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The hydrodynamic state of an impurity immersed in a low density granular gas is analyzed. Explicit
expressions for the temperature and density fields of the impurity in terms of the hydrodynamic fields of the
gas are derived. It is shown that the ratio between the temperatures of the two components, measuring the
departure from the energy equipartition, only depends on the mechanical properties of the particles, being
therefore constant in the bulk of the system. This ratio plays an important role in determining the density
profile of the intruder and its position with respect to the gas, since it determines the sign of the pressure
diffusion coefficient. The theoretical predictions are compared with molecular dynamics simulation results for
the particular case of the steady state of an open vibrated granular system in the absence of macroscopic fluxes,
and a satisfactory agreement is found.
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I. INTRODUCTION

As a consequence of the inelasticity of collisions, granular
fluids exhibit a series of behaviors that are in sharp contrast
with those of molecular fluids. One of them is the absence of
an energy equipartition in a granular mixture of mechanically
different species. The granular temperatures of the compo-
nents of the mixture, defined from the average kinetic ener-
gies, are different. Although this possibility was already
pointed out many years ago �1�, it has not been until recently
that a systematic study of the effect has been started. For the
homogeneous state of a freely cooling binary mixture of in-
elastic spheres, an explicit expression for the ratio of tem-
peratures of the two components has been obtained from an
approximate solution of the kinetic Enskog equations �2�.
The accuracy of this prediction for weak dissipation and low
density has been confirmed by molecular dynamics �MD�
simulations �3�.

The above homogeneous cooling state �HCS� is not ac-
cessible experimentally. In order to maintain a granular sys-
tem fluidized, an external energy supply is required. This is
often carried out by means of vibrating walls or external
fields, that generate macroscopic gradients in the system be-
cause of inelasticity. At a theoretical level, homogeneously
driven granular fluids have also been considered. In these
models, stochastic forces injecting energy are added, then
allowing a system otherwise isolated to reach a steady state.
The lack of energy equipartition in the steady state of homo-
geneously driven granular mixtures has been also analyzed
�4�, by extending the methods of �2�. Nevertheless, the rela-
tionship between this kind of driving and actual experiments
is uncertain. The nonequipartition has also been confirmed
by MD simulations of simple shear flows �5� and of vibrated
granular gases �in the absence of gravity� �6�.

Experimental evidence of the coexistence of different
temperatures in strongly vibrated granular mixtures has been
reported in both two-dimensional �7� and three-dimensional

�8� systems. Moreover, the dependence of the temperature
ratio on the several parameters characterizing the system was
investigated. Quite surprisingly, it has been observed that the
above ratio remains practically constant in the bulk of the
system, in spite of the rather large gradients exhibited by
each of the partial temperatures.

The lack of energy equipartition has consequences on the
expressions of the transport coefficients of a granular mixture
�9�. Therefore, it must also affect the shape of the hydrody-
namic profiles and, in particular, the density distribution of
each of the components in inhomogeneous mixtures. Conse-
quently, it seems clear that the temperature difference can
play a role in the segregation phenomena occurring in vi-
brated granular mixtures �10,11�.

Here, the particular case of a low density binary mixture
in the tracer limit, i.e., when the mole fraction of one of the
components is very low, will be considered. The simplicity
of the system allows a detailed and controlled discussion of
the hydrodynamic profiles of the tracer component, that can
be expressed analytically in terms of those of the other �ex-
cess� component. The starting points are the kinetic Boltz-
mann equations for the mixture, and the analysis is based on
the Chapman-Enskog method. The theory is first formulated
for a general kind of states and later on particularized for the
steady state of an open vibrated system. Then, the theoretical
predictions are compared with MD simulation results, and a
quite satisfactory agreement is found over a wide range of
values of the parameters defining the mechanical properties
of the system. A short summary of some of the results pre-
sented here was given in Ref. �12�.

The plan of the paper is as follows. In Sec. II, some on the
fundamental ideas on which the Chapmann-Enskog method,
as applied to a one-component system, is based are shortly
reviewed. They are used in Sec. III, where an explicit expres-
sion for the ratio between the local temperatures of the two
components is derived. This ratio only depends on the me-
chanical properties of the particles, being independent of the
gradients of the hydrodynamic fields. An extensive compari-
son with MD results for a vibrated granular system in the
presence of gravity is carried out. The shape of the density
profile for the tracer component is investigated in Sec. IV,*Electronic address: brey@us.es
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where an expression for the mass flux relative to the local
flow is derived to first order in the gradients of the mixture
fields �Navier-Stokes order�. For the particular case of the
steady state of an open vibrated system, an expression for the
density profile of the tracer component in terms of the fields
of the excess component is obtained. Since analytical forms
for these fields are known, the expression can be integrated
numerically. Some details of this are given in the Appendix.
Again, the theoretical predictions compare well with MD
simulation results, although some significant discrepancies
show up as the difference in mass of the particles is in-
creased. Special emphasis is put on the relationship between
the breakdown of energy equipartition and the relative posi-
tion of the centers of mass of the two species. Finally, Sec. V
contains some further discussion of the results, as well as
some comments on their applicability to arbitrary states.

II. CHAPMAN-ENSKOG DESCRIPTION OF A
GRANULAR GAS

As already mentioned, the aim of this work is to analyze
some properties of the hydrodynamic profiles of a dilute
granular binary mixture in the tracer limit, i.e., when the
mole fraction of one of the species is very small. More pre-
cisely, the emphasis is put on the relationship between the
profiles of the tracer component and those of the mixture in
an arbitrary state. It is assumed that the concentration of the
tracer component is so small that its presence does not affect
the state of the granular mixture that is, therefore, determined
by the state of the other �excess� component. At a kinetic
theory level, this implies that the evolution of the one-
particle distribution function of the excess component obeys
a closed nonlinear Boltzmann equation. Moreover, in the
evolution of the distribution function of the tracer compo-
nent, the mutual interactions between their particles can be
neglected, as compared with the interactions with the par-
ticles of the excess component. Consequently, its distribution
obeys a linear Boltzmann-Lorentz equation. This is formally
equivalent to consider an impurity or intruder immersed in a
dilute granular gas, and this will be the terminology used in
the following. Let us start by shortly reviewing some basic
aspects of the Chapman-Enskog method applied to a one-
component granular gas that will be needed in the following.

Consider a low density gas composed by smooth inelastic
hard spheres �d=3� or disks �d=2� of mass m and diameter
�. The inelasticity of collisions is modeled by a velocity-
independent coefficient of normal restitution �, defined in
the interval 0���1. The particles are submitted to an ex-
ternal force of the gravitational type, so the force acting on
each particle has the form F=−mg0êz, where g0 is a constant
and êz the unit vector in the positive direction of the z axis. It
is assumed that in the low density limit, the time evolution of
the one-particle distribution function of the gas, f�r ,v , t�, is
accurately described by the nonlinear inelastic Boltzmann
equation

��t + v · �− g0
�

�vz
� f�r,v,t� = J�v�f , f� , �1�

where J is the Boltzmann collision operator describing the
scattering of the pairs of particles,

J�v�f , f� = �d−1� dv1� d�̂��g · �̂�

� g · �̂��−2f�r,v�,t�f�r,v1�,t� − f�r,v,t�f�r,v1,t�� .

�2�

Here � is the Heaviside step function, �̂ is the unit vector
pointing from the center of particle 1 to the center of the
other colliding particle at contact, and g=v−v1 the relative
velocity. Moreover, v� and v1� are the precollisional or resti-
tuting velocities, i.e., the initial values of the velocities lead-
ing to v and v1 following the binary collision defined by �̂:

v� = v −
1 + �

2�
�g · �̂��̂ ,

v1� = v1 +
1 + �

2�
�g · �̂��̂ . �3�

Macroscopic fields number density n�r , t�, flow velocity
u�r , t�, and granular temperature, T�r , t�, are defined in the
usual way as velocity moments of the distribution function,

n�r,t� =� dv f�r,v,t� , n�r,t�u�r,t� =� dv vf�r,v,t� ,

n�r,t�T�r,t� =� dv
mV2

d
f�r,v,t� , �4�

where V=v−u is the peculiar velocity. Balance equations for
the above fields are directly obtained from the Boltzmann
equation,

�tn + � · �nu� = 0, �5�

�tu + u · �u + �mn�−1 � · P + g0êz = 0, �6�

�tT + u · �T + 2�nd�−1�� · q + P:�u� + T	 = 0. �7�

The pressure tensor P and the heat flux q are given by

P =� dv mVVf�r,v,t� , �8�

q =� dv
m

2
V2Vf�r,v,t� , �9�

respectively. The cooling rate, 	 in Eq. �7� is due to the
energy dissipation in collisions and it is also a functional of
the distribution function

	�r,t� = − �nTd�−1� dv mv2J�v�f , f� . �10�

The balance equations �5�–�7� only become a set closed hy-
drodynamic equations for the fields once P, q, and 	 are
expressed as functionals of them. This requires us to find a
solution to the Boltzmann equation such that all the space
and time dependence occurs through n, u, and T. In the
Chapman-Enskog procedure, this normal solution is gener-
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ated by expressing it as a series expansion in a formal non-
uniformity parameter 
,

f = f �0� + 
f �1� + 
2f �2� + ¯ , �11�

where each factor of 
 means an implicit gradient of a mac-
roscopic field. Use of the above expansion in the definitions
of the fluxes and the cooling rate gives a corresponding ex-
pansion for them. Finally, the time derivatives of the fields
are also expanded in the gradients, �t=�t

�0�+
�t
�1�+¯, by

means of the balance equations. Then, it is

�t
�0�n = 0, �t

�0�u = 0, �t
�0�T = − T	�0�, �12�

where the zeroth order cooling rate 	�0� is given by

	�0��r,t� = − �nTd�−1� dv mV2J�v�f �0�, f �0�� . �13�

In this way, to zeroth order in 
 it is obtained

− 	�0�T
�

�T
f �0� = J�v�f �0�, f �0�� . �14�

The solution to this equation is chosen such that it verifies
the conditions

� dv f �0��r,v,t� = n�r,t� ,

� dv vf �0��r,v,t� = n�r,t�u�r,t� ,

� dv
mV2

d
f �0��r,v,t� = n�r,t�T�r,t� , �15�

i.e., it leads to the same hydrodynamic fields as the complete
distribution function. This choice is consistent with the solu-
bility conditions for the set of equations generated by the
Chapman-Enskog method �13�. Thus f �0� is easily generated
from the distribution function for the HCS of a dilute gas
�14� by substituting the homogeneous density and tempera-
ture fields by the local values n�r , t� and T�r , t�, and replac-
ing the velocity v by the peculiar one, V�r , t�. Therefore, it
has the form �14�

f �0��r,v,t� = nvT
−d�t���V/vT� , �16�

where vT
2�r , t�=2T�r , t� /m is a local thermal velocity. As a

consequence, Eq. �14� can be rewritten as

	�0�

2

�

�V
· �Vf �0�� = J�v�f �0�, f �0�� . �17�

Using Eq. �16� it is easily obtained

�t
�1�n = − � · �nu� , �18�

�t
�1�u = − u · �u − �mn�−1 � p − g0êz, �19�

�t
�1�T = − u · �T −

2T

d
� · u . �20�

In the last expression, use has been made of the fact that
	�1�=0 because of symmetry considerations �15�. Moreover,
p=nT is the pressure of the gas. The procedure can be con-
tinued and Navier-Stokes hydrodynamic equations for a di-
lute granular gas, with explicit expressions for the transport
coefficients in the first Sonine approximation, have been de-
rived �15,16�.

III. TEMPERATURE OF THE IMPURITY

Let us suppose now that an impurity or intruder of mass
m0 and diameter �0 is added to the system. It is assumed that
the presence of the intruder does not affect the state of the
gas, so that the one-particle distribution function of the gas
particles is still determined by the nonlinear Boltzmann
equation �1�. Moreover, the macroscopic flow velocity and
temperature for the mixture formed by the gas plus the in-
truder are the same as those for the gas alone, i.e., they are
given by Eqs. �4�.

The distribution function of the intruder, f0�r ,v , t�, obeys
the linear Boltzmann-Lorentz equation

��t + v · �− g0
�

�vz
� f0�r,v,t� = J0�v�f0, f� , �21�

where the collision operator now is

J0�v�f0, f� = �̄d−1� dv1� d�̂��g · �̂�

� g · �̂��0
−2f0�r,v�,t�f�r,v1�,t�

− f0�r,v,t�f�r,v1,t�� . �22�

Here, �̄= ��+�0� /2 and �0 is the coefficient of normal res-
titution for impurity-gas collisions. The precollisional veloci-
ties in this case are given by

v� = v −
�1 + �0��

�0
�g · �̂��̂ ,

v1� = v1 +
�1 + �0��1 − ��

�0
�g · �̂��̂ , �23�

with �=m / �m+m0�. The number density for the intruder is

n0�r,t� =� dv f0�r,v,t� . �24�

The Chapman-Enskog procedure when applied to a mix-
ture, assumes the existence of a normal solution of the Bolt-
zmann equations for the mixture in which all the space and
time dependence of the one-particle distribution function of
each of the species occurs through a functional dependence
on the hydrodynamic fields of the mixture �13�. These fields
can be chosen in different, equivalent ways. Here they are
taken to be the concentration of the impurity x0=n0 / �n0

+n�→n0 /n, the pressure p, the local flow velocity u, and the
temperature T, i.e.,
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f0�r,v,t� = f0�v�x0�r,t�,p�r,t�,u�r,t�,T�r,t�� . �25�

Then, an expansion similar to the one given in Eq. �11� is
considered for the distribution function of the impurity, f0

= f0
�0�+
f0

�1�+
2f0
�2�+¯. To lowest order in 
, Eq. �21� be-

comes

− 	�0��p
�

�p
+ T

�

�T
� f0

�0� = J0�v�f0
�0�, f �0�� . �26�

Taking into account that dimensional analysis requires that
f0

�0� is of the form

f0
�0� = x0

p

T
vT

−d�0�V/vT� , �27�

Eq. �26� is seen to be equivalent to

	�0�

2

�

�V
· �Vf0

�0�� = J0�v�f0
�0�, f �0�� . �28�

The solution of this equation is chosen such that

� dv f0
�0��r,v,t� =� dv f0�r,v,t� = n0�r,t� , �29�

� dv vf0
�0��r,v,t� = n0�r,t�u�r,t� , �30�

� dv mV2f0
�0��r,v,t� =� dv mV2f0�r,v,t� = dn0�r,t�T0�r,t� .

�31�

The last equality in Eq. �31� defines the local temperature,
T0, of the intruder. The above requirements are consistent
with the solubility conditions of the equations generated by
the Chapman-Enskog method. It is worth stressing that Eq.
�28� holds independently of the specific form of the hydro-
dynamic fields of the mixture. Thus the multiplication of that
equation by m0V2 and integration over V yields

	�0��r,t� = 	0
�0��r,t� , �32�

where

	0
�0��r,t� = − �n0T0d�−1� dV m0V2J0�v�f0

�0�, f �0�� �33�

is the lowest order in the gradients of the cooling rate for the
temperature of the intruder.

The evaluation of the cooling rates 	�0� and 	0
�0� requires us

to solve Eqs. �14� and �28�. This can be done in a systematic
way by expanding f �0� and f0

�0� in terms of an ensemble of
orthogonal polynomials �2�. Here we will consider a leading
order approximation that is expected to give quite accurate
results, at least for not very strong inelasticity. The zeroth
order distributions are approximated by Gaussians,

f �0��r,v,t� = n�2
T

m
�−d/2

e−mV2/2T, �34�

f0
�0��r,v,t� = n0�2
T0

m0
�−d/2

e−m0V2/2T0. �35�

Note that these expressions are consistent with the conditions
�14� and �29�–�31�. Employing them, it is straightforward to
calculate the cooling rates. The technical details needed to
evaluate the integrals have already been discussed several
times �2,4,17�, and they will not be reproduced here. The
result is

	�0�* 	
	�0��r,t�

n�r,t��d−1vT�t�
=


2
�d−1�/2

��d/2�d
�1 − �2� , �36�

	0
�0�* 	

	0
�0��r,t�

n�r,t��d−1vT�t�
= �0

*�1 + ��1/2�1 − h
1 + �

�
� ,

�37�

where h=m�1+�0� /2�m+m0�, �0
* is a dimensionless colli-

sion rate,

�0
* =

8h
�d−1�/2

��d/2�d
� �̄

�
�d−1

, �38�

and � is the ratio of the mean square velocities for the in-
truder and fluid particles,

� =
mT0�z�
m0T�z�

. �39�

Substitution of Eqs. �36� and �37� into Eq. �32� gives

�1 + ��1/2�1 − h
1 + �

�
� =

�

h
, �40�

where the parameter � is given by

� 	
1 − �2

4
2
��

�̄
�d−1

. �41�

The solution of this equation provides the expression for
T0�r , t� /T�r , t�. There is a unique real solution for all allowed
values of h and �. For elastic collisions ��=�0=1�, the so-
lution is �=m /m0 and the energy equipartition follows. If
only the intruder-gas collisions are inelastic ��=1�, the result
�=h / �1−h� derived by Martin and Piasecki for an inelastic
impurity in an equilibrium elastic gas is recovered �18�.

The simplicity of Eq. �40� may appear as a surprise, es-
pecially taking into account its generality. No particular state
of either the gas or the intruder has been considered and,
nevertheless, the temperature ratio is given as a function of
only the mechanical properties of the particles. The existence
of an expression for the temperature ratio is a consequence of
the assumption that there is a hydrodynamic description of
the mixture in terms of only x0, p, u, and T. Therefore, al-
though the partial temperatures of the intruder and the gas
are different, they are not needed to specify the macroscopic
state of the mixture. Nevertheless, the theory provides a re-
lationship to determine them. The fact that Eq. �40� does not
involve any of the other hydrodynamic fields follows from
the tracer and dilute limits we are considering.
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The above relation between the partial temperatures is not
modified when applied to the HCS, consistently with previ-
ous results �17,19�. This does not imply by itself any kind of
local HCS approximation, in the same way as the energy
equipartition in molecular systems does not imply local equi-
librium, and it is valid independently of the gradients present
in the system. On the other hand, the above results do not
hold if the characterization of the macroscopic state of the
mixture also requires to specify the partial temperatures of
the gas and the intruder and, therefore, the set of independent
hydrodynamic variables �and also the number of equations�
must be expanded. This seems to be the kind of approxima-
tion followed in �1�.

In order to check the accuracy of the theoretical predic-
tion given by Eq. �40�, we have performed MD simulations
with an event driven algorithm. The particular situation we
have considered is a two-dimensional system confined in a
rectangular box of width W, open on the top, and submitted
to an external field of the gravitational type, as defined above
Eq. �1�. Periodic boundary conditions are enforced in the
direction perpendicular to the field. To maintain the system
fluidized, energy is continuously supplied through the wall
located at z=0, which is vibrating. For simplicity, and given
that we are interested in the bulk properties of the system,
the wall moves in a sawtooth way, with very small amplitude
and high frequency, so that it can be considered that all the
particles colliding with the wall find it at z=0 and with the
same velocity vW=vWêz �20,21�. The particle-wall collisions
are elastic.

Under the above conditions, it has been proven that a
one-component granular gas reaches a stationary state with
only gradients in the z direction �21�. Nevertheless, this state
becomes unstable and develops transversal inhomogeneities
when the size of the vibrating wall is larger than a critical
value �22�. In fact, the same happens for a closed system in
the absence of gravity �23,24�. In all the simulations to be
reported in the following, the value of W has been taken
small enough so the system stays homogeneous in the trans-
versal direction.

The above steady state is highly inhomogeneous. An ex-
ample is given in Fig. 1, where the density and temperature
profiles for a monodisperse system of N=359 particles with
�=0.95 are shown. In order to plot the temperature profile
on the same scale as the density one, the former has been
scaled with an arbitrary value TA. Here and in the following,
the units defined by m=1, �=1, and g0=1 will be used. In
these units, the data in the figure correspond to W=50 and
vW=5. These values lead to a fluidized state without trans-
versal inhomogeneities, and with a density low enough as to
expect the Boltzmann equation to give an accurate descrip-
tion of the system. It is seen that the density profile exhibits
a maximum at which n�0.075. The existence of a density
maximum is a general feature of open vibrated systems as
long as the number of monolayers at rest is large enough
�21�. On the other hand, the temperature profile presents a
minimum which is related with the existence of a term pro-
portional to the density gradient in the expression of the heat
flux �21,25�.

Figures 2–4 show the profile of the temperature ratio
T0�z� /T�z� for different values of the mechanical properties

of the particles. It is observed that, aside statistical fluctua-
tions, the ratio remains practically constant in a wide region
of the system, even if T �and T0� varies significantly. In Fig.
2, the influence of the inelasticity of the gas-intruder colli-
sions on the temperature ratio is analyzed. As expected, the
deviation from the equipartition increases as �0 decreases,
becoming more different from �. The influence of the mass
ratio m0 /m is studied in Fig. 3, where it is seen that the
temperature ratio significantly deviates from unity when m0
=m, but �0 differs significantly from �. This is in contrast
with previous findings in both experiments �7� and MD

FIG. 1. Density and temperature vertical profiles for a vibrated
granular gas in the steady state considered in the text. The number
of particles is N=359, the restitution coefficient �=0.95, and the
size of the vibrating wall W=50�. The symbols are from MD simu-
lations and the solid lines the fit to the hydrodynamic prediction
discussed in the Appendix.

FIG. 2. Temperature ratio profiles T0�z� /T�z� for several values
of the restitution coefficient �0, as indicated in the figure. The val-
ues of the other parameters are �=0.95, �0=�, and m0=m /2.
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simulations �4� of vibrated granular mixtures �not in the
tracer limit�, probably because the several coefficients of
normal restitution in those works were too close to one an-
other as to observe this deviation. The figure also shows that
the boundary layer near the vibrating wall, defined as the
region in which the hydrodynamic prediction is not verified,
increases as the ratio m0 /m increases. This can be explained
as a consequence of the larger increase of the kinetic energy
of the impurity than of the gas particles when colliding with
the vibrating wall. In addition, the collisions of the intruder
with the gas become less efficient in “thermalizing” the
former. The same explanation applies to the strong fluctua-
tions at large heights. Finally, the sensitivity of T0 /T on the
diameter ratio is illustrated in Fig. 4, from where it can be
concluded that it is quite weak.

A quantitative comparison between the theoretical predic-
tion given by Eq. �40� and the MD results is presented in
Figs. 5 and 6. According with Eq. �40�, for a given value of
�, the value of � is a function of only the parameter h. Then,
the comparison will be presented by considering a series of
simulations in which the value of the coefficient of restitu-

FIG. 3. Temperature ratio profiles T0�z� /T�z� for several values
of the mass ratio m0 /m, as indicated in the figure. The values of the
other parameters are �=0.95, �0=0.7, and �0=�.

FIG. 4. Temperature ratio profiles T0�z� /T�z� for several values
of the diameter ratio �0 /�, as indicated in the figure. The values of
the other parameters are �=0.95, �0=0.6, and m0=m.

FIG. 5. Ratio of the mean square velocities � as a function of
the dimensionless parameter h defined in the main text. In all cases
�=�0. The solid and dashed lines are the theoretical prediction for
�=0.95 ���0.0172� and �=0.8 ���0.0636�, respectively, while
the empty and filled symbols are from the MD simulations for the
same two values of �. The same symbol is used for simulation
results differing only in the value of the restitution coefficient �0.

FIG. 6. Ratio of the mean square velocities � as a function of
the dimensionless parameter h defined in the main text. In all cases
�=0.95. The solid and dashed lines are the theoretical prediction
for �0 /�=2 ���0.0115� and �0 /�=0.1 ���0.0313�, respectively,
while the empty and filled symbols are from the MD simulations for
those two values of the diameter ratio. The same symbol is used for
simulation results differing only in the value of the restitution co-
efficient �0.
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tion of the gas, �, and the diameter ratio � /�0, and therefore
� are kept constant, while the mass ratio m0 /m and the res-
titution coefficient �0 and, therefore h are changed. In Fig. 5,
two series of data, one corresponding to �0=�, �=0.8 ��
=0.0636� and �0=�, �=0.95 ��=0.0172� are presented. In
each case, several values of the mass ratio have been consid-
ered, as indicated in the figure. In addition, the value of the
coefficient of restitution for gas-intruder collisions has also
been varied in the range 0.2��0�0.99. To keep the figure
readable, we have used the same symbols for the data corre-
sponding to the same mass ratio although different values of
�0. A quite good agreement between theory and simulation is
observed, especially for the largest value of �. The small but
systematic discrepancies for �=0.8 and m0 /m=3 are prob-
ably due to the failure of the hydrodynamic Navier-Stokes
equations to accurately describe the state of the gas, as dis-
cussed in �21�.

The validity of the theory to describe the dependence on
the diameter ratio is checked in Fig. 6. Again, the same sym-
bol is used for the MD results corresponding to situations
differing only in the value of the coefficient of restitution �0.
As before, a weak dependence of the temperature ratio on the
diameter of the particles is observed. It can be concluded that
Eq. �40� provides an accurate description of the temperature
ratio over a wide range of values of the mechanical param-
eters characterizing both the gas and the intruder.

IV. DENSITY PROFILE FOR THE IMPURITY

An equation for the number density of the impurity n0 is
directly obtained from Eq. �21�,

�tn0 + � · �n0u� + m0
−1 � · j0 = 0, �42�

where j0�r , t� is the mass flux for the impurity relative to the
local flow u�r , t�,

j0�r,t� = m0� dv Vf0�r,v,t� . �43�

The isotropy of the function �0 implies that the zeroth
order of the flux mass for the intruder vanishes, i.e., j0

�0�=0.
Then, we proceed to study the next order, that requires to
determine f0

�1�. To first order in 
, Eq. �21� reads

�t
�0�f0

�1� − J0�f0
�0�, f �1�� − J0�f0

�1�, f �0��

= − �t
�1�f0

�0� − v · �f0
�0� + g0

�

�vz
f0

�0�. �44�

The action of the time derivatives �t
�0� and �t

�1� on the hydro-
dynamic fields is given by Eqs. �12� and �18�–�20�, respec-
tively. Then, evaluating the right-hand side of Eq. �44� gives

�t
�0�f0

�1� − J0�f0
�0�, f �1�� − J0�f0

�1�, f �0��

= A�V� · �x0 + B�V� · �p + C�V� · �T + D�V�:�u ,

�45�

where the coefficients of the gradients of the fields on the
right-hand side are given by

A�V� = −
f0

�0�

x0
V , �46�

B�V� = −
1

p
� f0

�0�V +
T

m

�f0
�0�

�V
� , �47�

C�V� =
1

T
� f0

�0� +
1

2

�

�V
· �Vf0

�0��
V , �48�

D�V� = V
�f0

�0�

�V
−

1

d
V ·

�f0
�0�

�V
I . �49�

Here, I is the unit tensor in d dimensions and x0 was defined
above Eq. �25�. Note that the external field does not occur in
Eq. �44�. This is because of the particular field we are con-
sidering �gravitational type�. To proceed, we need the expres-
sion of f �1�. It has been derived in Ref. �15� and reads

f �1� = B · �p − C · �T + D:�u , �50�

where the coefficients B, C, and D are functions of the
peculiar velocity V and the hydrodynamic fields. Then, the
solution of Eq. �45� is of the form

f0
�1� = A0 · �x0 + B0 · �p + C0 · �T + D0:�u . �51�

Substitution of Eqs. �50� and �51� into Eq. �45� and identify-
ing coefficients of independent gradients yields

− 	�0���p
�

�p
+ T

�

�p
�A0
 − J0�A0, f �0�� = A , �52�

− 	0��p
�

�p
+ T

�

�T
� + 2
B0 − J0�f0

�0�,B� − J0�B0, f �0��

= B +
T	�0�

p
C0, �53�

− 	0��p
�

�p
+ T

�

�T
� +

1

2

C0 − J0�f0

�1�,C� − J0�C0, f �0��

= C −
p	�0�

2T
B0, �54�

− 	�0���p
�

�p
+ T

�

�T
�D0
 − J0�f0

�0�,D� − J0�D0, f �0�� = D�V� .

�55�

Use of Eq. �51� into Eq. �43� taking into account symmetry
considerations, gives the expression for the mass flux of the
intruder to first order in the gradients,

j0 = − m0D � x0 −
m

T
Dp � p −

mn

T
D� � T , �56�

where

D = −
1

d
� dv V · A0 �57�

is the diffusion coefficient,
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Dp = −
Tm0

md
� dv V · B0 �58�

is the pressure diffusion coefficient, and

D� = −
Tm0

mnd
� dv V · C0 �59�

is the thermal diffusion coefficient.
In the following, the quantities A0, B0, and C0 will be

evaluated in the first Sonine approximation, i.e., we consider

�A0

B0

C0
� � f0

�0�V�a0

b0

c0
� , �60�

with f0
�0� being the Maxwellian given by Eq. �35�. Consis-

tently, B and C are approximated by

�B
C � � f �0�V�b

c
� , �61�

and it happens that both b and c are zero �see Appendix C in
Ref. �15��. Substitution of the above expressions into Eqs.
�52�–�54� gives a set of closed equations for a0, b0, and c0.
Multiplication of these equations by m0V and integration
over V yields

�− 	�0��p
�

�p
+ T

�

�T
� + �
a0n0T0 = −

n0T0

x0
, �62�

�− 	�0��p
�

�p
+ T

�

�T
� − 2	�0� + �
b0n0T0

= −
n0T0�� − 1�

p�
+

T	�0�c0n0T0

p
, �63�

�− 	�0��p
�

�p
+ T

�

�T
� −

	�0�

2
+ �
c0n0T0 = −

p	�0�b0n0T0

2T
,

�64�

where

� = −
m0

n0T0d
� dV V · J0�Vf0

�0�, f �0�� �65�

is a collision frequency. It can be easily evaluated by using
standard integration techniques with the result

� =
�e�1 + �0�

2
�1 − ��1/2�1 + ��1/2, �66�

where

�e =
4
2
�d−1�/2

��d/2�d
�̄d−1n� T

m0
�1/2

�1/2 �67�

is the elastic limit. An expression for � for the case d=3,
valid for arbitrary concentrations of the two components of
the mixture and incorporating some non-Gaussian contribu-
tions, has been obtained in �9�. Equation �66� is consistent
with that result.

From dimensional analysis, it follows that a0n0T0�T1/2,
b0n0T0�T1/2 / p, and c0n0T0�T−1/2. Then, the temperature
and pressure derivatives in Eqs. �62�–�64� can be evaluated
and the equations become

�� −
	�0�

2
�a0 = − x0

−1, �68�

�� −
3	�0�

2
�b0 = −

�� − 1�
p�

+
T	�0�

p
c0, �69�

c0 = −
p	�0�

2T�
b0. �70�

Therefore,

a0 = − �x0�� −
	�0�

2
�
−1

, �71�

b0 = − � p�

� − 1
�� −

3	�0�

2
+

	�0�2

2�
�
−1

, �72�

c0 = −
p	�0�

2T�
b0. �73�

The expressions of the transport coefficients follow by using
the above results into Eqs. �57�–�59�

D =
nT0

m0
�� −

	�0�

2
�−1

, �74�

Dp =
n0T0�� − 1�

mn�
�� −

3	�0�

2
+

	�0�2

2�
�−1

, �75�

D� = −
	�0�

2�
Dp. �76�

These expressions are consistent with those reported in Ref.
�9� for d=3 and without external field.

Let us now particularize the above results for the steady
state considered in the previous section, i.e., an open vibrated
system with no macroscopic flow and gradients only in the z
direction. In this case, Eq. �42� implies that jz=const=0,
since the intruder mass flux must vanish for z→�. Thus Eqs.
�56� and �74�–�76� yield

�1 −
	�0�

2�
�−1� ln x0

�z
= −

� − 1

�
�1 −

3	�0�

2�
+

	�0�2

2�2 �−1

� � � ln p

�z
−

	�0�

2�

� ln T

�z
� . �77�

Using Eqs. �36� and �66�, and also the equation determining
�, Eq. �40�, it is found

	�0�

�
= 2�1 −

h�1 + ��
�


 . �78�

This shows that 	�0� /� is a function of only � and h, i.e., of
the mechanical properties of the particles �� is given in
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terms of them by Eq. �40��, but it does not depend on the
hydrodynamic fields. Therefore, Eq. �77� can be expressed in
compact form as

� ln x0

�z
= − ��h,��g�z� , �79�

where

��h,�� =
� − 1

�
�1 −

	�0�

2�
��1 −

3	�0�

2�
+

	�0�2

2�2 �−1

�80�

and

g�z� =
� ln p

�z
−

	�0�

2�

� ln T

�z
. �81�

The integration of Eq. �79� directly provides an expression
for the probability density P0�z� of finding the impurity at
height z,

P0�z� = Cn�z�exp�− ��
0

z

dz�g�z��� , �82�

with C being the normalization constant.
The hydrodynamic profiles for the steady state of an open

vibrated dilute gas �without impurity� were studied in �21�
and the results are shorty summarized in the Appendix.
There, it is also indicated how the numerical evaluation of
the integral appearing on the right-hand side of Eq. �82� is
implemented.

In Figs. 7–9 the theoretical and simulation results for Nx0
and P0�z� are compared for different values of the param-
eters. In all cases, those of the gas are the same as in Fig. 1,
i.e., �=0.95, N=359, and W=50, and the diameter ratio is

�0 /�=1. On the other hand, in Fig. 7 it is m0 /m=1/2, in
Fig. 8, m0 /m=1, and in Fig. 9, m0 /m=3. Finally, in each of
the figures results for two different values of the coefficient
of restitution �0 are reported.

For the cases reported in Figs. 7 and 8 the agreement
between theory and simulation can be considered as quite
satisfactory, given that no fitting parameter is being used
when constructing the density profile for the impurity from
the hydrodynamic profiles of the gas. On the other hand, for
m0=3m, Fig. 9 shows strong discrepancies between theory
and simulation results. There are several possible causes for
it. One is that the heavy intruder is close, on the average, to
the vibrating wall and in this region the hydrodynamic de-
scription for it is not accurate, as indicated in connection
with Fig. 3. In fact, the theoretical prediction for P0�z� is
maximum at the wall. Another closely related possible origin
of the discrepancy is that we are assuming that the intruder
does not affect the hydrodynamic profiles of the gas. This

FIG. 7. Normalized molar fraction Nx0 �upper plot� and density
profile P0�z� of the impurity �lower plot� for two different values of
�0, as indicated in the figure. The symbols are from MD simula-
tions, and the solid �dashed� line the theoretical prediction for �0

=0.95 �0.7� discussed in the text. The parameters of the gas are �
=0.95, N=359, and W=50�. The other parameters of the impurity
are m0=m /2 and �0=�.

FIG. 8. The same as in Fig. 7, with the only difference that here
it is m0=m and the two values of �0 considered are 0.99 and 0.7, as
indicated.

FIG. 9. The same as in Fig. 8, with the only difference that here
it is m0=3m.
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may be a bad approximation when the intruder is too mas-
sive as compared with the gas particles, especially taking
into account that the number of the latter is not very large.
We are reminded that this number cannot be increased too
much, in order to keep the system fluidized with low density
and avoiding the transversal instability mentioned in Sec. III.

We have investigated also the density profile of the in-
truder for other values of the diameter ratio �0 /�, namely 1

2
and 2, and obtained similar results.

From P0�z�, the average height of the intruder z0 can be
computed through

z0 = �
0

�

dz zP0�z� . �83�

The ratio z0 /zcm, where zcm is the height of the center of mass
of the gas, provides a measurement of the relative position of
the intruder with respect to the gas. This ratio is plotted in
Fig. 10 as a function of � for several systems with �=0.95
and �0 /�= 1

2 ���0.0230�. The solid line is the theoretical
prediction and the symbols simulation results for different
values of the mass ratio and �0. Figures 11 and 12 show the
same function but for �0 /�=1 ���0.0172� and �0 /�=2
���0.0115�.

The agreement between theory and simulation is good in
all cases, especially in the region close to �=1. In fact, for
m0 /m=3 it is better than it could be expected from Fig. 9.
This good agreement is not surprising, since we are looking
now to the simplest global property of the distribution P0�z�.
On the other hand, the simulation results for �0=2� are sys-
tematically above the theoretical prediction. In general, it
seems that the slope of the simulation results is smaller than

the theoretical prediction, although we have no explanation
for it. A relevant conclusion to be reached from the above
results is the dominant role played by the value of � in
determining the relative position of the intruder with respect
to the gas. In an elastic system, � is equal to the mass ratio
m /m0, but in a granular gas � can be larger or smaller than
the mass ratio due to the lack of energy equipartition. Con-
sequently, the relative position of an intruder in a granular
gas depends in a rather complicated way on the coefficients
of restitution of the system, the mass ratio, and the size ratio.

V. CONCLUSIONS

In this work, we have studied the hydrodynamic profiles
of an impurity immersed in a low density granular gas that is
in an arbitrary state. Analytical predictions for the tempera-

FIG. 10. Ratio between the impurity and the gas center of mass
positions vs the ratio of the mean square velocities � for systems
with �0=� /2. The solid line is the theoretical prediction discussed
in the text and the symbols MD simulation results. The same sym-
bol is used for simulations differing only on the value of the resti-
tution coefficient �0, which has been varied between 0.3 and 0.95.
The values of the other parameters are given in the text.

FIG. 11. The same as in Fig. 10, with the only difference that
here it is �0=�.

FIG. 12. The same as in Fig. 11, with the only difference that
here it is �0=2�.
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ture and density profiles have been derived and compared
with molecular dynamics simulations for the particular case
of a vibrated system. A satisfactory qualitative and quantita-
tive agreement has been found, although the discrepancies
increase as the difference between the masses of the gas
particles and the intruder increases. When this is the case, the
boundary layer next to the vibrating wall becomes rather
wide and, moreover, the intruder influences the density pro-
file of the gas, contrary to the tracer limit assumed in the
theory.

The theoretical study is based on the validity of the usual
Chapman-Enskog procedure to generate the hydrodynamic
equations of the system when starting from the kinetic
�Boltzmann� equations. Then, although the results are quite
general and can be applied to a variety of situations as the
specific one considered here, some caution is needed for
other particular cases. For instance, in the so-called steady
simple shear state, there is an intrinsic coupling between in-
elasticity and gradients �26,27�. This implies that the shear
rate and the coefficient of restitution cannot be considered as
independent quantities, and the usual Chapman-Enskog pro-
cedure becomes inaccurate. This is in contrast with the situ-
ation considered here, in which the gradients are controlled
by the vibrating wall and the external gravitational field. In
general, each physical state should be checked to verify
whether a direct expansion in the gradients is legitimate.

For the ratio between the local temperatures of the in-
truder and the gas, the theory predicts that it is constant in
the bulk of the system. This has been confirmed by the MD
simulations. The same behavior has been found in experi-
ments �7,8� and MD simulations �6� of vibrated systems,
outside the dilute and tracer limits. Nevertheless, an exten-
sion of the analysis presented in this paper �28�, indicates
that the ratio depends also on the local densities ratio. What
happens is that this dependence is rather weak and gives
corrections inside the statistical uncertainties for the values
of the parameters considered in the above-mentioned works.

A qualitative discussion of the relative position of the in-
truder with respect to the gas was given in �12�, where the
crucial role played by the nonequipartition of energy was
discussed. More precisely, it was shown that the intruder was
above or below the center of mass of the gas depending on
the sign of the pressure diffusion coefficient Dp, that, in turn,
is mostly determined by the sign of �−1, as seen in Eq. �75�.
This is in agreement with the simulation results reported in
Figs. 10–12. It can be concluded that the difference in tem-
perature of the components of a mixture must be taken into
account when studying segregation phenomena, i.e., the de-
mix of the components when shaken. Of course, at higher
densities and finite volume fraction of the components, other
mechanisms �10,29,30� are also important and even domi-
nant.

It is worth mentioning that the work reported here pro-
vides another example of the accuracy of hydrodynamics to
describe granular systems under rather extreme conditions of
inelasticity. Although the inelasticity of the gas has been kept
small in order to avoid the transversal instability, predicted
by the hydrodynamic theory itself, the coefficient of inelas-
ticity for the gas-impurity collisions has been varied over a
wide range �typically between 0.3 and 0.99� and a reasonable

good agreement between theory and simulation has been
found.
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APPENDIX: HYDRODYNAMIC PROFILES OF THE GAS

In Ref. �21�, analytical expressions for the density and
temperature profiles of an open vibrated granular gas in the
steady state were derived. They are given by

n��� =
mg0�1+2�

Cd�d−1
a����AI���� + BK�����2
, �A1�

T1/2��� = �AI���� + BK������−�, �A2�

where Cd=2
2 for d=2 and Cd=

2 for d=3, A and B are
constants to be determined from some boundary conditions,
and I� and K� denote the modified Bessel functions of the
first and second kind, respectively. The dimensionless length
scale � is defined by

� = 
a����
z

� dz�

��z��
, �A3�

with ��z�	�Cdn�d−1�−1 being the local mean free path. Fi-
nally, a��� and ���� are functions of the coefficient of nor-
mal restitution, both vanishing in the elastic limit �→1.
Their explicit expressions are given in �21�. Note that the
maximum value of � is

�0 =

aCd�d−1N

W
, �A4�

N being the total number of particles and W the length or
area of the vibrating wall.

Using the hydrodynamic relation

�p

�z
= − nmg0, �A5�

we can write g�z�, defined in Eq. �81�, as

g�z� = −
1

T
�mg0 +

	�0�

2�

�T

�z
� . �A6�

The expression for �T /�z is easily obtained by using Eqs.
�A1�–�A3� and the properties of the modified Bessel func-
tions �31�,

�T

�z
= −

2mg0��AI�+1��� − BK�+1����
AI���� + BK����

. �A7�

In this way, we have an explicit expression for the integral
appearing in Eq. �82� that, therefore, can be evaluated nu-
merically for each set of values of the parameters. Of course,
this requires us to determine first the constants A and B. In
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the results to be reported here, it has been done from the
simulation data themselves, namely by fitting the position
and value of the temperature minimum �21�. Another possi-
bility that has been proven to give accurate results would be
to require the hydrodynamic heat flux to vanish at infinite
height �25�. Then for a granular gas with �=0.95, N=359,
vW=5, and W=50, leading to ��0.021, a�0.010, and �0

�2.065, the values A�5.41 and B�0.14 are found. The
solid lines in Fig. 1 are the fit to the hydrodynamic profiles of
the gas obtained in this way.

Once A and B are determined, it is possible to evaluate
numerically the right-hand side of Eq. �82� for each set of
values of the parameters defining the mechanical properties
of the intruder.
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