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Abstract. Three heuristic algorithms for solving a cluster problem associated with the 
tearing of a symmetric matrix are presented. Based on these partitioning procedures, a 
method for the parallel solution of the fast decoupled load flow has been developed, 
although it is also suitable for the parallel solution of any linear equations system. 

Experimental results of applying such algorithms on several test systems have been 
obtained using a multiprocessor architecture. 
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INTRODUCTION 

In recent years, considerable effort has been 
directed towards the parallel solution of linear 
equations, due mainly to advances in multiprocessor 
and array processor computer architectures (Pottle, 
1980). 

Single instruction multiple data stream (SIMD) 
processors, which attain parallelism at the 
instruction level (e.g., vector and/or pipelined 
operations), have been used to solve the linear 
equations describing power system networks. 
References (Pritchard, 1982; Hulskamp, 1982) 
describe respectively the solution of load flow 
problem and contingency analysis through this 
approach. 

An alternative type 
multiple instruction 
processor, can make 
than the instruction 
(1978) give examples 
solution. 

of parallel processor, the 
multiple data stream (MIMD) 
use of parallelism at other 

level. Arnold (1983) and Fong 
of transient stability problem 

Following Arnold (1983) two kinds of parallel 
algorithms can be distinguished. One, which will be 
referred to as block schemes, is to divide the 
~atrix of interest into blocks, for example, Fong 
(1978) and Wallach (1980). The number of blocks is 
simply related to the number of processors. An 
alternative group of methods exploit the 
parallelism which is shown to exist when 
considering each individual element SUbstitution 
during the solution. These methods shall be 
referred to as elemental schemes. Wing (1980) gives 
a theoretical model from which the operations that 
can be done in parallel are identified, and the 
absolute minimum completion time and lower bounds 
on the minimum number of processors required to 
solve the equations in minimal time can be found. A 
more practical approach is given in Arnold (1983) 
where the management overhead is considered and 
hardware developed is described. 

The former group usually requires that the network 
or system be partitioned into subsystems (i.e., 
clusters). The optimal network decomposition for a 
parallel processing system is the bordered block 
diagonal for~ (BBDF) ideally composed of equally 
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sized sub-blocks and a minimum sized border. 

Elemental schemes need a dynamic method of task 
allocation among processors, taking account of the 
actual execution rates of tasks (i.e., task 
schedulling). The number of synchronizations 
required is higher than with block schemes. 

This paper describes the development of an 
algorithm based on a block scheme, applied to the 
solution of the fast decoupled load flow (FDLF) 
(Stott, 1974.a). Although the detailed description 
is restricted to two blocks, the ideas for 
extending it to any number of blocks are given. 

Three cluster algorithms for tearing 
presented below. These algorithms are 

networks are 
intended to 

minimize the number of interconnection nodes within 
certain limits, although they can also minimize the 
number of interconnection branches. Ogbuobiri 
(1970) and Sangiovanni (1977) describe other 
heuristic algorithms based on the concept of a 
contour tableau. This problem may not be faced 
theoretically. In fact, there are very few papers 
dealing with it. 

Afterwards, the application of these algorithms to 
the parallel solution of the FDLF is dealt with, as 
well as numerical results of applying them to 
several test systems. 

I. PARTITIONING ALGORITHMS 

As has been ment ioned, a block-type paral1.el 
solution of a linear system of equations requires 
that the matrix be partitioned accordingly. 

In this section three clustering algorithms will be 
described which will be later used for the parallel 
solution of the load flow problem. 

Consider two disjoint components A and B of a graph 
(Fig. 1) . What is required is to find those 
components which minimize either the set of nodes 
of A which are adjacent to B (X) or the set of 
nodes of B which are adjacent to A (Y). When either 
of these sets is minimum, A and B are clusters of 
the graph. 
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Fig. 1 Two disjoint components of a graph. 
The bordering nodes are shown. 

Almost all practical clustering algorithms use the 
concept of the "contour tableau" which consists of 
an array of three columns. In the leftmost column, 
the nodes of the graph are consecutively stored 
following a predetermined strategy. Referring to 
Fig. I, the set A comprises the nodes which have 
been already included in this column, beginning 
with the node s. Each time a node is included in 
this column, the set of nodes X or Y is updated 
(not reevaluated from scratch) and included in the 
middle column. The cardinality of this set 
constitutes the rightmost column. Depending on 
which set is adopted (X or Y), two tableaus are 
possible, though it is easy to see that reversing 
the order of the nodes in the leftmost column, and 
interchanging X and Y, both tableaus are 
equivalent. So, the choice of either of them is a 
matter of programming convenience. 

A simple example of a contour tableau based on the 
set X is shown in Fig. 2. 

In the construction of this tableau, there are only 
two places where choices are made : When an initial 
iterating node is adopted and when choosing the 
next iterating node. These degrees of freedom lead 
to different algorithms. 

Sangiovanni (1977) proposed a minimum degree node 
as the starting node. Assume A is the set of nodes 
already considered, then the next node chosen is 
that of Y which makes fewer nodes of B-Y become 
nodes of Y. Hence, this algorithm looks for a local 
minimization of the set Y at each step. The adopted 
strategy is the same as the one proposed by King 
(1970) for profile minimization purposes. This fact 
suggests that any algorithm intended for profile 
and/or band reduction may be useful to solve the 
cluster problem. The exploitation of this idea 
leads to the algorithms described below, in 
ascending complexity. 

A minimum degree node is not always the best 
initial iterating node. To understand this 
assertion, see the comments made by Sangiovanni 
(1977) concerning this point. In this paper, a 
solution to this problem is proposed consisting in 
taking one of the extremes of a graph's diameter as 
the starting node. In order to find such extremes a 
simple algorithm proposed by Gibbs (1976) is 

Node X Ixl 
2 

5 5 1 
6 5,6 2 

4 8 5,8 2 
7 5,8,7 3 
9 5 1 

6 4 5,4 2 
7 3 4,3 2 

1 3, 1 2 
2 - 0 

Fig. 2 An example showing the contour tableau. 

adopted. The 
procedure. 

following algorithms use this 

Algorithm 1. The contour tableau is built with the 
set X (Fig. 1). The leftmost column of the tableau 
is filled as follows: Once the starting node has 
been identified its adjacent nodes are numbered. 
The algorithm proceeds by numbering the pending 
nodes adjacent to the lowest numbered node, and so 
on until the required number of nodes has been 
included in the tableau. 

This process yields a diagonal band ordering since 
it constitutes a simplified version of the 
Cuthill-Mckee (1969) algorithm in which the degree 
of each node is ignored. Whith an adequate storing 
of the sparse structure of the matrix this process 
is very fast. 

Algorithm 2. Except for the identification of the 
starting node the algorithm is the same as the one 
proposed by Sangiovanni (1977) which was previously 
described. The results obtained are in general 
better with such choice of the starting node. For 
instance, examples 1 and 5 in that paper are now 
optimally partitioned. 

Algorithm 3. It is a refinement of Algorithm 2. The 
next node to be iterated (i.e., included in the set 
A) is not only looked for among nodes of Y but all 
nodes of the set B are tried. This usually leads to 
a further reduction of IYI, although the 
computational cost is greatly increased. This 
strategy was proposed by Levy (1971) in the context 
of profile minimization. 

By using either of the three described methods of 
building the contour tableau the overall 
partitioning algorithm is as follows: 

Let 
N: number of nodes of the graph. 
b: number of desired diagonal blocks. In this 

case b equals the number of available 
processors (b>ll . 

s: searching range of the minimum along the 
contour tableau, in percent of N. 

n: number of nodes already included in the 
tableau (initially set to zero). 

c: number of interconnection nodes already 
ident if ied (ini tially set to zero). 

Z: the set upon which the contour tableau is 
built (either X or Y depending on the adopted 
method). 

For k=l to b-l perform the following steps: 

1) Compute the 
minimum IZI is 
expressions: 

bounds Land U between which a 
going to be looked for, by the 

N- n sN 
L= n + 

b-k+l 200 

aN 
U= L + 

100 
2) From i= n+l to i=U build the contour tableau. 

3) Find i O with the minimum 
iU. k 

IZI, such 

4) The nodes belonging to Z are interconnection 
nodes. Set c= c+ IZI . 

5) The set of nodes included between n+l and i O in 
the leftmost column of the tableau, excluding t~ose 
belonging to Z, forms the k-th block. The value n 
must be updated to n=i~. 

Finally, b-th block is given by the remaining 
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Table I. Ordering times. 

No- Ordering Times (sec. ) 
des Al 2 A2 2 A3 2 Al-3 A2-3 A3-3 
llB 0.25 0.35 1.63 0.30 0.39 1.B9 
175 0.42 0.57 3.42 0.50 0.66 4.21 
265 0.731.36 B.05 0.B6 1.53 9.59 
293 0.B3 1.13 9.49 0.97 1. 33 11.26 
3B3 1.51 2.26 16.22 1.67 2.56 19.00 
44B 1. 99 3.12 21.64 2.12 3.14 26.16 
596 2.94 6.B6 3B.3B 4.44 7.59 50.42 
661 3.26 7.16 46.47 4.54 7.99 53.76 

Ai-j: Algorithm i for j clusters 

nodes, Le., the nodes not yet included in the 
tableau. 

Each time step 2) is reached a new endpoint of a 
diameter must be found. As the graph may be 
disconnected, the biggest connected component is 
i nves ti ga ted. 

Once the clusters and 
identified, the minimum 
1973) is applied to each 
an excessive fill-in 
process. 

the border have been 
degree algorithm (Tinney, 
cluster in order to avoid 

during the factorization 

Table I shows the computation times when the 
algorithms are applied to some electrical networks. 
Part of these data (two clusters) are plotted in 
Fig. 3 versus the product Nodes x Branches. From 
this figure is apparent that A-I is the fastest 
while A-3 is extremely slow. The times spent by A-3 
are comparable or even greater than those required 
by the Load Flow itself (see below). This is the 
reason why A-3 will not be taken into account from 
now on, though it is potentially useful in other 
applications. 
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Fig. 3 Computer time spent versus N.b when 
two clusters are wanted. 

11. PARALLEL SOLUTION OF THE FDLF 

In this section 
stage of the 

the 
FDLF 

parallel 
(Stott, 

solution for each 
1974.a) will be 

described, assuming for simplicity that we are only 
interested in two diagonal blocks and, hence, the 
matrices are partitioned as shown in Fig. 4. Since 
the matrices Ybus ' B' and B" are symmetric, only 
the upper half IS stored and dealt with. A sparse 
matrix package, based on an efficient random 
storage with row pointers, has been developed in 
order to implement the next processes. 

The FDLF process requires the repeated solution of 

Al 0 A2 Ul 0 U2 

0 A3 A4 0 U3 U4 
At 

2 
At 

4 AS 0 0 Us 

Fig. 4 Partitioned matrices and vectors. 

a linear system Ax=b, where A may be either B' or 
B", and b may be either the mismatch vector ~/V or 
6Q/V. The unknown vector x gives the voltage 
corrections (phase or module)£ The corresponding 
matrix A is factored into A=U.U (Fig. 4) before 
the iterative process. A block scheme must perform 
the following operations: 

t 
[ Ul Ul Al (1) 

PI t 
UI U2 A2 (2) 

r"' 
A3 (3) 

P2 U!U4 A4 (4) 

t t 
USUS AS U2U2 U4U4 (5) 

Operation (1) is the factorization of the diagonal 
block Al' Using Ul ' U2 may be computed from (2) by 
performIng the forward elimination on the columns 
of A2. Of course, both processes are simultaneously 
done. While one processor (PI) is carrying out the 
operations indicated by (1) and (2), the other (P2) 
is doing the same with (3) and (4). Finally, one of 
them (P2) must compute Us from (5). 

The forward elimination process, Uty=b, is somewhat 
similar: 

(6) 

(7) 

(B) 

The operations indicated by (6) and (7) are done in 
parallel by the two processors. Elimination process 
is finished when one of the processors (P2) 
performs (B). 

The unknown vector x is obtained from y during the 
back substitution process, Ux=y: 

{ U5x3 Y3 (9) 
P2 

U3x2 Y2 - U4x3 (10) 

PI {Ul x l Yl U2x3 (11) 

Previous solution of equation (9) gives x3 ' which 
is then used by both processors to solve 
respectively (10) and (11) . 

Each half-iteration of the FDLF must solve either 
the active or the reactive subproblem. Computation 
of mismatch vectors takes about 70% of the time 
required at each iteration. Hence, careful 
attention must be devoted to the parallel solution 
of this stage. 

Figure 5 shows the upper half of Yb ' and the 
accordingly partitioned vector ~/V. ~ements of 
submatrix Yl contribute only to (~/V)l while 
elements of YZ contribute both to (~/V)l and 
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[

(AP IV) IJ 
(AP/V) 2 

(AP/V) 3 

Fig. 5 Partitioned Y-bus and AP/V. 

(OP/V)3' In the same way, elements of Y3 only 
affect (OP/V)2 whereas elements of Y4 contribute to 
(OP/V)2 and (~/V)3' Using a conventional notation: 

(OP/V)l (pesP /V)l - (pcal/V) _ (pcal/V) 

Cl C2 

(12) 

(OP/V)2 (pes p IV) _ (pcal/ V) _ (pcal/V) 
2 C3 C4 

(13) 

(OP/V)3 (pesp IV) _ (pcal/V) 
3 C2 ,C 4 ,C 5 

(14 ) 

where C
i 

means "contribution of Yi ". 

After equations (12) and (13) are solved in 
parallel, one processor (P2) solves (14). 
Alternative and probably improved schemes are still 
possible. 

Sequence coordination must be performed by means of 
properly located flags. This coordination is easier 
to achieve than with other parallel schemes (e.g. 
elemental schemes) and it is not so complex as may 
be thought. For example, the iterative process only 
requires synchronization in five places. It is 
clear from the explanation that certain matrices 
and vectors must be accesible to both processors. 

The extension of this parallel solution procedure 
to more than two processors is quite an easy task: 
One additional processor for each added block is 
required. The code in these processors is 
practically the same as in processor PI. The code 
of P2 must be expanded in order to take account of 
the newly created off-diagonal blocks . Finally, 
additional flags must be introduced to synchronize 
the whole process correctly. 

HARDWARE CONFIGURATION 

To test the proposed algorithms, a low cost 
architecture has been adopted consisting of 16 bits 
microprocessors connected to a standard VME bus 
(Fig. 6). A global memory acts as the communicating 
element between processors, and stores the common 
items. 

Each processor is a single card based on the 
MC68000 chip running at BMhz including up to 12B 
Kbytes of local memory . The arithmetic processor 
was added because of this particular application. 

Global ~:emory 

512 Kb ORA."i 

IJ!oo\E bus 

HC68 COO !'!C68000 

8 !'!hz • Mhz 

Fig. 6 Hardware configuration. 

COMPARATIVE RESULTS 

In order to allow comparisons, both the sequential 
and parallel FDLF have been programmed, with the 
same hardware and assembler language. 

Table 11 summarizes the results obtained applying 
the formerly mentioned algorithms to eight networks 
ranging from lIB to 661 nodes. Each parallel 
solution has been implemented both with two and 
three processors . The upper-leftmost columns 
present the time required by the five programmed 
methods to carry out one iteration . The absolute 
time does not have a real interest due to the 
arithmetic processor incorporated (AM9511). It runs 
at 2 MHz and its 8- bit external bus introduces a 
large overhead. Currently, there is more powerful 
commercial VME hardware available, based on the 
MC68020 plus the arithmetic coprocessor, which runs 
a t a hi gher speed . If it were used, the absolute 
times would be drastically reduced, since the 
performance o f one of these processors is 
comparable to 1.5 times that of the VAX 11/780 
(Zorpelle, 1985). 

The bottom-right corner points out the number of 
iterations r~juired ~~ meet the convergence 
criterion (10 or 10 pu.). The results shown 
refer to unad j usted solutions, because we are 
mainly interested in the basic algorithm. 
Nevertheless these ad j ustments are essential in any 
practical application. Clearly, the power flow 
adjustments would not have an appreciable effect on 
the pr oposed parall e l logic, if they are done 
tr ough a method especially developed for the FDLF 
(e.g. the error feedback adjustment proposed by 
Stott (1974a,b». The main effect would be a 
greater number of iterations to the same extent as 
in sequential FDLF. 

It becomes 
iterations 

apparent 
is higher 

that the number 
than the number 

of required 
of those 

Table 11 . Results obtained with some test systems. 

No- Time per Iterat ion (sec) Effi c iency (%) Size of Bo r der Sem i-
des Seq . Al-2 A2-2 Al-3 A2- 3 Al-2 A2-2 Al - 3 A2- 3 Al-2 A2-2 Al-3 A2-3 Iters 
118 0.46 0.31 0.27 0.24 0.21 75 . 3 86.4 63 .9 72.6 6 3 6 4 9 
175 0.72 0 .41 0 .42 0 . 38 0.33 87.2 85.6 63. 2 72 . 2 3 3 5 4 13 
265 1.16 0.75 0.83 0.84 0.68 77.1 69.5 45.B 56.7 11 13 15 14 19 
293 1.19 0.68 0.68 0.56 0.56 87.7 87.7 70 .5 70.8 3 3 4 3 18 
383 1. 72 1. 20 1.05 0.95 0.91 71. 7 82.0 60.5 63.2 12 6 18 10 23 
448 1. 97 1.56 1.22 1. 40 0.96 63.2 80.5 47 . 0 68.5 21 11 20 11 28 
596 2.82 1. 77 1.88 2.87 1.83 79 . 5 75.0 32.7 51.3 18 11 34 23 19 
661 3.06 1.90 1.93 1.90 1.85 80 . 5 79.3 53 .6 55.1 13 9 25 17 17 

Seq: Sequential FDLF, Ai-j : Algorithm for Processors . 
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required with the IEEE test systems, due to the 
small X/R ratio and to the strong loading condition 
of the tested networks. 

The border size which appears in Table 11 does not 
include the slack node. This size is not the 
minimum attainable with the algorithms, but the one 
which provides the minimum time for the whole 
process. For instance, A-I yields a border of 2 
nodes, with the lIB node system, but the unequal 
size of resultant blocks (47,6B) produces longer 
times than the data shown in Table 11, which 
correspond to cluster sizes of 57, 54 and 6 nodes 
obtained with a narrower searching range. 

The proposed factorization process behaves 
irregularly, though its results are not shown in 
Table 11. In any case, the time required for the 
factorization only represents a small fraction of 
the total (about 3%). 

Undoubtedly the most important time is that which 
is needed to complete the iterative process (90t of 
the total), on which the attention will be focused. 

Figures show the comparative results of the 
iterative process in the five cases mentioned 
before. Figure 7.a shows the absolute time per 
iteration; Fig. 7.b points out the efficiency of 

Seq. 
3.5 ........... Al-2 ---- A2-2 

3 
_ ... _ .. - Al-3 _ .. - .. A2-3 

2.5 

2 
tIl 

'"Cl 
c 1.5 0 
u 
(lJ 
U) 

.5 

I! 
ll!l! 21!1! 31!1! 4BB SBB SBB 7BB 

Nodes 

fig. 7.a Time per iteration. 

8B 

SB% 

lBB 2BB 3BB 4BB SBB SBB 7BB 
Nodes 

Fig. 7.b Efficiency of processors. 

this process, defined as l/(r.n), where r is the 
ratio parallel time/ sequential time of the 
iterative process and n is the number of involved 
processors. The meaning of this parameter is the 
average time that each processor has been useful. 

Both A-I and A-2 provide good results for 2 
processors. In this case the efficiency is around 
BO%, with a minimun of 63% and a maximum of BB%. It 
seems that A-2 behaves better than A-l, though not 
in all the tested systems. It must be remembered 
that the ordering time of A-2 is always greater 
than that of A-I, which means that sometimes the 
situation is different with respect to the total 
time (which may be computed as the product of the 
number of iterations by the time per iter. plus the 
order i ng time). 

The first clear thing for 3 processors is the 
disparity of results and their global tendency to 
be worse than with 2 processors. The disparity is 
justified by the two kinds of tested networks. On 
the one hand, there are systems (175 and 293 nodes) 
created by weakly joining two or more real systems. 
In these systems, the clusters are correctly 
identified and the efficiency is quite acceptable 
(72%, 71%). On the other hand, the real Spanish 
systems are composed of very meshed and strongly 
connected subnetworks, which means that there are 
no natural clusters to be found. Hence, the 
efficiency drops substantially despite the relative 
small size of the border (see Table 11). Three main 
reasons justify this loss of efficiency: 

1) Some vectors and matrices must be stored in 
the global memory whose access time is longer. 

2) The presence of the border, where the 
parallelism does not apply. 

3) And the most important one, the gradual loss 
of sparsity that results when the node 
ordering is not that of minimum degree 
algorithm (Tinney, 1973). 

CONCLUSIONS 

In this paper three automatic ways of partitioning 
a sparse matrix into blocks of similar size with a 
small interconnection are presented. Based on these 
partitions, a method for the parallel solution of 
the FDLF has been developed and tested on several 
examples via a low cost standard microprocessor 
architecture. 

These heuristic partitions have proved to be 
efficient, even for systems without natural 
clusters yielding a border size of lOt of the nodes 
in the worst case, either with 2 or 3 blocks. 

The performance of the parallel solution has been 
quite good when using two processors. The 
efficiency in this case is around BOt. For three 
processors, two types of behavior have appeared: In 
those systems with natural clusters the efficiency 
remains high, while in those strongly connected it 
drops near SOt. 

One of the contributions of the paper is the 
implementati~ of the proposed algorithms on a real 
architecture, applying them to different real 
networks. Until now little effort has been done in 
this direction, as the results shown in the 
literature refer to trivial or very special test 
systems. 

The parallel algorithm may be suitable for those 
dispatch centers with a dual computer configuration 
in which the opportunity appears to increase the 
use of the bystanding machine. 
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