
Copyright © IFAC Low Cost Automation 1986
Valencia, Spain, 1986

MULTI-PROCESSOR ARCHITECTURES FOR SOLVING SPARSE
LINEAR SYSTEMS. APPLICATION TO THE LOAD FLOW
PROBLEM

A. G6mez & L. G. Fraoquelo

Dpto. Ingen. Electrica, Electr6nica y Automatica
E.T.S. Ing. Industriales.
Avda. Reina Mercedes, 41012 Sevilla

Abstract. Three heuristic algorithms for solving a cluster problem associated with the
tearing of a symmetric matrix are presented. Based on these partitioning procedures, a
method for the parallel solution of the fast decoupled load flow has been developed,
although it is also suitable for the parallel solution of any linear equations system.

Experimental results of applying such algorithms on several test systems have been
obtained using a multiprocessor architecture.

~eywords: Multiprocessing Systems, Large Scale Systems, Parallel Processing,
Microprocessors, Load Flow, Power Systems Analysis, Iterative Methods.

INTRODUCTION

In recent years, considerable effort has been
directed towards the parallel solution of linear
equations, due mainly to advances in multiprocessor
and array processor computer architectures (Pottle,
1980).

Single instruction multiple data stream (SIMD)
processors, which attain parallelism at the
instruction level (e.g., vector and/or pipelined
operations), have been used to solve the linear
equations describing power system networks.
References (Pritchard, 1982; Hulskamp, 1982)
describe respectively the solution of load flow
problem and contingency analysis through this
approach.

An alternative type
multiple instruction
processor, can make
than the instruction
(1978) give examples
solution.

of parallel processor, the
multiple data stream (MIMD)
use of parallelism at other

level. Arnold (1983) and Fong
of transient stability problem

Following Arnold (1983) two kinds of parallel
algorithms can be distinguished. One, which will be
referred to as block schemes, is to divide the
~atrix of interest into blocks, for example, Fong
(1978) and Wallach (1980). The number of blocks is
simply related to the number of processors. An
alternative group of methods exploit the
parallelism which is shown to exist when
considering each individual element SUbstitution
during the solution. These methods shall be
referred to as elemental schemes. Wing (1980) gives
a theoretical model from which the operations that
can be done in parallel are identified, and the
absolute minimum completion time and lower bounds
on the minimum number of processors required to
solve the equations in minimal time can be found. A
more practical approach is given in Arnold (1983)
where the management overhead is considered and
hardware developed is described.

The former group usually requires that the network
or system be partitioned into subsystems (i.e.,
clusters). The optimal network decomposition for a
parallel processing system is the bordered block
diagonal for~ (BBDF) ideally composed of equally

315

sized sub-blocks and a minimum sized border.

Elemental schemes need a dynamic method of task
allocation among processors, taking account of the
actual execution rates of tasks (i.e., task
schedulling). The number of synchronizations
required is higher than with block schemes.

This paper describes the development of an
algorithm based on a block scheme, applied to the
solution of the fast decoupled load flow (FDLF)
(Stott, 1974.a). Although the detailed description
is restricted to two blocks, the ideas for
extending it to any number of blocks are given.

Three cluster algorithms for tearing
presented below. These algorithms are

networks are
intended to

minimize the number of interconnection nodes within
certain limits, although they can also minimize the
number of interconnection branches. Ogbuobiri
(1970) and Sangiovanni (1977) describe other
heuristic algorithms based on the concept of a
contour tableau. This problem may not be faced
theoretically. In fact, there are very few papers
dealing with it.

Afterwards, the application of these algorithms to
the parallel solution of the FDLF is dealt with, as
well as numerical results of applying them to
several test systems.

I. PARTITIONING ALGORITHMS

As has been ment ioned, a block-type paral1.el
solution of a linear system of equations requires
that the matrix be partitioned accordingly.

In this section three clustering algorithms will be
described which will be later used for the parallel
solution of the load flow problem.

Consider two disjoint components A and B of a graph
(Fig. 1) . What is required is to find those
components which minimize either the set of nodes
of A which are adjacent to B (X) or the set of
nodes of B which are adjacent to A (Y). When either
of these sets is minimum, A and B are clusters of
the graph.

316 A. G6mez, L. G. Franquelo

s

Fig. 1 Two disjoint components of a graph.
The bordering nodes are shown.

Almost all practical clustering algorithms use the
concept of the "contour tableau" which consists of
an array of three columns. In the leftmost column,
the nodes of the graph are consecutively stored
following a predetermined strategy. Referring to
Fig. I, the set A comprises the nodes which have
been already included in this column, beginning
with the node s. Each time a node is included in
this column, the set of nodes X or Y is updated
(not reevaluated from scratch) and included in the
middle column. The cardinality of this set
constitutes the rightmost column. Depending on
which set is adopted (X or Y), two tableaus are
possible, though it is easy to see that reversing
the order of the nodes in the leftmost column, and
interchanging X and Y, both tableaus are
equivalent. So, the choice of either of them is a
matter of programming convenience.

A simple example of a contour tableau based on the
set X is shown in Fig. 2.

In the construction of this tableau, there are only
two places where choices are made : When an initial
iterating node is adopted and when choosing the
next iterating node. These degrees of freedom lead
to different algorithms.

Sangiovanni (1977) proposed a minimum degree node
as the starting node. Assume A is the set of nodes
already considered, then the next node chosen is
that of Y which makes fewer nodes of B-Y become
nodes of Y. Hence, this algorithm looks for a local
minimization of the set Y at each step. The adopted
strategy is the same as the one proposed by King
(1970) for profile minimization purposes. This fact
suggests that any algorithm intended for profile
and/or band reduction may be useful to solve the
cluster problem. The exploitation of this idea
leads to the algorithms described below, in
ascending complexity.

A minimum degree node is not always the best
initial iterating node. To understand this
assertion, see the comments made by Sangiovanni
(1977) concerning this point. In this paper, a
solution to this problem is proposed consisting in
taking one of the extremes of a graph's diameter as
the starting node. In order to find such extremes a
simple algorithm proposed by Gibbs (1976) is

Node X Ixl
2

5 5 1
6 5,6 2

4 8 5,8 2
7 5,8,7 3
9 5 1

6 4 5,4 2
7 3 4,3 2

1 3, 1 2
2 - 0

Fig. 2 An example showing the contour tableau.

adopted. The
procedure.

following algorithms use this

Algorithm 1. The contour tableau is built with the
set X (Fig. 1). The leftmost column of the tableau
is filled as follows: Once the starting node has
been identified its adjacent nodes are numbered.
The algorithm proceeds by numbering the pending
nodes adjacent to the lowest numbered node, and so
on until the required number of nodes has been
included in the tableau.

This process yields a diagonal band ordering since
it constitutes a simplified version of the
Cuthill-Mckee (1969) algorithm in which the degree
of each node is ignored. Whith an adequate storing
of the sparse structure of the matrix this process
is very fast.

Algorithm 2. Except for the identification of the
starting node the algorithm is the same as the one
proposed by Sangiovanni (1977) which was previously
described. The results obtained are in general
better with such choice of the starting node. For
instance, examples 1 and 5 in that paper are now
optimally partitioned.

Algorithm 3. It is a refinement of Algorithm 2. The
next node to be iterated (i.e., included in the set
A) is not only looked for among nodes of Y but all
nodes of the set B are tried. This usually leads to
a further reduction of IYI, although the
computational cost is greatly increased. This
strategy was proposed by Levy (1971) in the context
of profile minimization.

By using either of the three described methods of
building the contour tableau the overall
partitioning algorithm is as follows:

Let
N: number of nodes of the graph.
b: number of desired diagonal blocks. In this

case b equals the number of available
processors (b>ll .

s: searching range of the minimum along the
contour tableau, in percent of N.

n: number of nodes already included in the
tableau (initially set to zero).

c: number of interconnection nodes already
ident if ied (ini tially set to zero).

Z: the set upon which the contour tableau is
built (either X or Y depending on the adopted
method).

For k=l to b-l perform the following steps:

1) Compute the
minimum IZI is
expressions:

bounds Land U between which a
going to be looked for, by the

N- n sN
L= n +

b-k+l 200

aN
U= L +

100
2) From i= n+l to i=U build the contour tableau.

3) Find i O with the minimum
iU. k

IZI, such

4) The nodes belonging to Z are interconnection
nodes. Set c= c+ IZI .

5) The set of nodes included between n+l and i O in
the leftmost column of the tableau, excluding t~ose
belonging to Z, forms the k-th block. The value n
must be updated to n=i~.

Finally, b-th block is given by the remaining

Architectures for Sparse Linear Systems 317

Table I. Ordering times.

No- Ordering Times (sec.)
des Al 2 A2 2 A3 2 Al-3 A2-3 A3-3
llB 0.25 0.35 1.63 0.30 0.39 1.B9
175 0.42 0.57 3.42 0.50 0.66 4.21
265 0.731.36 B.05 0.B6 1.53 9.59
293 0.B3 1.13 9.49 0.97 1. 33 11.26
3B3 1.51 2.26 16.22 1.67 2.56 19.00
44B 1. 99 3.12 21.64 2.12 3.14 26.16
596 2.94 6.B6 3B.3B 4.44 7.59 50.42
661 3.26 7.16 46.47 4.54 7.99 53.76

Ai-j: Algorithm i for j clusters

nodes, Le., the nodes not yet included in the
tableau.

Each time step 2) is reached a new endpoint of a
diameter must be found. As the graph may be
disconnected, the biggest connected component is
i nves ti ga ted.

Once the clusters and
identified, the minimum
1973) is applied to each
an excessive fill-in
process.

the border have been
degree algorithm (Tinney,
cluster in order to avoid

during the factorization

Table I shows the computation times when the
algorithms are applied to some electrical networks.
Part of these data (two clusters) are plotted in
Fig. 3 versus the product Nodes x Branches. From
this figure is apparent that A-I is the fastest
while A-3 is extremely slow. The times spent by A-3
are comparable or even greater than those required
by the Load Flow itself (see below). This is the
reason why A-3 will not be taken into account from
now on, though it is potentially useful in other
applications.

2i1 I A-3

I
I

15 I
III I '0
C

I 0
()

~U I

5

iI

/
I ---

I /' A-2
/'

I /'
.,/ I /< A-1

~.-:-:-:-.. ...

iI 188 2i1i1 3i1i1 488 siIiI Bill 7i1i1

Nxb (10 3)

Fig. 3 Computer time spent versus N.b when
two clusters are wanted.

11. PARALLEL SOLUTION OF THE FDLF

In this section
stage of the

the
FDLF

parallel
(Stott,

solution for each
1974.a) will be

described, assuming for simplicity that we are only
interested in two diagonal blocks and, hence, the
matrices are partitioned as shown in Fig. 4. Since
the matrices Ybus ' B' and B" are symmetric, only
the upper half IS stored and dealt with. A sparse
matrix package, based on an efficient random
storage with row pointers, has been developed in
order to implement the next processes.

The FDLF process requires the repeated solution of

Al 0 A2 Ul 0 U2

0 A3 A4 0 U3 U4
At

2
At

4 AS 0 0 Us

Fig. 4 Partitioned matrices and vectors.

a linear system Ax=b, where A may be either B' or
B", and b may be either the mismatch vector ~/V or
6Q/V. The unknown vector x gives the voltage
corrections (phase or module)£ The corresponding
matrix A is factored into A=U.U (Fig. 4) before
the iterative process. A block scheme must perform
the following operations:

t
[Ul Ul Al (1)

PI t
UI U2 A2 (2)

r"'
A3 (3)

P2 U!U4 A4 (4)

t t
USUS AS U2U2 U4U4 (5)

Operation (1) is the factorization of the diagonal
block Al' Using Ul ' U2 may be computed from (2) by
performIng the forward elimination on the columns
of A2. Of course, both processes are simultaneously
done. While one processor (PI) is carrying out the
operations indicated by (1) and (2), the other (P2)
is doing the same with (3) and (4). Finally, one of
them (P2) must compute Us from (5).

The forward elimination process, Uty=b, is somewhat
similar:

(6)

(7)

(B)

The operations indicated by (6) and (7) are done in
parallel by the two processors. Elimination process
is finished when one of the processors (P2)
performs (B).

The unknown vector x is obtained from y during the
back substitution process, Ux=y:

{ U5x3 Y3 (9)
P2

U3x2 Y2 - U4x3 (10)

PI {Ul x l Yl U2x3 (11)

Previous solution of equation (9) gives x3 ' which
is then used by both processors to solve
respectively (10) and (11) .

Each half-iteration of the FDLF must solve either
the active or the reactive subproblem. Computation
of mismatch vectors takes about 70% of the time
required at each iteration. Hence, careful
attention must be devoted to the parallel solution
of this stage.

Figure 5 shows the upper half of Yb ' and the
accordingly partitioned vector ~/V. ~ements of
submatrix Yl contribute only to (~/V)l while
elements of YZ contribute both to (~/V)l and

318 A. G6mez, L. G. Franquelo

[

(AP IV) IJ
(AP/V) 2

(AP/V) 3

Fig. 5 Partitioned Y-bus and AP/V.

(OP/V)3' In the same way, elements of Y3 only
affect (OP/V)2 whereas elements of Y4 contribute to
(OP/V)2 and (~/V)3' Using a conventional notation:

(OP/V)l (pesP /V)l - (pcal/V) _ (pcal/V)

Cl C2

(12)

(OP/V)2 (pes p IV) _ (pcal/ V) _ (pcal/V)
2 C3 C4

(13)

(OP/V)3 (pesp IV) _ (pcal/V)
3 C2 ,C 4 ,C 5

(14)

where C
i

means "contribution of Yi ".

After equations (12) and (13) are solved in
parallel, one processor (P2) solves (14).
Alternative and probably improved schemes are still
possible.

Sequence coordination must be performed by means of
properly located flags. This coordination is easier
to achieve than with other parallel schemes (e.g.
elemental schemes) and it is not so complex as may
be thought. For example, the iterative process only
requires synchronization in five places. It is
clear from the explanation that certain matrices
and vectors must be accesible to both processors.

The extension of this parallel solution procedure
to more than two processors is quite an easy task:
One additional processor for each added block is
required. The code in these processors is
practically the same as in processor PI. The code
of P2 must be expanded in order to take account of
the newly created off-diagonal blocks . Finally,
additional flags must be introduced to synchronize
the whole process correctly.

HARDWARE CONFIGURATION

To test the proposed algorithms, a low cost
architecture has been adopted consisting of 16 bits
microprocessors connected to a standard VME bus
(Fig. 6). A global memory acts as the communicating
element between processors, and stores the common
items.

Each processor is a single card based on the
MC68000 chip running at BMhz including up to 12B
Kbytes of local memory . The arithmetic processor
was added because of this particular application.

Global ~:emory

512 Kb ORA."i

IJ!oo\E bus

HC68 COO !'!C68000

8 !'!hz • Mhz

Fig. 6 Hardware configuration.

COMPARATIVE RESULTS

In order to allow comparisons, both the sequential
and parallel FDLF have been programmed, with the
same hardware and assembler language.

Table 11 summarizes the results obtained applying
the formerly mentioned algorithms to eight networks
ranging from lIB to 661 nodes. Each parallel
solution has been implemented both with two and
three processors . The upper-leftmost columns
present the time required by the five programmed
methods to carry out one iteration . The absolute
time does not have a real interest due to the
arithmetic processor incorporated (AM9511). It runs
at 2 MHz and its 8- bit external bus introduces a
large overhead. Currently, there is more powerful
commercial VME hardware available, based on the
MC68020 plus the arithmetic coprocessor, which runs
a t a hi gher speed . If it were used, the absolute
times would be drastically reduced, since the
performance o f one of these processors is
comparable to 1.5 times that of the VAX 11/780
(Zorpelle, 1985).

The bottom-right corner points out the number of
iterations r~juired ~~ meet the convergence
criterion (10 or 10 pu.). The results shown
refer to unad j usted solutions, because we are
mainly interested in the basic algorithm.
Nevertheless these ad j ustments are essential in any
practical application. Clearly, the power flow
adjustments would not have an appreciable effect on
the pr oposed parall e l logic, if they are done
tr ough a method especially developed for the FDLF
(e.g. the error feedback adjustment proposed by
Stott (1974a,b». The main effect would be a
greater number of iterations to the same extent as
in sequential FDLF.

It becomes
iterations

apparent
is higher

that the number
than the number

of required
of those

Table 11 . Results obtained with some test systems.

No- Time per Iterat ion (sec) Effi c iency (%) Size of Bo r der Sem i-
des Seq . Al-2 A2-2 Al-3 A2- 3 Al-2 A2-2 Al - 3 A2- 3 Al-2 A2-2 Al-3 A2-3 Iters
118 0.46 0.31 0.27 0.24 0.21 75 . 3 86.4 63 .9 72.6 6 3 6 4 9
175 0.72 0 .41 0 .42 0 . 38 0.33 87.2 85.6 63. 2 72 . 2 3 3 5 4 13
265 1.16 0.75 0.83 0.84 0.68 77.1 69.5 45.B 56.7 11 13 15 14 19
293 1.19 0.68 0.68 0.56 0.56 87.7 87.7 70 .5 70.8 3 3 4 3 18
383 1. 72 1. 20 1.05 0.95 0.91 71. 7 82.0 60.5 63.2 12 6 18 10 23
448 1. 97 1.56 1.22 1. 40 0.96 63.2 80.5 47 . 0 68.5 21 11 20 11 28
596 2.82 1. 77 1.88 2.87 1.83 79 . 5 75.0 32.7 51.3 18 11 34 23 19
661 3.06 1.90 1.93 1.90 1.85 80 . 5 79.3 53 .6 55.1 13 9 25 17 17

Seq: Sequential FDLF, Ai-j : Algorithm for Processors .

Architectures for Sparse Linear Systems 319

required with the IEEE test systems, due to the
small X/R ratio and to the strong loading condition
of the tested networks.

The border size which appears in Table 11 does not
include the slack node. This size is not the
minimum attainable with the algorithms, but the one
which provides the minimum time for the whole
process. For instance, A-I yields a border of 2
nodes, with the lIB node system, but the unequal
size of resultant blocks (47,6B) produces longer
times than the data shown in Table 11, which
correspond to cluster sizes of 57, 54 and 6 nodes
obtained with a narrower searching range.

The proposed factorization process behaves
irregularly, though its results are not shown in
Table 11. In any case, the time required for the
factorization only represents a small fraction of
the total (about 3%).

Undoubtedly the most important time is that which
is needed to complete the iterative process (90t of
the total), on which the attention will be focused.

Figures show the comparative results of the
iterative process in the five cases mentioned
before. Figure 7.a shows the absolute time per
iteration; Fig. 7.b points out the efficiency of

Seq.
3.5 Al-2 ---- A2-2

3
_ ... _ .. - Al-3 _ .. - .. A2-3

2.5

2
tIl

'"Cl
c 1.5 0
u
(lJ
U)

.5

I!
ll!l! 21!1! 31!1! 4BB SBB SBB 7BB

Nodes

fig. 7.a Time per iteration.

8B

SB%

lBB 2BB 3BB 4BB SBB SBB 7BB
Nodes

Fig. 7.b Efficiency of processors.

this process, defined as l/(r.n), where r is the
ratio parallel time/ sequential time of the
iterative process and n is the number of involved
processors. The meaning of this parameter is the
average time that each processor has been useful.

Both A-I and A-2 provide good results for 2
processors. In this case the efficiency is around
BO%, with a minimun of 63% and a maximum of BB%. It
seems that A-2 behaves better than A-l, though not
in all the tested systems. It must be remembered
that the ordering time of A-2 is always greater
than that of A-I, which means that sometimes the
situation is different with respect to the total
time (which may be computed as the product of the
number of iterations by the time per iter. plus the
order i ng time).

The first clear thing for 3 processors is the
disparity of results and their global tendency to
be worse than with 2 processors. The disparity is
justified by the two kinds of tested networks. On
the one hand, there are systems (175 and 293 nodes)
created by weakly joining two or more real systems.
In these systems, the clusters are correctly
identified and the efficiency is quite acceptable
(72%, 71%). On the other hand, the real Spanish
systems are composed of very meshed and strongly
connected subnetworks, which means that there are
no natural clusters to be found. Hence, the
efficiency drops substantially despite the relative
small size of the border (see Table 11). Three main
reasons justify this loss of efficiency:

1) Some vectors and matrices must be stored in
the global memory whose access time is longer.

2) The presence of the border, where the
parallelism does not apply.

3) And the most important one, the gradual loss
of sparsity that results when the node
ordering is not that of minimum degree
algorithm (Tinney, 1973).

CONCLUSIONS

In this paper three automatic ways of partitioning
a sparse matrix into blocks of similar size with a
small interconnection are presented. Based on these
partitions, a method for the parallel solution of
the FDLF has been developed and tested on several
examples via a low cost standard microprocessor
architecture.

These heuristic partitions have proved to be
efficient, even for systems without natural
clusters yielding a border size of lOt of the nodes
in the worst case, either with 2 or 3 blocks.

The performance of the parallel solution has been
quite good when using two processors. The
efficiency in this case is around BOt. For three
processors, two types of behavior have appeared: In
those systems with natural clusters the efficiency
remains high, while in those strongly connected it
drops near SOt.

One of the contributions of the paper is the
implementati~ of the proposed algorithms on a real
architecture, applying them to different real
networks. Until now little effort has been done in
this direction, as the results shown in the
literature refer to trivial or very special test
systems.

The parallel algorithm may be suitable for those
dispatch centers with a dual computer configuration
in which the opportunity appears to increase the
use of the bystanding machine.

320 A. G6rnez, L. G. Franquelo

REFERENCES

Arnold C.P., Parr ILL, Dewe I1.B. (1983). An
Efficient Parallel Algorithm for the Solution
of Large Sparse Linear Matrix Equations. IEEE
Trans. on Computers C-32, pp 265-272.

Cuthill E. , Mc~ee J. (1969) . Reducing the Bandwidth
of Sparse Symmetric Matrices . Proc. 24th
National Conf. ACM. pp 157-172.

Fong J., Pottle C. (1978). Parallel Processing of
Power System Analysis Problems Via Simple
Parallel Microcomputer Structures. IEEE Trans.
on PAS-97, pp 1834-1841.

Gibbs N.E., Poole W.G . , Stockmeyer P.~. (1976). An
Algorithm for Reducing the Bandwidth and
Profile of a Sparse Matrix. SIAM J. N. Anal.
vol . 13, pp 236-250.

Hulskamp J.P., Chan S.M.; Fazio J.F. (1982). Power
Flow Outage Studies Using an Array Processor .
IEEE Trans. on PAS-IOl, pp 254-261.

King I . P. (1970). An Automatic Reordering Scheme
for Simultaneous Equations Derived from Network
Systems . Int. J. Num. Meth. Eng. Vol. 2, pp
523-533.

Levy R. (1971). Restructuring of the Structural
Stifness Matrix to Improve Computational
Efficiency. Jet Propulsion Lab. Tech. Rev. vol.
1, pp 61-70.

Ogbuobiri E.C., Tinney W.F . , Walker J . W. (1970) .
Sparsity Directed Decomposition for Gaussian

Elimination on Matrices. IEEE Trans . on PAS-89,
pp 141-150.

Pottle C. and Others. (1980). Proceedings of a
Computer Hardware Workshop. Proc. of SIAM.
Electric Power Problems: The Mathematical
Challenge, pp 499-514, Philadelphia.

Pritchard R. , Pot tIe C. (1982). High-Speed Power
Flows Using Attached Scientific ("Array")
Processors. IEEE Trans . on PAS-IOl, pp 249-253.

Sangiovanni-Vincentelli A. and Others . (1977) . An
Efficient Heuristic Cluster Algorithm for
Tearing Large Scale Networks. IEEE Trans. on
CAS-24, pp 709-717.

Stott B. , Alsac O. (1974). Fast Decoupled Load
Flow. IEEE Trans. on PAS-93, pp 859-867.

Stott B. (1974). Review of Load-Flow Calculation
Methods. Procee. IEEE vol. 62, pp 916-924 .

Tinney W.F., Meyer W.S. (1973). Solution of Large
Sparse Systems by Ordered Triangular
Factorization. IEEE Trans . on Automatic Control
AC-18, pp 333-345.

Wallach Y. , Konrad V. (1980). On Block-Parallel
Methods for Solving Linear Equations. IEEE
Trans. on Computers C-29, pp 354-359.

Wing 0. , Huang J.W . (1980). A Computational Model
for Parallel Solution of Linear Equations. IEEE
Trans. on Computers C-29, pp 632-638 .

Zorpette G. (1980). The Beauty of 32 bits. IEEE
Spectrum, pp 65-71 Sep.

