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Stability analysis of the homogeneous hydrodynamics of a model for a confined granular gas
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The linear hydrodynamic stability of a model for confined quasi-two-dimensional granular gases is
analyzed. The system exhibits homogeneous hydrodynamics, i.e., there are macroscopic evolution equations
for homogeneous states. The stability analysis is carried out around all these states and not only the homogeneous
steady state reached eventually by the system. It is shown that in some cases the linear analysis is not enough to
reach a definite conclusion on the stability, and molecular dynamics simulation results are presented to elucidate
these cases. The analysis shows the relevance of nonlinear hydrodynamic contributions to describe the behavior
of spontaneous fluctuations occurring in the system, that lead even to the transitory formation of clusters of
particles. The conclusion is that the system is always stable. The relevance of the results for describing the
instabilities of confined granular gases observed experimentally is discussed.
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I. INTRODUCTION

In the past years, a particular geometry has attracted interest
in the study of granular media, both experimentally [1–5] and
theoretically [6–9]. It is a quasi-two-dimensional system of
spherical particles placed between two large parallel plates
separated a distance smaller than two particle diameters, so
that the particles cannot jump on one another. The container
is vertically vibrated to inject energy and maintain the system
fluidized. When the system is seen from above, or from below,
it looks like a two-dimensional granular fluid. In another
series of experiments, a vibrated monolayer of grains is also
considered, but the system is open on the top [10–12]. A
peculiarity of these setups is that energy is injected in the bulk
of the two-dimensional system, instead of at the boundaries,
then allowing the generation of homogeneous reference states.
Actually, experiments show that the horizontal dynamics
remains homogeneous under a large range of values of the
parameters defining the system. On the other hand, when
increasing the average density and/or decreasing the intensity
of the vibration, the system exhibits a series of phase transitions
[4,5,10] and, in particular, a bimodal regime characterized
by a single dense cluster of close grains surrounded by a
gas of quite agitated particles [5,9,10]. Several models have
been proposed trying to describe the effective two-dimensional
dynamics of the vibrated system confined between two plates,
the main issue being how to incorporate in the dynamics the
mechanism of energy injection. A conceptually simple way is
to consider an external noise term acting on each particle,
so that the inelastic collisions are described in the usual
way but the particles are subjected to random kicks between
collisions [13–16]. Although it is true that this modeling
leads to the existence of a uniform steady state, its possible
relation with the state generated in the experiments has not
been established. Moreover, this stochastic driving does not
conserve momentum. A very appealing alternative has been
proposed recently [7]. Taking into account that collisions be-
tween particles are the mechanism by which the kinetic energy
acquired by the particles at the vibrating walls is transferred
from the vertical degree of freedom to the horizontal ones,
the idea is to modify the usual two-dimensional collision rule
for inelastic disks, in order to incorporate a description of the

energy transfer. This is done by introducing a characteristic
velocity parameter � that is added to each particle in the
direction of the normal component of their relative velocity
at the collision. Consequently, the normal component of
the relative velocity is increased by 2� in each collision,
in addition and independent of the effect of inelasticity as
described by the coefficient of normal restitution. Of course,
this simple model assumes implicitly that there is no kinetic
energy injection in the horizontal directions in the collisions
of the particles with the plates, so no friction with the walls is
considered.

Since the model is formulated at the level of particle
dynamics, the methods of nonequilibrium statistical mechanics
and kinetic theory developed for inelastic hard spheres and
disks can be easily extended and applied to the new kinetics
[17]. In this way, hydrodynamic equations to Navier-Stokes
order have been derived for dilute gases described by the
Boltzmann-like equation, with identification of the associated
transport coefficients, which are given by the solutions of a
system of first order differential equations [18]. A peculiarity
of the hydrodynamic equations, as compared with the Navier-
Stokes equations of a normal fluid, is that the time derivatives
of the hydrodynamic fields do not vanish in the homogeneous
limit, i.e., there is a homogeneous hydrodynamics. This
follows from the inherent nonequilibrium character of granular
matter and, actually, it seems to be a quite general feature of
systems exhibiting steady nonequilibrium states [19,20]. Of
course, in the long time limit the homogeneous hydrodynamic
equations lead to the steady state of the system.

Upon studying the linear hydrodynamic stability of the
system and the possible existence of instabilities driving
the system to inhomogeneous configurations, it is important
to carry out the analysis around the time dependent state
defined by the homogeneous hydrodynamic equations, instead
of considering linear deviations from the steady state. The
analysis is trivially more general, providing information
about the stability not only of the vicinity of the steady
state but also on the homogeneous hydrodynamic trajectory
relaxing towards it, i.e., hydrodynamic states outside the linear
environment of the steady state are included in the analysis.
It is possible for a system to be stable near the homogeneous
steady state but it is unstable for homogeneous configurations
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corresponding to values of the macroscopic fields far away
from the steady ones.

In this paper, the linear hydrodynamic stability of the
homogeneous evolution of the quasi-two-dimensional granular
model is studied. The aim is to see whether the model is
able to predict some kind of hydrodynamic instability of
the homogeneous state and, hence, to open the possibility
of some phase coexistence similar to the one observed in
the experiments. Moreover, the analysis presented serves to
illustrate how the stability of general steady nonequilibrium
states of molecular systems must be addressed [19]. It will
be shown that linear perturbations around some homogeneous
states grow in the short time limit, although the linearized
hydrodynamic equations predict that they decay afterwards.
It follows that for these states a definite answer regarding
its stability cannot be reached from the linear analysis.
Consequently, molecular dynamics simulations of some of
these states have been performed. They indicate that the system
actually relaxes to the homogeneous time-dependent state,
but that the mechanism seems to be quite complex, involving
highly nonlinear hydrodynamic effects.

The remainder of the paper is organized as follows. In
Sec. II, the linear hydrodynamic equations around the time-
dependent hydrodynamic homogeneous state are presented.
They are written using dimensionless perturbations of the
hydrodynamic fields around homogeneity, and have the form
of a system of coupled first order differential equations with
time-dependent coefficients. Its solution is rather involved and
has to be done numerically, except for the special case of the
traverse velocity field, whose equation is decoupled from the
rest and its solution can be written explicitly in terms of a well
defined shear mode. The linear stability analysis is presented
in Sec. III. The results imply the need of a nonlinear analysis
of the stability for some homogeneous states, something that
seems to be too complicated. Therefore, molecular dynamics
simulations regarding these states have been performed and
the results are shown in Sec. IV. The simulation results
indicate that the homogeneous time-dependent states are all
stable, although relevant inhomogeneous fluctuations can be
observed on short time scales. The last section of the paper
contains a short summary of the results and some comments on
their relevance to explain the inhomogeneous states observed
experimentally.

II. LINEAR NAVIER-STOKES EQUATIONS AROUND
HOMOGENEOUS HYDRODYNAMICS

The system considered is a granular gas composed of
smooth inelastic spheres of mass m and diameter σ , confined
to a quasi-two-dimensional geometry by means of two large
parallel horizontal plates separated a distance smaller than
two particle diameters. Energy is injected into the system by
vibrating the parallel walls, and the rate of energy injection
is large enough as to render negligible the effect of the
gravitational potential energy. Interest is focused on the two
dimensional dynamics showed by the system when observed
from above. This dynamics has been assimilated to that of a
two-dimensional granular fluid, and a kinetic model has been
proposed to describe the effective dynamics in the plane [7].
The projections of the spheres are considered as inelastic hard

disks of mass m and diameter σ . To incorporate a mechanism
trying to describe the transferring of the energy injected
vertically to the horizontal dynamics, the usual collision rule
of smooth inelastic hard disks is modified, so that when two
disks with velocities v1 and v2 collide, their velocities are
instantaneously changed to new values given by

v′
1 = v1 − 1 + α

2
v12 · σ̂ σ̂ + �σ̂ , (1)

v′
2 = v2 + 1 + α

2
v12 · σ̂ σ̂ − �σ̂ , (2)

where σ̂ is the unit vector joining the centers of the two
disks at contact, v12 ≡ v1 − v2 is the relative velocity, α is
the coefficient of normal restitution defined in the interval
0 < α � 1, and � is some positive characteristic speed. This
is the quantity trying to describe the way in which the energy
goes from the vertical degree of freedom to the horizontal ones
in the collisions of the original hard spheres. Note that the
above collision rule conserves momentum in the plane. Since
the model is formulated at the collisional level, the methods
of nonequilibrium statistical mechanics and kinetic theory
developed for inelastic hard spheres and disks [21,22] can
be easily adapted [17]. From the Liouville equation, balance
equations for the macroscopic fields, the number of particles
density, n(r,t), the velocity flow, u(r,t), and the granular
temperature, T (r,t), are derived in a straightforward way,

∂n

∂t
+ ∇ · (nu) = 0, (3)

∂u
∂t

+ u · ∇u + (mn)−1∇ · P = 0, (4)

∂T

∂t
+ u · ∇T + 1

n
(P : ∇u + ∇ · Jq) = −ζT . (5)

In the above equations, P(r,t) is the pressure tensor, Jq(r,t) is
the heat flux, and ζ (r,t) is the rate of change of the temperature
due to the inelasticity of collisions. These three quantities
are obtained as functionals of the distribution function of the
system. In order to close the balance equations, it is necessary
to express P, Jq , and ζ in terms of the macroscopic fields
by means of some constitutive relations. In the low density
limit, the dynamics of the system is expected to be accurately
described by the Boltzmann equation with the same degree
of confidence as for elastic hard disks [17]. Then, by using
an extension of the Chapman-Enskog procedure, it is possible
to derive expressions for P, Jq , and ζ , in the form of series
expansions in the gradients of the macroscopic fields. To first
order, they have the form [18]

P = nT I − η[∇u + (∇u)+ − ∇ · uI], (6)

Jq = −κ∇T − μ∇n, (7)

ζ = ζ (0) + ζ1∇ · u. (8)

In Eq. (6), I is the two-dimensional unit tensor, (∇u)+ is the
transposition of ∇u, and η is the coefficient of shear viscosity.
In Eq. (7), κ is the coefficient of (thermal) heat conductivity and
μ is the coefficient of diffusive heat conductivity. The latter is
peculiar of systems with inelastic collisions [23], vanishing in
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the elastic limit. Finally, the expression of the rate of change
of the temperature contains a zeroth order in the gradients
term, ζ (0), and an Euler transport coefficient ζ1, which is
also peculiar of inelastic collisions [24–26]. For nonconfined
granular gases, it vanishes in the low density limit. In principle,
the second order in the gradients contributions to the rate of
change of the temperature ζ should be also considered, since
they lead to terms in Eq. (5) which are of the same order as
the contributions coming from Eqs. (6) and (7). Nevertheless,
these new terms are expected to be quantitatively negligible as
compared with those terms from the heat flux and the pressure
tensor. The expression of ζ (0), as well as the differential
equations determining all the other transport coefficients, were
derived in Ref. [18], and for the sake of completeness they
are reproduced in the Appendix. The general structure of
the hydrodynamic equations can be justified by means of
rather general arguments [7]. Nevertheless, it is important
to realize that the presence of the characteristic velocity �

implies that a nondimensional parameter can be constructed
as �∗ ≡ �/v0(T ), with v0(T ) ≡ (2T/m)1/2 being a thermal
velocity. As a consequence, the dependence of the transport
coefficients on the temperature is much more involved in the
present case than in systems of elastic or inelastic hard disks.

Substitution of Eqs. (6)–(8) into Eqs. (3)–(5) gives the
Navier-Stokes equations describing the hydrodynamics of the
system. For homogeneous situations, they reduce to

∂nH

∂t
= 0, (9)

∂uH

∂t
= 0, (10)

∂TH

∂t
= −ζ

(0)
H TH . (11)

Here, and in the following, the subindex H is used to
denote a quantity computed in an hydrodynamic homogeneous
state. Then, e.g., ζ

(0)
H ≡ ζ (0)(nH ,TH ), and so on. Without lost

of generality, the value uH = 0 can be taken. The above
equations predict the existence of a homogeneous steady
state with a temperature Tst determined by the equation
ζ (0)(nH ,Tst ) = 0. This state has been extensively studied and
the theoretical predictions from hydrodynamics have been
shown to be in good agreement with molecular dynamics
simulation results [7,8,17], The aim here is to investigate
the stability of the homogeneous hydrodynamic states, i.e.,
to determine whether the evolution of a homogeneous system
as described by the above hydrodynamic equations is linearly
stable. The particular issue of the stability of the steady
homogeneous state has already been addressed, with the results
that hydrodynamics predicts that it is linearly stable [7]. To
start with, dimensionless deviations of the macroscopic fields
from homogeneity are defined as

ρ(r,t) ≡ n(r,t) − nH

nH

, (12)

ω(r,t) ≡ u(r,t)
v0H (t)

, (13)

θ (r,t) ≡ T (r,t) − TH (t)

TH (t)
. (14)

Moreover, it is convenient to use also dimensionless time scale
s and length scale l defined by

ds ≡ v0H (t)

�
dt (15)

and

d l ≡ d r
�

, (16)

respectively. The unit of length, � ≡ (nHσ )−1, is proportional
to the mean free path of the particles and the time scale s

is proportional to the cumulative number of collisions per
particle in the associated original time interval, both quantities
computed in the time dependent reference homogeneous state.

The linearized equations will be written in the Fourier
representation, with the transforms of the hydrodynamic fields
defined as

ρ̃k(t) ≡
∫

d l e−ik·lρ(l,t), (17)

and so on. After some straightforward algebra, linearization of
Navier-Stokes equations in ρ, ω, and θ leads to

∂ρ̃k

∂s
+ ik · ω̃k = 0, (18)

∂ω̃k

∂s
− ζ

(0)
H

2
ω̃k + ik

2
(θ̃k + ρ̃k) + ηH ω̃kk

2 = 0, (19)

∂θ̃k

∂s
+ (1 + ζ1H )ik · ω̃k + k2(κH θ̃k + μH ρ̃k)

= −ρ̃kζ
(0)
H − θ̃kψH , (20)

where dimensionless coefficients have been defined as

ζ
(0)
H ≡ ζ

(0)
H �

v0H

, (21)

ηH ≡ ηH

mnH�v0H

, (22)

κH ≡ κH

nH �v0H

, (23)

μH ≡ μH

TH�v0H

. (24)

The term ψ in the equation for the temperature deviation θ̃k is
given by

ψ(�∗) =
(

π

2

)1/2{1 − α2

2

(
1 + 3a2

16

)
+

(
1 − a2

16

)
�∗2

−
[

3

32
(1 − α2) + �∗2

16

]
∂a2

∂�∗ �∗
}
, (25)

with a2 being the coefficient of the first Sonine correction for
the distribution function of homogeneous hydrodynamic states
[27]. Its expression has been investigated in Ref. [27], showing
that it is given by the solution of Eq. (A9) in the Appendix. As
an example, in Fig. 1 it is plotted as a function of �∗ for α =
0.8. The steady value of �∗, �∗

st � 0.15, is indicated. Since the
theory has been developed by assuming a2 � 1, the interval of
values of �∗ for which the theory can be expected to hold may
be estimated to be bounded �∗ � 0.5. This means that when �

is large as compared with the thermal velocity v0(T ), the first
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� 1.5
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2.0

0

��

a2

FIG. 1. Sonine coefficient a2 of the hydrodynamic homogeneous
one-particle distribution as a function of the scaled dimensionless
velocity parameter �∗ for α = 0.8. The steady value of �∗, denoted
by �∗

st , is indicated. As discussed in the main text, the first Sonine
approximation employed in the theoretical analysis is expected to fail
when a2 becomes of the order of unity.

Sonine approximation, and therefore the Gaussian function,
fail to describe the distribution function of the system. On the
other hand, for large temperatures such that �∗ � 1, the state
of the system approaches the homogeneous cooling state for
which the Sonine approximation is known to provide a fair
description of the velocity distribution. The function ψ(�∗) is
shown in Fig. 2. It is seen to be an increasing function over
the relevant interval of the scaled velocity parameter. Similar
results are obtained for other values of α.

The equation for the velocity, Eq. (19), can be decomposed
into two equations, for the longitudinal and transversal
components of the velocity field relative to the wave vector

st

0 0.2 0.4 0.6
0.2

0.6

0.4

0.8

Ψ

FIG. 2. Dimensionless quantity ψ , defined by Eq. (25), as a
function of the scaled dimensionless velocity parameter �∗ for a
system with α = 0.8. Only the interval of the velocity in which the
Sonine coefficient a2 remains small, say a2 � 0.5, has been plotted.
In this relevant region, ψ is a positive increasing function of �∗.

k, ω̃k,‖, and ω̃k,⊥, respectively,

∂ω̃k⊥
∂s

− ζ
(0)
H

2
ω̃k⊥ + ηH ω̃k⊥k2 = 0, (26)

∂ω̃k‖
∂s

− ζ
(0)
H

2
ω̃k‖ + ik

2
(θ̃k + ρ̃k) + ηH ω̃k‖k2 = 0. (27)

It is worth stressing that, in spite of the change to the number
of collisions time scale s, the coefficients of the linearized
hydrodynamic equations still depend on time, contrary to what
happens in systems of smooth inelastic hard spheres or disks
when considering the linearization around the homogeneous
cooling state [28]. On the other hand, linear hydrodynamic
equations with coefficients having a nonsimple time depen-
dence have been also found in a model for ballistic annihilation
[29] and a granular gas in contact with a thermostat [30].

III. STABILITY ANALYSIS

As pointed out above, the coefficients of the linearized
hydrodynamic equations depend on time in rather different
ways due to the presence of the velocity parameter � in
the formulation of the dynamics of the system. There is
a time dependence that occurs through different powers
of the dimensionless parameter �∗ ∝ �/

√
T (t) and that,

consequently, cannot be scaled out in a direct way. Therefore,
the complete linear stability analysis becomes more difficult
than for smooth inelastic hard spheres in the homogeneous
cooling state, since both the eigenvalues and eigenfunctions of
the dimensionless problem are time dependent. An exception
is the particular case of the steady state, since it is time
independent by definition. For this state, the stability analysis
is straightforward [7], and shows that the steady state is
linearly stable. In this context, it is worth noticing that the
steady state reached when a (nonconfined) granular gas is
thermalized by means of the so-called stochastic thermostat,
i.e., by considering a white noise force acting on each particle,
is also linearly stable [31,32].

For a general homogeneous state of the confined granular
gas, the linearized equation for the transversal velocity field
ω̃k⊥, Eq. (26), is decoupled from the rest and can be integrated
directly yielding

ω̃k⊥(s) = ω̃k⊥(0) exp
∫ s

0
ds ′ λ⊥(s ′), (28)

where

λ⊥(s) ≡ ζ
(0)

2
− ηH k2. (29)

This identifies the shear mode. In order to analyze its
behavior, it is convenient to differentiate between the two
parameter regions: �∗

H > �∗
st and �∗

H < �∗
st . In the former,

the time-dependent temperature of the reference homogeneous
state is smaller than its stationary value, and �∗

H is a
decreasing function of time, i.e., the homogeneous reference
state is heating and, because of Eq. (11), the rate of change

of the homogeneous temperature is negative, ζ
(0)
H < 0, and

hence also λ⊥(s) < 0, since the shear viscosity coefficient
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�0.001
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Ω� ⊥ 0.05

Ω� =0.05

Θ
�

0.05

Ρ�
0.05

FIG. 3. Time evolution of the perturbations of the dimensionless
hydrodynamic fields in a confined quasi-two-dimensional granular
gas with α = 0.9 as predicted by the linearized hydrodynamic
equations. Time is measured in the dimensionless scale s defined
in the main text and the wave number is k = 0.05. The initial
temperature of the system is smaller than its stationary value,
so that the reference temperature is monotonically increasing in
time. The initial values of the perturbations are θ̃0.05 = −10−3 and
ρ̃0.05 = ω̃0.05⊥ = ω̃0.05‖ = 10−3.

is always positive. The conclusion is that the scaled shear
mode is linearly stable for those homogeneous hydrodynamic
processes in which the system heats towards the steady state.
On the other hand, when �∗

H < �∗
st , the system is cooling and

ζ
(0)
H > 0. Therefore, λ⊥(s) is positive if k < k⊥(s) with

k⊥(s) =
(

ζ
(0)
H

2ηH

)1/2

. (30)

This value of the wave number depends on time through �∗
H .

Actually, since the cooling rate tends to zero as the stationary
state is approached, while the shear viscosity remains finite
and positive, it follows that k⊥ vanish in the long time limit.
The special case of a homogeneous (k = 0) perturbation of
the transversal velocity field deserves a comment. It is trivially
seen that ω̃0⊥ grows monotonically in time until the steady
state is reached, but this behavior is a direct consequence
of the scaling of the velocity field with the square root
of the temperature, Eq. (13). The actual, unscaled velocity
field remains constant, with the same initial value of the
perturbation.

With regards to the other macroscopic fields, although quite
involved, it is possible to numerically integrate the coupled
linearized hydrodynamic equations (18), (20), and (27).
Figure 3 displays the evolution of all the linearized hydro-
dynamic fields as a function of the number of collisions scale
s in a system with a coefficient of normal restitution α = 0.9
and an initial temperature smaller than the steady one, namely
�∗(0) = 1 > �∗

st � 0.078. The wave number considered is
k = 0.05. Also plotted for reference of the time scales is
the evolution of the temperature of the homogeneous state
measured by the parameter �T ∗(s) ≡ (T (s) − Tst )/100Tst .

The initial perturbations have quite small amplitudes, as
required for the validity of the linear hydrodynamic equations.

0 100 200 300

0.002

0.004

�0.002

�0.004

0

s

�T�
Ω� ⊥ 0.2

Ω� =0.2

Θ
�

0.2

Ρ�
0.2

FIG. 4. Time evolution of the perturbations of the dimensionless
hydrodynamic fields in a confined quasi-two-dimensional granular
gas with α = 0.9 as predicted by the linearized hydrodynamic
equations. Time is measured in the dimensionless scale s defined
in the main text and the wave number is k = 0.2. The initial
temperature of the system is larger than its stationary value so that the
reference temperature is monotonically decreasing in time. The initial
values of the perturbations are θ̃0.2 = −10−3, ρ̃0.2 = ω̃0.2‖ = 10−3,
and ω̃0.2⊥ = 10−4.

Their values are given in the figure caption. It is observed that
the temperature, density, and velocity fields oscillate in time
indicating a behavior that is peculiar of complex hydrodynamic
modes, like the elastic sound modes. Also, the amplitude of
the oscillations decays, i.e., the initial inhomogeneities tend to
vanish, following that the system is linearly stable.

The behavior of the perturbations in a system evolving
with a temperature larger than the steady value is illustrated
in Fig. 4, again for a system with α = 0.9, being now
�∗(0) = 10−3. The initial value of k⊥ defined in Eq. (30)
is k⊥ � 0.757, and the value of the wave number used in
the simulations is k = 0.2. Therefore, the perturbation of the
scaled transversal velocity, ω̃0.2⊥, is predicted to initially grow
on time by its linear hydrodynamic equation, as it is observed
in the figure. In fact, the amplitudes of the perturbations of the
other fields also increase, although a superimposed oscillatory
behavior is identified. Nevertheless, in the long time limit
all the hydrodynamic perturbations tend to vanish, with the
transversal velocity decaying rather slower than the other
fields. Similar behaviors have been found for other values
of the initial perturbations and the wave number k. The picture
emerging from the linear analysis is that although the traversal
modes can grow for a transitory period, the speed of growth
is smaller that the rate of change of the eigenvalue, so that
the latter change from positive to negative before the mode
grows too much. Then, one is tempted to conclude that the
homogeneous hydrodynamic states are linearly stable, but
it must be taken into account that if the amplitude of the
perturbation grows enough as to leave the linear regime, the
description provided by Eqs. (18)–(20) breaks down, making
it necessary to consider the complete nonlinear hydrodynamic
equations.
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IV. MOLECULAR DYNAMICS SIMULATIONS

An important issue raised in the previous section is whether
the amplitude of a small perturbation of the hydrodynamic
fields can grow enough as to leave the range in which the de-
scription provided by the linearized hydrodynamic equations
is valid, so that a more complete nonlinear mode description
would be required. If this is the case, a second question
is whether the system finally returns to the homogeneous
time-dependent hydrodynamic state, so that this state is stable.
To investigate the above subjects, molecular dynamics (MD)
simulations of a system of N inelastic hard disks in a square of
size L, obeying the modified collision rules given by Eqs. (1)
and (2), have been performed. An event-driven algorithm
[33] with periodic boundary conditions has been used. The
number density in all the simulations has been n = 0.05σ−2,
that is low enough as to consider that the system is in the
low density limit, at least as long as it does not have too
large density inhomogeneities. Initially, the particles were dis-
tributed uniformly into the system and their velocities obeyed
a Gaussian distribution. In the simulations to be reported it is
N = 2000, and the initial granular temperature T (0) was much
larger than its steady value, namely Tst = 9,7 × 10−8T (0), in
such a way that the homogeneous reference state is cooling
towards the steady state, i.e., the kind of processes for which
the linear stability analysis does not predict the monotonic
decay of hydrodynamic perturbations. A relevant feature to
keep in mind when analyzing the simulation results is that
the observed perturbations are spontaneous, i.e., generated
by the dynamics of the system itself, and not externally
introduced. Consistently, the data displayed correspond to a
single computer run or phase space trajectory of the system,
since average over different trajectories would smooth down
the spontaneous fluctuations.

The hydrodynamic fields measured in the simulations are
defined as

ũ
(1)
x,⊥,kmin

=
N∑

i=1

vi,x

v0(t)
cos

2πyi

L
, (31)

ũ
(2)
x,⊥,kmin

=
N∑

i=1

vi,x

v0(t)
sin

2πyi

L
, (32)

ũ
(1)
x,‖,kmin

=
N∑

i=1

vi,x

v0(t)
cos

2πxi

L
, (33)

ũ
(2)
x,‖,kmin

=
N∑

i=1

vi,x

v0(t)
sin

2πxi

L
, (34)

ñ
(x,1)
kmin

=
N∑

i=1

cos
2πxi

L
, (35)

ñ
(x,2)
kmin

=
N∑

i=1

sin
2πxi

L
. (36)

The expressions correspond to Fourier components with a
wave vector kmin ≡ 2π�

L
that is the minimum wave number

compatible with the applied periodic boundary conditions.
This choice of k = kmin corresponds to the largest value of
the eigenvalue λ⊥ associated to the shear mode in the short
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FIG. 5. MD simulation results for time evolution of the dimen-
sionless transversal and longitudinal components of a spontaneous
fluctuation of the x component of the velocity field. The wave
number k = kmin is the minimum compatible with the imposed
periodic boundary conditions. Time τ is the accumulated number
of collisions per particle. The parameters of the system are α = 0.7,
n = 0.05 × σ−2, N = 2000, and � = 10−4v0(0)/

√
2, where v0(0) ≡

(2T (0)/m)1/2.

time limit [see Eq. (29)] and, therefore, it is the one expected
to show more clearly an unstable behavior, if it is exhibited
by the system. A second reason for this choice is that the used
hydrodynamic equations hold in the limit of small gradients
of the macroscopic fields or, equivalently, small wave vectors.

Equations (31) and (32) define the two Fourier components
of the instantaneous transversal velocity field for the wave
vector k in the direction of the y axis. The Fourier components
of the longitudinal velocity field for wave vector in the
direction of the x axis are defined by Eqs. (33) and (34).
Finally, Eqs. (35) and (36) are the definitions of the two Fourier
components of the number density field for a wave vector k =
kmin along the x direction. Of course, analogous definitions
can be made by interchanging the x and y components of both
r i and vi . They should lead to equivalent results, by symmetry
considerations.

Figure 5 displays the evolution of the Fourier components
of the velocity field as a function of the accumulated number
of collisions per particle τ , which is proportional to the time
scale s used in the previous sections. The coefficient of normal
restitution is α = 0.7 and the characteristic speed is � =
10−4v0(0)/

√
2. It is observed that a spontaneous fluctuation

of the transversal velocity field occurs and that its deviation
from the steady vanishing value grows quite fast, reaching
a maximum for τ � 50. Afterwards, the fluctuation decays
becoming imperceptible for τ � 150. On the other hand, the
longitudinal velocity components show an oscillatory behavior
for all times, although the amplitude of the oscillations has
a maximum at the same time that the transversal velocity
fluctuation. Since in the linear regime the time evolutions of
the longitudinal and the transversal components of the velocity
are decoupled, it follows that the observed effect is clearly due
to some nonlinear coupling between hydrodynamic modes.

The time evolution of the Fourier components of the density
field for the same system and phase space trajectory is shown
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FIG. 6. MD simulation results for the time evolution of a
spontaneous fluctuation of the dimensionless Fourier components
of the density field. The wave number k = kmin is the minimum
compatible with the imposed periodic boundary conditions. Time
τ is the accumulated number of collisions per particle. The results
have been obtained for the same system and from the same phase
space trajectory as considered in Fig. 5. Note that the two Fourier
components corresponding to the wave vector along each of the two
x and y directions are plotted.

in Fig. 6. All the components exhibit oscillations around
the homogeneous vanishing value. The amplitudes of the
oscillations show a well defined maximum for roughly the
same time at which the transversal velocity fluctuation has
also a maximum in Fig. 5. This reflects that the observed
density fluctuations are also induced by the fluctuations of
the transversal velocity through some nonlinear coupling.
This feature is similar to the one happening in the clustering
instability of a nonconfined granular gas in the homogeneous
cooling state [34]. Actually, in the present case the system
also exhibits transitory clustering effects that are clearly noted
by looking at a snapshot of the evolution of the system.
An example is given in Fig. 7 that corresponds to the same
trajectory as Figs. 5 and 6.

Similar results have been obtained along other trajectories
of the system, i.e., starting from different initial conditions, and
also using different number of particles, but the same density.
The only relevant difference showing up is the time for which
the spontaneous fluctuations of the transversal velocity field
take place and also the component (ux or uy) that is involved
in the initial increase of the fluctuation. Note that the wave
vector only can take its minimum value when it is oriented
along one of these directions due to the periodic boundary
conditions. It is worth commenting on what happens with the
fluctuations of the velocity field in the direction perpendicular
to the one showing a nonoscillatory increase of the fluctuations.
The simulations show that they oscillate in time similar to, e.g.,
the density field. This is illustrated in Fig. 8 for the same system
and the same trajectory as considered in Figs. 5–7. Once again
this is a manifestation of the nonlinear character of the effects
we are discussing, since in the linear regime the transversal
velocity does not exhibit an oscillatory behavior.
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X/σ
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-50

0

50

100

Y/σ

FIG. 7. Snapshot of the position of the particles at a time in
which the fluctuation of the Fourier component of the transversal
velocity field is large. The system and its phase space trajectory is the
same as in Figs. 5 and 6. The time is τ = 22.5, measured in average
accumulated number of collisions per particle.

In summary, the MD simulations carried out show a
behavior of the fluctuations of the hydrodynamic fields that
is consistent with the predictions obtained from the linearized
hydrodynamic equations. It is observed that the amplitude
of the fluctuations of the transversal velocity field can grow
monotonically in time, as predicted, until reaching values for
which nonlinear effects are relevant. The formation of density
clusters is observed. Of course, although the linear analysis is
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FIG. 8. MD simulation results for time evolution of the dimen-
sionless transversal and longitudinal components of a spontaneous
fluctuation of the y component of the velocity field. The wave number
k = kmin is the minimum compatible with the imposed periodic
boundary conditions. Time τ is the accumulated number of collisions
per particle. The parameters of the system are the same as in Fig. 5.
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able to predict the transitory growth of the transversal mode, it
cannot explain the formation of density clusters or their spatial
structure. These nonlinear effects drive later on the system to
the time-dependent homogeneous state, rendering it stable,
and consistently, the density clusters disappear.

V. CONCLUSION

The objective here has been to investigate the stability of
the time-dependent homogeneous hydrodynamic state of a
model for a confined quasi-two-dimensional granular gas. The
main motivation is to investigate whether the hydrodynamic
equations derived for the model are able to predict the bimodal
regime that is observed in experiments [9,10], or at least the
existence of some hydrodynamic instability compatible with
its existence. Due to the intrinsic nonequilibrium character of
granular gases, the hydrodynamic equations of the model have
the peculiarity of exhibiting a homogenous regime. This makes
it possible to study the linear stability not only of the steady
state eventually reached by the system, but also of the complete
hydrodynamic homogeneous trajectory. Showing how this
analysis can be carried out in a particular case is another aim of
the present work. This implies the linearization of the Navier-
Stokes equations around a time-dependent state, and the
resulting equations happen to have time-dependent coefficients
with a dependence that cannot be scaled out simply. The
consequence is that the equations must be solved numerically.

The analysis indicates a deep difference between homo-
geneous processes in which the system is heating and those
in which it is cooling. While the former are always stable,
the latter can in principle be linearly unstable when the
time-dependent cooling rate is large enough. This is because
the initial value of the eigenvalue associated to the shear
mode can be positive indicating a growth of the perturbation
of the traversal velocity, at least for a time period after the
spontaneous perturbation. To determine what actually happens
in the system, molecular dynamics of the model at low density
have been performed. The picture emerging from them is
that spontaneous fluctuations of the transversal velocity field
with an amplitude increasing in time can actually happen.
Moreover, they can grow enough as to be necessary to consider
contributions of terms that are nonlinear in the deviations of
the hydrodynamic fields. In particular, clustering of particles
are formed. Nevertheless, these nonlinear contributions force
the fluctuations to decay to zero for larger times, i.e., the
homogeneous time dependent reference state is stable.

The conclusion is that the hydrodynamic equations of the
system do not present any instability for homogeneous states,
including as a particular case the steady state. Consequently,
it is not clear how it could describe the bimodal regime seen
in experiments, and some modification of the model seems
necessary. An appealing macroscopic approach to this issue
has been presented in Ref. [6] and it seems worth trying to
understand it on a more fundamental basis level, starting from
a particle dynamics description. To put the above comments
in a proper context, it is appropriate to emphasize that they do
not refer to the solid-fluid phase transition presented by elastic
hard spheres or disks. This transition is also present in the
model, although slightly modified. Identifying the details of
the change deserves much more work and it is now in progress.
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APPENDIX: HYDRODYNAMIC COEFFICIENTS

Here the expressions of the coefficients appearing in the
constitutive relations (6)–(8) leading to the hydrodynamic
Navier-Stokes equations [18] are reproduced in the units
used in the main text. Define dimensionless cooling rate and
Navier-Stokes transport coefficients by

ζ
(0) ≡ ζ (0)�

v0
, (A1)

η ≡ η

mnH�v0
, (A2)

κ ≡ κ

nH�v0
, (A3)

μ ≡ μ

T �v0
. (A4)

The expression of the reduced cooling rate is

ζ
(0) = (2π )1/2

[
1 − α2

2

(
1 + 3a2

16

)

−α

(
π

2

)1/2

�∗ −
(

1 − a2

16

)
�∗2

]
, (A5)

while the transport coefficients are given by the normal
solutions, in the sense of being independent from the initial
conditions, of the differential equations

∂η

∂s
+

(
ν̄η − ζ̄ (0)

2

)
η = 1

2
, (A6)

∂κ

∂s
+

[
ν̄κ + �∗

2

∂ζ̄ (0)

∂�∗ − 2ζ̄ (0)

]
κ = 1 + 2a2 − �∗

2

∂a2

∂�∗ ,

(A7)

∂μ

∂s
+

(
ν̄μ − 3

2
ζ̄ (0)

)
μ − ζ̄ (0)κ = a2. (A8)

In the above expressions, a2 is the coefficient of the first Sonine
correction to the Gaussian. It obeys the differential equation

∂a2

∂s
=

√
2π

8�∗ {(B0(�∗) + 4A0(�∗))

+ [B1(�∗) + 4(A1(�∗) + A0(�∗))]a2}, (A9)

with several coefficients appearing in it being given by

A0(α,�∗) = 4

[
1 − α2

2
−

(
π

2

)1/2

α�∗ − �∗2

]
, (A10)

A1(α,�∗) = 1

4

[
3(1 − α2)

2
+ �∗2

]
, (A11)

B0(α,�∗) = (2π )1/2(5 + 3α2 + 4�∗2)α�∗

− 3 + 4�∗4 + α2 + 2α4 − 4(1 − α2 − 2�∗2)

+ 2�∗2(1 + 6α2), (A12)
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B1(α,�∗) =
(

π

2

)1/2

[2 − 4(1 − α) + 7α + 3α3]�∗

− 1

16
{85 + 4�∗4 − 18(3 + 2α2)�∗2

− (32 + 87α + 30α3)α

− 4[6�∗2 − (1 + α)(31 − 15α)]}. (A13)

Finally, the Euler transport coefficient in Eq. (8) has the
form

ζ1 = ζ̄1b2, (A14)

where

ζ̄1 = π1/2

2
21
2

[96 + 9a2 − 3α2(32 + 3a2) + �∗2(64 + 30a2)]

(A15)

and b2 is the solution of the differential equation

∂b2

∂s
− 1

2

[
3ζ̄ (0) + χ + 8ζ̄1(a2 + 1) − 2ζ̄1�

∗ ∂a2

∂�∗

]
b2

= −�∗ ∂a2

∂�∗ , (A16)

with

χ = π1/2

211
(
√

2{30α4(32 − a2) − 5(544 + 7a2)

− 4�∗2(32 + 15a2) − 64α(16 + a2) − 4(992 + 17a2)

+ 3α2[928 + 43a2 + 12�∗2)(32 + 3a2) + 20(32 − a2)]

+ 6�∗2(288 − 45a2 + 128 + 12a2)}
+ 512

√
π�∗[2 + 7α + 3α3 − 4(1 − α)]). (A17)
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