as in the HCS. This
does not imply any kind of local HCS approximation, in
the same way as equipartition in molecular systems does
not imply local equilibrium. The above results would not
apply if the characterization of the macroscopic state of the
mixture would require us to specify the partial temperatures
of the components and, therefore, they should be included into
the set of independent hydrodynamic fields. Of course, in this
case, one more hydrodynamic equation, with the correspond-
ing new transport coefficients, is required. This is the kind of
approximation followed in [1].

For a practical application of Eq. (23) beyond the very dilute
limit, explicit expressions for gij (σij ) are needed. For d = 3,

0 1 2 3 4 5
m1 /m2

0.6

1

1.4

1.8

T
1

/T
2

n1 /n2 =1/3
n1 /n2 =1
n1 /n2 =3

FIG. 1. Temperature ratio γ = T1/T2 given by Eq. (23) as a
function of the mass ratio m1/m2 for d = 2, α11 = 0.9, α22 = 0.8,
and α12 = 0.85. The diameters of the two kinds of particles are the
same and the area fraction is ν = 0.1

the extended Carnahan-Stirling form [25]

gij (σij ) = 1

1 − ν
+ 3ξ

2(1 − ν)2

σiσj

σij

+ ξ 2

2(1 − ν)3

(
σiσj

σij

)2

(25)

can be used. Here, ν ≡ (π/6)
∑

niσ
3 is the mixture volume

fraction and ξ ≡ (π/6)
∑

i niσ
2
i . The corresponding expres-

sion for d = 2 is [26]

gij (σij ) = 1

1 − ν
+ 9ξ

16(1 − ν)2

σiσj

σij

, (26)

where now ν ≡ (π/4)
∑

i niσ
2
i , the mixture area fraction, and

ξ ≡ (π/4)
∑

i niσi .
The solution of Eq. (23) for γ (0) = γ = T1/T2 depends

very weakly on the values of n1/n2 for given values of the
other parameters. The dependence on the mass ratio and on
the diameter ratio is much stronger. To illustrate this, in Fig. 1,
the theoretical prediction for γ is plotted as a function of
m1/m2 for three values of n1/n2, namely, 1/3, 1, and 3. The
other relevant parameters are d = 2, α11 = 0.9, α12 = 0.85,
α22 = 0.8, σ1 = σ2, and ν = 0.1. Similar results are obtained
for other values of these parameters. This property plays an
important role in the analysis of both MD and experimental
results.

III. MD RESULTS FOR A VIBRATED GRANULAR
MIXTURE

We have performed event-driven molecular dynamics sim-
ulations of a binary mixture of inelastic hard disks (d = 2)
in the presence of a gravitational field, i.e., Fi = −mig0̂ez,
where g0 is a constant and êz the unit vector in the positive
direction of the Z axis. The system is confined in a box of width
W and it is open on the top. Periodic boundary conditions are
used in the horizontal direction. Energy is supplied through the
wall at the bottom, which is vibrating with a sawtooth velocity
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profile, so that particles colliding with it always find the wall
moving upward with the same velocity vW . Also, the limit
of small amplitude of the oscillations as compared with the
mean free path of the gas in the vicinity of the vibrating wall
is considered. This allows us to treat the position of the wall as
fixed at z = 0 [27,28]. The particle-wall collisions are elastic.

The total number of particles was the same in all the
simulations, N = 420, being evenly distributed between the
two species, i.e., N1 = N2 = N/2. Since the interest here is
on some relationships between hydrodynamic quantities that
are expected to apply in the bulk of the system, the only
relevant role to be played by the vibrating wall is to maintain
the system fluidized. In addition, the value of the velocity
of the wall vW has been chosen such that the density of the
system is relatively low. More precisely, we have controlled
that the maximum local density in the system is always below
n ∼ 0.15σ−2

12 . Although this value is well above the dilute
(Boltzmann) limit, so some finite density effects show up in
the system, the Enskog description considered in the preceding
section is expected to be able to capture them. Since, in the
range of density considered, the disparity in the sizes of the
particles must play a minor role in the qualitative features of
the system, the diameters of the two species particles have
been taken the same in all the simulations, i.e., σ1 = σ2 = σ .

Under the above conditions, it is known that a one-
component granular system reaches a stationary state with
only gradients in the direction of the external field [28].
Nevertheless, this state becomes unstable and transversal
inhomogeneities are developed in the system when the width
W is larger than a critical value [29]. Although we are not aware
of any similar analysis for the case of a granular mixture, in
all the simulations to be reported in the following, the system
was observed to stay homogeneous in the transversal direction.
The width of the container was W = 70σ .

The coefficient of normal restitution for collisions between
particles of different species has been fixed according with
the rule α12 = (α11 + α22)/2. The range of values of these
coefficients considered has been restricted to αii � 0.9. The
reason for this limitation is that for larger inelasticities,
gradients in the system become very large because of the
coupling between inelasticity and gradients of the fields,
which is peculiar of many steady states of granular flows.
Consequently, the hydrodynamic description provided by the
Navier-Stokes order does not hold for such values of the
coefficient of normal restitution.

In the simulations, the system has been left to evolve
from an arbitrary initial condition until it reaches a stationary
state. Then, the quantities of interest have been measured and
averaged over different time instants and trajectories. The
duration of the sampling interval was 4000 collisions per
particle, and 20 trajectories were considered in each case. To
measure the dependence on height of the properties, the system
was divided in layers �z. In particular, the local cooling rate of
species i, ζi(z), has been computed by measuring the variation
in kinetic energy �Ek,i(z,τ ) of particles of that species in the
layer located at z due to collisions during a time interval τ .
Then, the local cooling rate is given by

ζi(z) = 1

〈Ek,i〉z
�Ek,i(z,τ )

τ
, (27)

where 〈Ek,i〉z is the average kinetic energy of particles of
species i at height z. In the steady state, the cooling rate is
independent of time.

A. One-component system

Before reporting the simulation results for the mixture,
some data for a one-component system (m1 = m2 and α11 =
α22) will be presented. The motivation for it is to investigate
the validity of the expression for the cooling rate derived to
lowest order in the gradients, i.e., in a local HCS, to describe
the cooling in a system with gradients of the hydrodynamic
fields. As mentioned in the Introduction, this approximation is
implicit in all the hydrodynamic equations for granular fluids
being used currently. Quite surprisingly, direct measures of
the cooling rate from the energy loss in collisions occurring
in inhomogeneous systems by means of MD simulations are
scarce [30].

In Fig. 2, the profiles of the hydrodynamic fields and the
cooling rate for a system with α = 0.9 are displayed. This
value of the coefficient of normal restitution is close to the
limit for which the Navier-Stokes equations of the granular
gas provide an accurate description. The upper plot shows
the density and temperature profiles, the latter one divided by
some arbitrary temperature TA to plot it on the same scale as
the density. The profiles exhibit the well known features of this
state [28]: the density has a maximum at a given height, and
the temperature first decays, but then it has a minimum and

0 100 200z
0

0.05

0.1

n
T/T

A

0 100 200z
0

0.1

0.2
ζ

(a)

(b)

FIG. 2. Profiles for a one-component system with α = 0.9.
Length is measured in units of the diameter of the particles
σ . Figure (a) shows the dimensionless density nσ 2 (circles) and
temperature T/TA (squares) profiles from the simulation, while figure
(b) shows the dimensionless cooling rate ζ (σ/g0)1/2. In the latter, the
symbols are from the simulation and the solid line is the Gaussian
HCS value using the measured local fields.
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increases with height from there on. The slope of this increase
is larger the more inelastic the system, and it is due to the
coupling between heat flux and density gradient that exists in
granular fluids [31]. In the bottom plot, the local cooling rate
ζ is displayed. It is seen that it is highly inhomogeneous in the
system. In the figure, the symbols are data from the simulations
and the solid line is the HCS expression, substituting the
density and temperature by their local values obtained in the
simulations and shown in the upper plot. It corresponds to
the Gaussian approximation for the velocity distribution of the
gas, as employed to derive Eq. (20). Although expressions for
the cooling rate of the HCS have been obtained by including
also the first Sonine correction of the distribution function
[32,33], it is seen that already the Gaussian approximation
provides an accurate expression for the range of inelasticity
being considered here. This is especially true in the bulk of the
system, outside a boundary layer close to the vibrating wall, in
which a deviation of the local cooling rate from its HCS value
is observed. This boundary layer is larger the more inelastic
the collisions (smaller α) and the simulation results suggest it
extends roughly up to the location of the density maximum.
Also, for large enough heights, a nonhydrodynamic boundary
layer must be observed. Similar results have been obtained for
systems with 0.9 � α < 1. The agreement between theory and
simulation results for the cooling rate improves as the value of
the coefficient of normal restitution approaches unity.

B. Binary mixture

Next, results for binary mixtures will be discussed. Con-
sider first a system with α11 = 0.92 and α22 = 0.98 (α12 =
0.95). These values are well outside the quasielastic limit,
but still in the range in which the hydrodynamic description
to Navier-Stokes order is expected to hold. Keeping these
parameters fixed, the effect of changing the mass ratio m2/m1
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FIG. 3. (Color online) (a) Dimensionless density profiles niσ
2,

(b) partial temperature profiles Ti/m1g0σ , (c) partial cooling rate
profiles ζi (σ/g0)1/2, and (d) temperature ratio profile γ ≡ T1/T2 for
a mixture with m1 = m2, α11 = 0.92, and α22 = 0.98. The height z

is measured in units of the diameter of the particles σ . The lines are
the theoretical results obtained as discussed in the main text, while
the symbols are from MD simulations.

will be studied. In Fig. 3, the profiles for a system with m2 =
m1 are presented. The upper left plot shows the density profile
for each of the components as obtained from the simulations.
They are seen to be almost identical. The partial temperature
profiles are given in the upper right part of the figure. Both
simulation results (symbols) and theoretical predictions (solid
and dashed lines) are shown. The latter have been obtained by
using the expressions

T1 = nT

n2 + γ n1
, T2 = γ nT

n2 + γ n1
, (28)

where n1 and n2 and T are obtained from the simulations,
and γ has been determined by solving Eq. (23), as discussed
in the previous section. It is observed that, although both
partial temperatures are similar, T2 is slightly larger than T1

everywhere in the system. For large z, both partial temperatures
increase with the height, a clear indication of the coupling
between heat flux and density gradient, already mentioned
above. The bottom left plots are the local cooling rates of each
of the two components. The symbols are the values obtained
directly from the simulation data for the energy dissipated in
collisions and using Eq. (27), while the lines correspond to
Eq. (20), substituting the densities and the temperatures by
the values measured in the simulations. Two relevant features
follow from the observation of this figure: The values of the
cooling rates are very well fitted by the local HCS value,
except in the boundary layer close to the vibrating wall,
and the cooling rates of both components are locally equal
everywhere in the system. Finally, in the bottom right plots,
the temperature ratio γ ≡ T1/T2 is shown as a function of
the height z. There is a quite good agreement between the
theoretical prediction γ ≈ 0.97 and the simulation results,
consistently with the fact that the two main hypotheses in
which the theory is based, equality of the partial cooling rates
and accuracy of the Gaussian local HCS approximation to
compute them, have been seen to be verified in the present case.
It is interesting to stress that, in spite of the large temperature
and density gradients in some regions of the system, the value
of the temperature ratio is practically uniform along it.

To see the effect of the disparity of masses,
consider now a system in which the mass of
the less inelastic component (species 2) is larger
than that of the more inelastic one (species 1),
namely, m2 = 4m1. The results for the different profiles
in this case are given in Fig. 4. A first consequence of
the disparity of masses is that the density profiles of both
components are quite different, with a larger concentration
of the heavier particles close to the bottom of the system, as
expected. Moreover, the heavier particles are more localized
than the lighter ones, i.e., the density profile of the former
is sharper. Also, from the density profiles, it follows that
the concentration c ≡ n2/n1 depends strongly on height,
exhibiting a maximum. With regard to the temperature
profiles, it is seen that the difference between the partial
temperatures is larger than in the case of equal masses.
Moreover, the temperature of species 2 (less inelastic and
heavier) shows a rapid increase with the height for z � 150σ ,
where the density of this component has already decayed to
rather small values n2(z = 150σ ) 	 10−4σ−2. This increase is
not captured by the theory considered here, which, otherwise,
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FIG. 4. (Color online) The same as in Fig. 3, but now m2 = 4m1.
The two dashed lines in the plot of the temperature ratio γ have been
obtained from Eq. (23) by using the the maximum and minimum
values of the concentration n2/n1 in the system, as discussed in the
main text.

turns out to be quite accurate for smaller heights, as well as
for the complete temperature profile of the other component.

The profiles of the cooling rates in Fig. 4 are particularly
illuminating. The MD results have a rather complicated
structure that is well reproduced by the Gaussian local HCS
approximation, away from a boundary layer in the vicinity of
the density maximum for the lighter component. Moreover,
although it is true that there is a neat discrepancy between
the partial cooling rates of both components, they follow a
similar trend and their difference remains relatively small.
Note that, for z � 125σ , the simulation data for the cooling
rate of the component 2 are very noisy, due to its very low
density in that region. Actually, the global density is also very
small there, Knudsen effects are relevant, and hydrodynamics
is not expected to apply. A similar comment applies near to the
vibrating wall, say, z � 5σ . The width of the corresponding
boundary layers can be estimated from the simulation data [34]
and then restrict the comparison to the bulk region excluding
the boundary layers at the bottom and top of the system. The
values delimiting the bulk obtained in this way are close to
those mentioned just above. Nevertheless, we have opted to
present the raw data in the figures, without including any
estimation of the boundary layers, since a detailed theory of
the called kinetic layer and the transition regime [35] is not
available for the system at hand.

The theoretical prediction for γ given by Eq. (23) has
been computed for two extreme values of the concentration
c, namely, c = 2 and 10−2, which are roughly the maximum
and minimum values of the concentration observed in the
bulk of the system. The lowest and upper dashed lines in the
bottom right plot of Fig. 4 correspond to the high and low
concentration values, respectively. The agreement between
theory and simulation results is not very good, as expected
from the discrepancies observed for the local partial cooling
rates of the two components. Nevertheless, it can be considered
as satisfactory, especially if the boundary layers (z � 125σ and
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FIG. 5. (Color online) The same as in Fig. 3, but now m2 = m1/4.
The two dashed lines in the plot of the temperature ratio γ have been
obtained from Eq. (23) by using the the maximum and minimum
values of the concentration n2/n1 in the system, as discussed in the
main text.

z � 5σ ) are not taken into account for the reasons mentioned
above.

Finally, the results for the case in which the more inelastic
particles are the heavier ones are illustrated in Fig. 5,
which corresponds to a system with m2 = m1/4. Since the
conclusions following from the analysis are similar to those
already discussed in the previous cases, they will be not
reproduced again.

IV. SUMMARY AND DISCUSSION

The main result in this paper is twofold. First, it has been
shown that, for a binary mixture of granular gases in an
inhomogeneous state with strong temperature gradients, the
Gaussian local HCS approximation provides a very accurate
description of the partial (and total) cooling rates. In addition to
the implication for the practical evaluation of the cooling rates,
this property provides a justification for the form generally
used for the hydrodynamic equations of granular gases to
Navier-Stokes order. It indicates that the the first and second
order in the gradient terms coming from the expansion of the
exact cooling rates can be safely neglected. Of course, granular
one-component systems are included as a limiting case. A third
implication of this result is that it strongly supports the validity
of a hydrodynamic description involving only the global local
temperature and not the partial ones. The latter follow from
the former and the partial density profiles.

The second main conclusion is that the equality of the
local cooling rates of the components provides a quite useful
relation to determine the ratio of the partial temperatures of
the components, even though simulations show that deviations
from this behavior occur if the masses of the components are
different. The equality of the cooling rates is not an exact
result following from kinetic theory, but a consequence of the
mathematical procedure followed to obtain an approximated
solution of the Enskog equations, namely, the expansion in
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TABLE I. Comparison between the predictions from Eq. (23) and
the MD results by Barrat and Trizac [6].

α11, α12, α22 m1/m2 T2/T1 (MD) T2/T1 [Eq. (17)]

0.85, 0.85, 0.85 3 0.88 0.86
0.85, 0.85, 0.85 5 0.79 0.76
0.9, 0.8, 0.7 3 0.73 0.72
0.7, 0.8, 0.9 3 0.95 0.91

orthogonal Sonine polynomials. In this context, it is important
to stress that the interest on the partial temperatures of the
mixture goes beyond the formal result of the violation of
equipartition. For instance, the expressions of the transport
coefficients as derived formally in [10–12] involve the partial
temperatures, which therefore must be computed in some way.

Most of the works studying the nonequipartition of energy
in granular mixtures consider the steady state reached by a
system with one (or two) vibrating boundaries. Barrat and
Trizac [6] have reported MD results for the temperature ratio
in a vibrated granular mixture of inelastic hard disks. The
diameters of the particles are always taken the same, σ1 = σ2,
as in the work being reported here. The global area fraction
is ν = 0.04. A comparison between their results and the
predictions of Eq. (23) is given in Table I. Since the number
of particles of both species is the same in the simulations, we
have taken n1/n2 = 1. The agreement is quite good.

The temperature ratio in two-dimensional vibrated granular
mixtures has been measured experimentally by Feitosa and
Menon [8]. They use spheres of the same size and different
materials. Their main qualitative conclusions are as follows.

(1) The temperature ratio does not depend on the vibration
velocity of the walls. This is consistent with the results derived
here and, in particular, with the independence of γ from the
hydrodynamic gradients, which are determined by the intensity
of the vibration.

(2) The temperature ratio strongly depends on the mass ratio
of the components, being an increasing function of it. This
feature also agrees with the theoretical prediction given by
Eq. (23), as illustrated in Fig. 1.

(3) The ratio is insensitive to the area fraction of the mixture
and of each component. The former follows from the fact that,

when all the diameters are equal, gij , as given by Eq. (18), is the
same for all i,j , and therefore Eq. (17) becomes independent
of ν. The weak dependence on composition is illustrated in
Fig. 1.

For a mixture of glass and aluminium with mass ratio
m1/m2 	 0.92, they measure a value of γ very close to unity,
while for mixtures of steel and glass (m1/m2 	 0.29) and
brass and glass (m1/m2 	 0.33), they find γ 	 0.66 and 0.69,
respectively. To evaluate the predictions from Eq. (17), the
restitution coefficients are needed. The authors only report the
values of some effective inelasticity coefficients from which
it is not clear how to deduce the coefficients αij . As a rough
estimation, the values of the restitution coefficients employed
in Fig. 1 can be used. Then, discrepancies of the order of 25%
are obtained. This is not unsatisfactory since, in addition to all
the approximations made, it must be taken into account that,
in the experiments, the beads can rotate in three dimensions
and rotational friction is neglected in the present theory.

Another series of experiments measuring γ has been carried
out by Wildman and Parker [9]. They use two sizes of glass
spheres (d = 3) with σ1/σ2 = 5/4, and estimate α11 = α22 =
0.91. In the region where the temperature ratio is measured,
it is ν ∼ 10−3, so that, with very good accuracy, gij ≈ 1. By
changing the number fraction of the two species, they identify
a weak dependence of γ on n1/n2. Taking for n1/n2 the value
of the ratio between the total number of particles of each
species, we get γ = 1.029, 1.027, and 1.026 for the three cases
considered in [9], while the reported experimental results are
1.41, 1.27, and 1.25, respectively. The qualitative behavior is
the same, and for the reasons discussed above, the quantitative
agreement can not be considered as bad.

In summary, Eq. (23) is consistent with both simulation and
experimental results. This seems to confirm its validity and also
the accuracy of a hydrodynamic description involving only the
temperature of the mixture.
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[11] V. Garzó and J. M. Montanero, J. Stat. Phys. 129, 27 (2007).
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