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Abstract— In this paper the Method of Moments (MoM) in the
spectral domain is used for the analysis of multilayered structures
containing periodic arrays of either patches or apertures. The
patches and apertures may have many different geometries
including complex surfaces limited by two parallel lines and
two arbitrary curves, circular and elliptic rings, circular and
elliptic arcs, and circular and elliptic sectors. Basis functions
accounting for edge singularities are used in the approximation
of the electric/magnetic current density on the patches/apertures,
which enables a fast convergence of MoM with respect to the
number of basis functions. Since the 2-D Fourier transforms
of the basis functions cannot be obtained in closed-form, these
Fourier transforms are efficiently computed by means of the
nonuniform fast Fourier transform (NUFFT) algorithm. Results
have been obtained for frequency-selective surfaces (FSSs), and
for the elements used in the design of both reflectarray and
metasurface antennas. The results obtained indicate that the
software based on the NUFFT is only 15% slower than the
standard spectral domain MoM software used for structures
in which the 2-D Fourier transform of the basis functions is
analytical, and between 50 and 80 times faster than CST.

Index Terms— Fourier transforms, moment of methods (MoM),
multilayered media, periodic structures.

I. INTRODUCTION

THE efficient analysis of multilayered periodic structures
is of key importance for the design of microwave devices

ranging from frequency-selective surfaces (FSSs) to reflec-
tarray/transmitarray antennas and metasurface (MTS) leaky-
wave antennas. FSSs paved the way by enabling the control of
the transmission/reflection properties of very thin screens that
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work as bandpass or band-reject filters when made of apertures
or patches respectively [1], [2]. Although these structures were
strictly periodic, researchers were able to extend the methods
developed for the analysis of FSSs to the analysis of non-
periodic structures with a spatially smooth variation, thanks
to the use of the local periodicity assumption (LPA). One
example is the design of reflectarray antennas, which are
made of periodic arrangements of printed patches of different
dimensions on a grounded dielectric, usually illuminated by
a horn antenna [3]. By optimizing the geometry of each
element in the antenna, one can compensate for the phase
difference encountered between the waves scattered by the
different elements. If the geometry of the elements varies
slowly along the antenna, then the LPA allows for the analysis
of each element as if it was surrounded by a periodic envi-
ronment [3]. The LPA was validated experimentally, and was
an enabling breakthrough for the fast and accurate design of
reflectarray antennas [4]. More recently, the LPA has also been
applied for the design of printed patch holographic or MTS
antennas, based on the leaky-wave phenomena [5], [6]. These
antennas are made of very sub-wavelength printed patches on
a thin grounded substrate, which are treated through equivalent
surface impedance concepts [7]. The very-subwavelength pat-
terning of the surface also allows for a reliable use of the LPA.
When the equivalent surface impedance is properly modulated
along the surface of the antenna, one can achieve a largely con-
trollable conversion between surface and space waves [5]–[7],
whose radiation can be spatially-tailored to obtain the desired
radiation diagram.

One of the numerical methods most frequently used for the
analysis of multilayered periodic structures is the method of
moments (MoM) in the spectral domain, which was introduced
by Mittra and his coworkers [2]. The spectral domain MoM
is very efficient provided that the 2-D Fourier transform of
the basis functions used to approximate the magnetic current
density on the apertures, or the electric current density on the
patches, can be obtained in closed form. Two types of basis
functions have been customarily used in the application of the
spectral domain MoM: subsectional basis functions (such as
rooftops, piecewise sinusoidal, etc.) and entire domain basis
functions. Subsectional basis functions have the capability
to be adaptable to a large variety of geometries, but their
main drawback is that they lead to large MoM matrices to
be inverted. Chan and Mittra [8] developed a fast Fourier
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transform (FFT) approach for the efficient computation of the
spectral domain MoM matrix entries when subsectional basis
functions are used, but this approach is restricted to cases
where the patches or apertures fit into a uniform rectangular
grid limited by the contour of the periodic unit cell. Entire
domain basis functions accounting for the edge singularity
condition are specially suitable for the application of MoM
to multilayered periodic structures because they ensure a fast
convergence of MoM with respect to the number of basis
functions, and therefore, lead to small MoM matrices that can
be easily inverted [9]–[11]. The nice properties of the edge
singularity basis functions are due to the fact that they consti-
tute a complete orthonormal set for the kernel of the integral
equations to be solved as pointed out by Lerer and Schuchin-
sky [12]. Edge singularity basis functions have been proposed
for simple canonical geometries such as rectangles [10], [12],
parallelograms [12], circles [7], [13] and ellipses [7]. However,
they have also been extended to more sophisticated shapes
such as rings [14], split rings [11] or even more general
surfaces limited by two parallel lines and two arbitrary curves
[15]. The problem is that the 2-D Fourier transform of the
edge singularity basis functions can be only obtained for the
simplest geometries (rectangles, parallelograms, circles, and
ellipses) [12], which prevents the use of these basis functions
in the spectral domain MoM analysis of periodic structures
with more complex shapes unless sophisticated mathematical
tricks are used for each particular shape [11], [14].

In this paper the authors present a novel implementation
of the spectral domain MoM for the analysis of multilayered
periodic structures in which the Fourier transforms of the
basis functions are numerically computed by means of the
nonuniform fast Fourier transform (NUFFT) algorithm [16],
[17]. This novel implementation has the relevant advantage
that it can deal with edge singularity basis functions for
which the 2-D Fourier transforms of the basis functions cannot
be obtained in closed-form, and therefore, it enables the
efficient MoM analysis of a large class of multilayered periodic
structures. Also, the analysis of all these structures is carried
out within a CPU time which is only slightly larger than that
required in the cases where the 2-D Fourier transforms of
the basis functions are available in closed-form. In previous
papers, specially tailored mathematical tricks (interpolations in
terms of Chebyshev polynomials, truncation of infinite series
based on the properties of Bessel functions, etc.) have been
used for the spectral domain MoM analysis of some particular
periodic structures with edge-singularity basis functions for
which 2-D Fourier transforms are not available in closed-form
[11], [14]. The uniqueness of the spectral domain MoM with
NUFFT as proposed in this paper is that this latter approach
can be efficiently applied to a wide variety of different geome-
tries with similar success. In particular, in this paper the new
approach is applied to the analysis of periodic structures where
the patches/apertures are surfaces limited by two parallel lines
and two arbitrary curves [15], and to the cases where the
patches/apertures are circular or elliptic rings [14], circular
or elliptic arcs [11], and circular or elliptic sectors. The use of
the NUFFT has made it possible to cover all these different
cases since it does not require an equispaced grid for the

computation of the samples used in the determination of the
Fourier transform. This is in contrast to the standard FFT,
which requires an equispaced uniform grid for the computation
of the samples, and therefore, is more limited in terms of
the number of different geometries that can be handled [8].
In this paper the spectral domain MoM with NUFFT has been
applied to the determination of the transmission properties of
FSSs made of apertures, to the determination of the phase
curves of periodic structures used in the design of linearly and
circularly polarized reflectarray antennas under the LPA, and
finally, to the determination of the iso-frequency dispersion
curves and the equivalent surface reactance of patches used
in MTS antennas. The results obtained have been compared
with previously published results and with results provided by
the commercial software CST, and good agreement has been
found in all cases. Our spectral domain MoM with NUFFT
software has proven to be between 50 and 80 times faster
than CST.

II. NUMERICAL PROCEDURE

Fig. 1(a) and (b) show a periodic array of patches printed
on a two-layered substrate backed by a conducting plane.
Similarly, Fig. 1(c) and (d) show a periodic array of aper-
tures in a conducting screen, embedded in a two-layered
substrate. The patches, the backing conducting plane and the
conducting screen containing the apertures are assumed to
be perfect electric conductors (PECs) of negligible thickness.
Each of the two layers of the substrate of both periodic
structures has a thickness hi (i = 1, 2), a complex permittivity
εi = ε0εr,i (1 − j tan δi ) (i = 1, 2), and a permeability μ0. Note
that although the results presented in this paper are for periodic
structures on one- or two-layered substrates, the derivations
carried out in the rest of this Section for the structures of
Fig. 1(a)–(d) can be easily extended to deal with general
substrates containing an arbitrary number of layers. This only
requires one to use adequate spectral domain dyadic Green’s
functions, which can be obtained for generic multilayered
substrates by means of the recurrent algorithm described in
[18]. Also, while the periodic structure of Fig. 1(c) and (d) acts
as a bandpass FSS, the structure of Fig. 1(a) and (b) cannot
be used as a reject band FSS unless the conducting plane is
substituted by an interface with a semi-infinite region of free
space [1], [2]. This latter possibility can also be easily contem-
plated in the formulation provided below by simply changing
the spectral domain dyadic Green’s function of the problem.

We will assume that the periodic unit cell of the periodic
structures of Fig. 1(a)–(d) may have either Ne patches [Ne = 2
in Fig. 1(b)] or Ne apertures [Ne = 2 in Fig. 1(d)]. The
possible shapes for these patches and apertures are shown
in Fig. 2(a)–(g), and include surfaces limited by two parallel
lines and two arbitrary curves (these surfaces encompass
many different types of polygons, the barrel shape, the dia-
bolo shape, etc.) of the type shown in Fig. 2(a), circular
and elliptic rings [Fig. 2(b) and (c)], circular and ellip-
tic arcs [Fig. 2(d) and (e)], and circular and elliptic sectors
[Fig. 2(f) and (g)].

A plane wave is assumed to obliquely impinge on the two
periodic structures of Fig. 1(a)–(d), its incidence direction
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Fig. 1. (a) and (b) Side and top views of a periodic array of patches printed on
a two-layered substrate backed by a conducting plane, respectively. (c) and (d)
Side and top views of a periodic array of apertures embedded in a two-layered
substrate, respectively. In both cases, a plane wave impinges on the periodic
structures.

being given by the angular spherical coordinates θinc and ϕinc.
In the following, a time dependence of the type ejωt will be
assumed and suppressed throughout.

A. MoM in the Spectral Domain

In this subsection we describe the spectral domain MoM
solution of the scattering problems posed in Fig. 1(a)–(d).
Also, we briefly indicate how the solution of these scattering
problems is used in the design of FSSs, reflectarray antennas
and MTS antennas.

In order to determine the fields scattered by the periodic
structure of Fig. 1(a) and (b), we need to determine the surface
electric current density excited on the patches of the metallized
interface z = 0, J(x, y), by the impinging plane wave. This
electric current density is the solution of the following electric

Fig. 2. Patches or apertures appearing in the unit cells of the periodic
structures of Fig. 1. (a) Surface limited by two lines parallel to the x ′-axis,
and by two arbitrary curves x ′ = l−p (y′) and x ′ = l+p (y′). (b) Circular and
(c) elliptic rings. (d) Circular and (e) elliptic arcs. (f) Circular and (g) elliptic
sectors.

field integral equation (EFIE):

ẑ ×
[

Eap(x, y, z = 0) +
+∞∑

m=−∞

+∞∑
n=−∞

∫
Pmn

G
E J
p

(x − x ′, y − y ′, z = 0, z′ = 0) · J(x ′, y ′)dx ′dy ′
]

= 0

(x, y) ∈ P00 (1)

where Pmn (m, n = . . . ,−1, 0, 1, . . .) is the metallized portion
of the z = 0 plane within the mn-th periodic unit cell,
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Eap(x, y, z) is the electric field that would be generated in
all space by the plane wave impinging on the multilayered
structure of Fig. 1(a) and (b) in the absence of the patches, and
G

E J
p (x −x ′, y − y ′, z = 0, z′ = 0) is a 2 × 2 matrix represent-

ing the dyadic Green’s function that links the transverse (to z)
electric field at the plane z = 0, Et (x, y, z = 0), with the elec-
tric current density J(x ′, y ′) that originates this electric field.

Also, in order to determine the fields scattered by the
periodic structure of Fig. 1(c) and (d), we need to determine
the magnetic current density excited on the apertures of the
conducting screen located at z = 0, M(x, y), by the impinging
plane wave. This magnetic current density is the solution of
the following integral equation:

Jaa(x, y) +
+∞∑

m=−∞

+∞∑
n=−∞

∫
Amn

× G
J M
a (x − x ′, y − y ′, z = 0, z′ = 0) · M(x ′, y ′)dx ′dy ′ = 0

(x, y) ∈ A00 (2)

where Amn is the set of apertures existing in the z = 0 plane
within the mn-th unit cell, Jaa(x, y) is the surface electric
current density that would be induced at the conducting plane
z = 0 of Fig. 1(c) and (d) by the impinging wave if the aper-
tures were not present, and G

J M
a (x − x ′, y − y ′, z = 0, z′ = 0)

is a 2×2 matrix representing the dyadic Green’s function that
links the surface electric current density (discontinuity in the
tangential magnetic field) existing at the z = 0 plane with the
magnetic current density M(x ′, y ′) that originates this electric
current density.

Since J(x, y) and M(x, y) are Floquet-periodic functions of
x and y, in order to solve the integral equations of (1) and (2),
we only need to determine J(x, y) and M(x, y) within one
periodic unit cell, e.g., the domain C00 = {0 ≤ x ≤ a; 0 ≤
y ≤ b}. Looking for a solution of the integral equations,
we expand J(x, y) and M(x, y) in P00 and A00 respectively
in terms of known basis functions as follows:

J(x, y) =
Ne∑

p=1

2∑
q=1

N1q∑
r=1

N2q∑
s=1

c pq
rs Jpq

rs (x, y) (3)

M(x, y) =
Ne∑

p=1

2∑
q=1

N1q∑
r=1

N2q∑
s=1

d pq
rs Mpq

rs (x, y). (4)

In (3)/(4) the superindex p (p = 1, . . . , Ne) indi-
cates the number of the patch/aperture in P00/ A00 for
a total of Ne patches/apertures in Fig. 1(b) and (d). The
superindex q (q = 1, 2) indicates the component of
J(x, y)/M(x, y) which is being approximated by the basis
function Jpq

rs (x, y)/Mpq
rs (x, y). And since J(x, y)/M(x, y)

depends on two coordinates (which can be cartesian coor-
dinates, polar coordinates [7], [11], [14] or stretched polar
coordinates suitable for patches and apertures with elliptical
shape [7], [12]), the subindex r (r = 1, . . . , N1q ) is swept to fit
the dependence of J(x, y)/M(x, y) on one of the coordinates,
while the subindex s (s = 1, . . . , N2q ) is swept to fit the
dependence of J(x, y)/M(x, y) on the other coordinate. Thus,
the total number of basis functions per patch (aperture) turns
out to be Nb = N11 N21 + N12 N22.

When (3) and (4) are substituted in (1) and (2), and
Galerkin’s version of MoM is applied, the following systems
of equations are obtained for the unknown coefficients cpq

rs and
d pq

rs of (3) and (4)

Ne∑
p=1

2∑
q=1

N1q∑
r=1

N2q∑
s=1

�
i j,pq
kl,rs c pq

rs = ei j
kl (5)

(i = 1, . . . , Ne; j = 1, 2; k = 1, . . . , N1 j ; l = 1, . . . , N2 j )

Ne∑
p=1

2∑
q=1

N1q∑
r=1

N2q∑
s=1

�
i j,pq
kl,rs d pq

rs = f i j
kl (6)

(i = 1, . . . , Ne; j = 1, 2; k = 1, . . . , N1 j ; l = 1, . . . , N2 j ).

If we invoke Parseval’s identity for 2-D Fourier transforms,
the MoM matrix entries �

i j,pq
kl,rs and �

i j,pq
kl,rs of (5) and (6) can be

expressed in the spectral domain as double infinite summations
given by [2]

�
i j,pq
kl,rs

= ab
+∞∑

m=−∞

+∞∑
n=−∞

[(̃
Ji j,d

kl (kxm, kyn)
)∗]t

· G̃
E J,c

p (kx =kxm, ky =kyn, z=0, z′ =0) · J̃pq,d
rs (kxm, kyn)

(7)

�
i j,pq
kl,rs

= ab
+∞∑

m=−∞

+∞∑
n=−∞

[(
M̃i j,d

kl (kxm, kyn)
)∗]t

· G̃
J M,c

a (kx =kxm, ky =kyn, z=0, z′ =0) · M̃pq,d
rs (kxm, kyn)

(8)

where kxm = k0 sin θinc cos ϕinc +2πm/a (k0 = ω
√

ε0μ0 =
2π/λ0) and kyn = k0 sin θinc sin ϕinc +2πn/b.

In (7) and (8) the 2 × 2 matrices G̃
E J,c

p (kx , ky, z = 0, z′ =
0) and G̃

J M,c

a (kx , ky, z = 0, z′ = 0) stand for the continuous

2-D Fourier transforms of G
E J
p (x, y, z = 0, z′ = 0) and

G
J M
a (x, y, z = 0, z′ = 0). It can be easily shown that

G̃
J M,c

a (kx , ky, z = 0, z′ = 0)

= [
G̃

E J,c

a (kx , ky, z = 0, z′ = 0)
]−1 ·

(
0 −1
1 0

)
(9)

where G̃
E J,c

a (kx , ky, z = 0, z′ = 0) is the continuous 2-D
Fourier transform of the dyadic Green’s function relating
the transverse (to z) electric field and the electric current
density at the z = 0 plane of Fig. 1(c). The matrix

G̃
E J,c

a (kx , ky, z = 0, z′ = 0) is not to be confused with

G̃
E J,c

p (kx , ky, z = 0, z′ = 0) since z = 0 in Fig. 1(c) is
in between the two layers and the two-layered medium
is limited by two semi-infinite half-spaces up and down,
while z = 0 in Fig. 1(a) is above the two layers and the
two-layered medium is limited by one semi-infinite half-
space up and by a conducting plane down. Both matrices

G̃
E J,c

a (kx , ky, z = 0, z′ = 0) and G̃
E J,c

p (kx , ky, z = 0, z′ = 0)
can be obtained in closed-form as explained in [18].
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The spectral domain basis functions J̃pq,d
rs (kxm, kyn)

and M̃pq,d
rs (kxm, kyn) (p = 1, . . . , Ne; q = 1, 2; r =

1, . . . , N1q ; s = 1, . . . , N2q ) of (7) and (8) stand for the
discrete 2-D Fourier transforms of Jpq

rs (x, y) and Mpq
rs (x, y)

respectively, and are given by

J̃pq,d
rs (kxm, kyn) = 1

ab

∫
P00

Jpq
rs (x, y) e−j(kxm x+kyn y)dxdy

(10)

M̃pq,d
rs (kxm, kyn) = 1

ab

∫
A00

Mpq
rs (x, y) e−j(kxm x+kyn y)dxdy.

(11)

Finally, the coefficients ei j
kl and f i j

kl of the two systems of
equations (5) and (6) can be obtained in the spectral domain as

ei j
kl = −ab

[(̃
Ji j,d

kl (kx0, ky0)
)∗]t · Eap(x, y, z = 0)

× e−jk0(sin θinc cosϕ incx+sin θinc sinϕ inc y) (12)

f i j
kl = −ab

[(
M̃i j,d

kl (kx0, ky0)
)∗]t · Jaa(x, y)

× e−jk0(sin θinc cosϕ incx+sin θinc sinϕ inc y) (13)

where the factor e−jk0(sin θinc cosϕincx+sin θinc sinϕ inc y) has been
explicitly included in (12) and (13) to absorb the dependence
of Eap(x, y, z = 0) and Jaa(x, y) on x and y. Note that
both Eap(x, y, z = 0) and Jaa(x, y) include a phase factor of
the type e+jk0(sin θinc cosϕ incx+sin θinc sinϕ inc y) (nonvanishing for
oblique incidence, i. e., θinc �= 0), which has to be removed
in (12) and (13) by means of the annihilating phase factor
e−jk0(sin θinc cosϕ incx+sin θinc sinϕ inc y) since the coefficients ei j

kl and
f i j
kl are not dependent on x and y.
As mentioned above, the periodic structure of Fig. 1(c)

and (d) is a bandpass FSS. Once the integral equation (2) is
solved by means of MoM and M(x, y) is obtained, the reflec-
tion and transmission coefficients of the mn-th Floquet har-
monic of the FSS, Rmn and Tmn , can be obtained in terms of
M(x, y) as explained elsewhere (e. g., see [2, eqs. (75)–(78)]
and [19, eqs. (24)–(27)]).

As commented in Section I of the paper, the design of
reflectarray antennas is customarily carried out by means of the
LPA. In the frame of the LPA, the phase shift in each reflec-
tarray element is computed as if the element were surrounded
by a periodic environment. In this sense, the configurations
of Fig. 1(a) and (b) represent the typical periodic structures
that are used for the characterization of the elements of a
reflectarray. Let us assume that one of these periodic structures
contains the element used in the design of a linearly polarized
antenna, and let us assume that the value of the operating
frequency does not allow the excitation of grating lobes when
the plane wave impinges on the periodic structure (which
implies that max(a, b) < λ0/(1 + sin θinc) [1]). Under these
conditions, the reflectarray element surrounded by a periodic
environment can be characterized by means of a 2 × 2 linear
polarization reflection matrix, RLP, defined as [20](

E ref
x

E ref
y

)
= RLP ·

(
E inc

x
E inc

y

)
=

(
Rx x Rxy

Ryx Ryy

)
·
(

E inc
x

E inc
y

)
(14)

where E inc
x and E inc

y are the complex amplitudes of the trans-
verse (to z) components of the electric field of the impinging

plane wave, and E ref
x and E ref

y are the complex amplitudes of
the transverse (to z) components of the electric field of the
reflected m = n = 0 Floquet harmonic (the only reflected
propagating harmonic in the absence of grating lobes). Once
the integral equation (1) is solved, the quantities E ref

x and E ref
y

can be readily obtained in terms of J(x, y). In reflectarray
antenna design, the phases of the matrix coefficients Rx x

and Ryy of (14) are crucial for the determination of the
element dimensions that provide the adequate phase shift for
a prescribed radiation pattern, and the magnitudes of Rxy and
Ryx are useful to give an estimation of the cross-polarization
level introduced by the element.

If the reflectarray to be designed is a circularly polarized
antenna, in the absence of grating lobes each reflectarray
element has to be characterized by means of a 2 × 2 circular
polarization reflection matrix, RCP, which can be defined
as [11](

E ref
RHCP

E ref
LHCP

)
=RCP ·

(
E inc

RHCP
E inc

LHCP

)

=
(

RRHCP,RHCP RRHCP,LHCP
RLHCP,RHCP RLHCP,LHCP

)
·
(

E inc
RHCP

E inc
LHCP

)
(15)

where E inc
RHCP and E inc

LHCP are the complex amplitudes of
the right-hand circular polarization (RHCP) and left-hand
circular polarization (LHCP) components of the electric field
of the impinging wave, and E ref

RHCP and E ref
LHCP are the RHCP

and LHCP components of the electric field of the reflected
m = n = 0 Floquet harmonic. These latter components
can be readily obtained in terms of J(x, y) once the integral
equation (1) is solved. As in the case of linear polarization
antennas, the phases of the matrix coefficients RRHCP,RHCP
and RLHCP,LHCP of (15) are the key parameters that make it
possible to adjust the dimensions of each reflectarray element
to obtain the required phase shift.

The periodic structures of Fig. 1(a) and (c) may support
bound (nonleaky) surface wave modes that are attenuated
along the z-direction (for these modes, the phase constant is
larger than k0). In order to obtain the propagation constant,
kρsw, of the fundamental homogeneous Floquet mode m =
n = 0 that propagates in a direction making an angle α with
the positive x axis, we have to redefine kxm and kyn in (7)
and (8) as

kxm = kρsw cosα +2πm/a (16)

kyn = kρsw sinα +2πn/b. (17)

With this definition of kxm and kyn , the values of kρsw
for fixed values of α and k0 (i.e., for fixed values of fre-
quency) can be found as the solutions of the transcendental
equations [7], [21]

det
[
�

i j,pq
kl,rs (kρsw, α, k0)

] = 0 (18)

det
[
�

i j,pq
kl,rs (kρsw, α, k0)

] = 0 (19)

where �
i j,pq
kl,rs and �

i j,pq
kl,rs are the MoM matrices (7) and (8) of

the linear systems of equations (5) and (6) respectively.
In practical applications in which the periodic structure

of Fig. 1(a) and (b) acts as an impedance surface or an
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MTS made of sub-wavelength elements [7], [22], focus is
concentrated on the isofrequency dispersion curves of the
fundamental Floquet mode m = n = 0. In these dispersion
curves, kρsw = kρsw(α) is represented in polar coordinates
for fixed values of frequency [7], [22]. The dispersion curves
also provide important information about the phase and group
velocities of the surface wave under study.

The design of aperture MTS antennas is done through the
concept of impenetrable equivalent surface reactance. By spa-
tially modulating such reactance, one can achieve leakage from
the aforementioned surface waves. The implementation of the
optimal modulation requires the knowledge of the dependence
of the reactance values on a pair of geometrical parameters of
the element in the unit cell such as size, angle of rotation,
eccentricity in the case of an elliptic element, etc. This depen-
dence is usually represented as a colormap that provides the
design curves from which one can extract the desired values of
the modulated reactance [6], [7]. The equivalent impenetrable
reactance of the MTS periodic structure is defined in terms of
kρsw as [7]

Xs = ζ0

√(
kρsw

k0

)2

− 1 (20)

where ζ0 = √
μ0/ε0 is the free-space impedance.

B. Basis Functions for the Electric and Magnetic
Current Densities

The choice of basis functions for J(x, y)/M(x, y) in
the patches/apertures of Fig. 1(a)–(d) is crucial for an
efficient implementation of the spectral domain MoM of
Subsection II-A. As commented in Section I, the basis func-
tions accounting for edge singularities ensure a fast conver-
gence of MoM with respect to the number of basis functions,
and therefore, lead to an efficient implementation of MoM
since the size of the MoM matrices to be inverted (i.e.,
the coefficient matrices appearing in the linear systems of
equations (5) an (6)) turns out to be small. In this subsection
we define the edge singularity basis functions for all the
geometries shown in Fig. 2(a)–(g). It can be verified that
the components of the basis functions parallel to the edges
of the patches/apertures become singular at the points of
these edges. Also, the components of the basis functions
that are normal to the edges of the patches/apertures become
zero at the points of these edges, their derivative along the
normal direction being singular at these points. These are
physical constraints to be expected for the electric/magnetic
current densities existing on the patches/apertures. The results
presented in Section III will confirm that the edge singularity
basis functions chosen for the geometries of Fig. 2(a)–(g) all
lead to a fast convergence of MoM with respect to the number
of these basis functions.

Let Bpq
rs (x, y) represent any of the two basis functions

Jpq
rs (x, y) and Mpq

rs (x, y). Let {x ′, y ′, z′} be a shifted system
of coordinates centered at the point (x = xoc, y = yoc, z = 0)
of the domain C00 of Fig. 1(b) and (d) [see the new system of
coordinates {x ′, y ′, z′} in Fig. 2(a)–(g)]. The relation between

the new cartesian coordinates and the original cartesian coor-
dinates of Fig. 1(b) and (d) is given by

x ′ = x − xoc (21)

y ′ = y − yoc (22)

z′ = z. (23)

For patches and apertures which fit the geometrical shape
shown in Fig. 2(a), we propose to use the following edge
singularity basis functions introduced in [15]

Bp1
rs (x ′, y ′)

= 1

l p(y ′)

Tr−1

(
x ′−ap(y′)

l p(y′)

)
√

1−
(

x ′−ap(y′)
l p(y′)

)2
Us−1

(
y ′

L p

) √
1 −

(
y ′
L p

)2

×
{[

x ′ − ap(y ′)
l p(y ′)

dlp(y ′)
dy ′ + dap(y ′)

dy ′

]
x̂ + ŷ

}
(l−p (y ′) < x ′ < l+p (y ′); −L p ≤ y ′ ≤+L p)

(r = 1, . . . , N11; s = 1, . . . , N21) (24)

Bp2
rs (x ′, y ′)

= 1

L p
Ur−1

(
x ′ − ap(y ′)

l p(y ′)

) √
1 −

(
x ′ − ap(y ′)

l p(y ′)

)2

×
Ts−1

(
y′
L p

)
√

1 −
(

y′
L p

)2
x̂

(
l−p (y ′)≤ x ′ ≤ l+p (y ′); −L p < y ′ <+L p

)
(r = 1, . . . , N12; s = 1, . . . , N22) (25)

where Tr−1(·) (Ts−1(·)) and Ur−1(·) (Us−1(·)) are Chebyshev
polynomials of first and second kind respectively. The func-
tions ap(y ′) and l p(y ′) of (24) and (25) are given by

ap(y ′) = l+p (y ′) + l−p (y ′)
2

(26)

l p(y ′) = l+p (y ′) − l−p (y ′)
2

(27)

where x ′ and y ′ can be obtained in terms of x and y as shown
in (21) and (22), and where x = l−p (y ′) and x = l+p (y ′)
(−L p ≤ y ′ ≤ +L p) are the equations of the two curves that
limit the left side and the right side of the patch/aperture of
Fig. 2(a).

Let us now introduce polar coordinates ρ′ and ϕ′ for
the shifted system of coordinates {x ′, y ′, z′}. According to
(21) and (22), these coordinates are related to the cartesian
coordinates of Fig. 1(b) and (d) by means of

ρ′ cos ϕ′ = x − xoc (28)

ρ ′ sin ϕ′ = y − yoc. (29)
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For the circular ring of Fig. 2(b), we propose the use of the
edge singularity basis functions [14], [23]

Bp1
rs (ρ′, ϕ′)

=
Tr−1

(
2

ρ2p−ρ1p

[
ρ ′ −ρ2p+ρ1p

2

])
√

1 −
(

2
ρ2p−ρ1p

[
ρ′ −ρ2p+ρ1p

2

])2

× ej
[

s−
(

N21+1
2

)]
ϕ ′

(− sin ϕ′ x̂ + cos ϕ′ ŷ)

(ρ1p<ρ′<ρ2p; 0 ≤ϕ′< 2π)

(r = 1, . . . , N11; s = 1, . . . , N21; N21 odd) (30)

Bp2
rs (ρ′, ϕ ′)

= Ur−1

(
2

ρ2p − ρ1p

[
ρ ′ −ρ2p + ρ1p

2

])

×
√

1−
(

2
ρ2p − ρ1p

[
ρ ′ −ρ2p + ρ1p

2

])2

ej
[

s−
(

N22+1
2

)]
ϕ ′

× (cos ϕ′ x̂ + sin ϕ′ ŷ) (ρ1p≤ρ′≤ρ2p; 0 ≤ϕ′< 2π)

(r = 1, . . . , N12; s = 1, . . . , N22; N22 odd). (31)

For the case of the elliptical ring of Fig. 2(c), we will assume
that b2p/a2p = b1p/a1p = η < 1 (i.e., we will assume that
the axial ratios between the minor semi-axis and the major
semi-axis are the same for the two ellipses limiting the rings).
Under this assumption, we are going to define stretched polar
coordinates α′ and β ′ for the shifted system of coordinates
{x ′, y ′, z′}, which are related to the coordinates x and y of
Fig. 1(b) and (d) by means of

α′ cos β ′ = x − xoc (32)

η α′ sin β ′ = y − yoc. (33)

The edge singularity basis functions Bpq
rs chosen for the

elliptical ring of Fig. 2(c) can be written in terms of α′
and β ′ as

Bp1
rs (α′, β ′)

=
Tr−1

(
2

a2p−a1p

[
α′ − a2p+a1p

2

])
√

1 −
(

2
a2p−a1p

[
α′ − a2p+a1p

2

])2

× ej
[

s−
(

N21+1
2

)]
β ′

(− sin β ′x̂ + η cos β ′ŷ)

(a1p <α′< a2p; 0 ≤ β ′ < 2π)

(r = 1, . . . , N11; s = 1, . . . , N21; N21 odd) (34)

Bp2
rs (α′, β ′)

= Ur−1

(
2

a2p − a1p

[
α′ −a2p + a1p

2

])

×
√

1 −
(

2

a2p − a1p

[
α′ −a2p + a1p

2

])2

ej
[

s−
(

N22+1
2

)]
β ′

× (η cos β ′x̂ + sin β ′ŷ) (a1p ≤α′≤ a2p; 0 ≤ β ′ < 2π)

(r = 1, . . . , N12; s = 1, . . . , N22; N22 odd). (35)

In the case of the elliptical arc of Fig. 2(e), we will assume
that b2p/a2p = b1p/a1p = η < 1 as in the case of the elliptical
ring of Fig. 2(c). Under that assumption, the edge singularity

basis functions we have chosen for the elliptical arc are

Bp1
rs (α′, β ′)

=
Tr−1

(
2

a2p−a1p

[
α′ − a2p+a1p

2

])
√

1 −
(

2
a2p−a1p

[
α′ − a2p+a1p

2

])2

× Us−1

(
2

β2p − β1p

[
β ′ − β2p + β1p

2

])

×
√

1 −
(

2

β2p − β1p

[
β ′ − β2p + β1p

2

])2

× (−sin β ′x̂+η cos β ′ŷ) (a1p <α′< a2p; β1p ≤ β ′ ≤β2p)

(r = 1, . . . , N11; s = 1, . . . , N21) (36)

Bp2
rs (α′, β ′)

= Ur−1

(
2

a2p − a1p

[
α′ −a2p + a1p

2

])

×
√

1 −
(

2

a2p − a1p

[
α′ −a2p + a1p

2

])2

×
Ts−1

(
2

β2p−β1p

[
β ′ − β2p+β1p

2

])
√

1 −
(

2
β2p−β1p

[
β ′ − β2p+β1p

2

])2
(η cos β ′x̂ + sin β ′ŷ)

(a1p ≤α′≤ a2p; β1p < β ′ < β2p)

(r = 1, . . . , N12; s = 1, . . . , N22) (37)

where

β1p = arctan

(
tan ϕ1p

η

)
(38)

β2p = arctan

(
tan ϕ2p

η

)
, (39)

and where ϕ1p and ϕ2p are the angles defined in Fig. 2(e).
The coordinates α′ and β ′ of (36) and (37) are the stretched
polar coordinates defined in (32) and (33).

The basis functions for the circular arc of Fig. 2(d) can be
obtained as a particular case of (36) and (37) when η = 1,
a1p =ρ1p, a2p =ρ2p, β1p =ϕ1p , β2p =ϕ2p , α′=ρ′ and
β ′ =ϕ′ (where ρ ′ and ϕ′ are the polar coordinates defined
in (28) and (29)).

In the case of the elliptical sector of Fig. 2(g), the basis
functions proposed are

Bp1
rs (α′, β ′)

=
Tr−1

(
α′
a0p

)
√

1 −
(

α′
a0p

)2

(
α′

a0p

)[(
πs

β2p−β1p

)
−1

]

× sin

[
πs

2
+ πs

β2p − β1p

(
β ′ − β2p + β1p

2

)]

×
√

1−
(

2

β2p − β1p

[
β ′ − β2p + β1p

2

])2

× (− sin β ′x̂+η cos β ′ŷ)

(0 <α′< a0p; β1p ≤ β ′ ≤ β2p)

(r = 1, . . . , N11; s = 1, . . . , N21) (40)
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Bp2
rs (α′, β ′)

= Ur−1

(
α′

a0p

) √
1 −

(
α′

a0p

)2 (
α′

a0p

)[(
πs

β2p−β1p

)
−1

]

×
cos

[
πs
2 + πs

β2p−β1p

(
β ′ − β2p+β1p

2

)]
√

1−
(

2
β2p−β1p

[
β ′ − β2p+β1p

2

])2

× (η cos β ′x̂ + sin β ′ŷ) (0<α′≤a0p; β1p < β ′ < β2p)

(r = 1, . . . , N12; s = 1, . . . , N22) (41)

where the coordinates α′ and β ′ have been defined in
(32) and (33), and where β1p and β2p have been defined
in (38) and (39).

As in the case of Fig. 2(d) in relation with (36) and (37),
the basis functions for the circular sector of Fig. 2(f) can be
obtained as a particular case of (40) and (41) when η = 1,
a0p = ρ0p , β1p = ϕ1p , β2p = ϕ2p , α′= ρ′ and β ′ = ϕ′
(ρ′ and ϕ′ are the polar coordinates defined in (28) and (29)).
In the particular case of the circular sector, the factor
(α′ /a0p)

[((πs)/(β2p−β1p))−1] and the sinusoidal functions of
[(πs)/(2)+ (πs)/(β2p − β1p)× (β ′ − (β2p + β1p)/(2))] have
been included in (40) and (41) to accommodate the behavior of
the current density (electric and magnetic) far from the edges
of the circular sector in accordance with the magnetic wall
model of a microstrip circular sector proposed in [24], just as
it was done in [13] for a circular microstrip patch.

C. NUFFT of the Basis Functions

Equations (7) and (8) show that the computation of the
MoM matrix entries in the spectral domain requires the knowl-
edge of the 2-D discrete Fourier transforms J̃pq,d

rs (kxm, kyn)

and M̃pq,d
rs (kxm, kyn). The Fourier transforms of the edge

singularity basis functions introduced in (24), (25), (30), (31),
(34) to (37), (40) and (41) cannot be obtained in closed-
form, and this is an important drawback since the spectral
domain MoM loses all its efficiency when the 2-D Fourier
transforms of the basis functions are not available in closed-
form. In this subsection we show how the 2-D discrete
Fourier transforms of all the edge singularity basis functions
introduced in Subsection II-B can be numerically obtained in
an efficient way by means of the NUFFT algorithm.

Let F pq
rs (x, y) represent any of the two components of

Jpq
rs (x, y) and Mpq

rs (x, y). In the case of the basis func-
tions for the patch/aperture of Fig. 2(a), the discrete Fourier
transform of F pq

rs (x, y), F̃ pq,d
rs (kxm, kyn), would be given by

(see (10) and (11))

F̃ pq,d
rs (kxm, kyn)

= e−j(kx0 xoc+ky0 yoc)

ab

∫ +L p

−L p

×
[∫ l+p (y′)

l−p (y′)
F pq

rs (x ′, y ′) × e−j(kx0x ′+ky0 y′)

× e−j
{

m
[

2π(x ′+xoc)
a

]
+n

[
2π(y′+yoc)

b

]}
dx ′

]
dy ′. (42)

In order to numerically carry out the integral of (42),
we are going to sample the integrand in the values of
x ′ and y ′ given by

y ′
ip = −L p + �y ′

p

2
+ �y ′

pi (i = 0, . . . , Ny − 1) (43)

x ′
i j,p = l−p (y ′

i ) + �x ′
ip

2
+ �x ′

ip j

(i = 0, . . . , Ny − 1; j = 0, . . . , Nx − 1) (44)

where �y ′
p = 2L p/Ny and �x ′

ip = 2l p(y ′
ip)/Nx (l p(y ′)

was defined in (27)). Then, the integral of (42) can be
approximately computed by means of the equation

F̃ pq,d
rs (kxm, kyn) ≈

Ny−1∑
i=0

Nx −1∑
j=0

e−j(kx0 xoc+ky0 yoc)

ab
�x ′

ip�y ′
p

×F pq
rs

(
x ′

i j,p, y ′
ip

)
e−j

(
kx0 x ′

i j,p+ky0 y′
ip

)
× e−j

{
m
[ 2π(x ′

i j,p+xoc)

a

]
+n

[ 2π(y′
ip+yoc)

b

]}
.

(45)

In practice, the numerical computation of �
i j,pq
kl,rs and �

i j,pq
kl,rs

requires to truncate the infinite summations of (7) and (8)
within the interval −M/2 ≤ m, n < +M/2. For these
particular values of m and n, (45) can be rewritten as

F̃ pq,d
rs (m, n)≈

NT −1∑
k=0

γk e−j(mμk+nνk ) (−M/2≤m, n <+M/2)

(46)

where

γk(i, j ) = e−j(kx0xoc+ky0 yoc)

ab
�x ′

ip�y ′
p F pq

rs
(
x ′

i j,p, y ′
ip

)
× e−j

(
kx0 x ′

i j,p+ky0 y′
ip

)
(k =0, . . . , NT −1) (47)

μk(i, j ) = 2π
(
x ′

i j,p + xoc
)

a
(k = 0, . . . , NT − 1) (48)

νk(i, j ) = 2π
(
y ′

ip + yoc
)

b
(k = 0, . . . , NT − 1) (49)

and where k(i, j) = i + Ny j (i = 0, . . . , Ny − 1; j = 0, . . . ,
Nx − 1), and NT = Nx Ny .

The expression (46) is ready for the use of the NUFFT
of type 1 as it appears in [17, Eqn. (1)], which can be
efficiently implemented by means of the algorithm shown
in [17, page 448]. A FORTRAN code for this algorithm is
available at the internet link [25].

In the case of the patches/apertures of Fig. 2(b), (d), and (f),
F̃ pq,d

rs (kxm, kyn) would be given by

F̃ pq,d
rs (kxm, kyn)

= e−j(kx0xoc+ky0 yoc)

ab

∫ ρ ′
max,p

ρ ′
min,p

×
[∫ ϕ ′

max,p

ϕ ′
min,p

F pq
rs (ρ′, ϕ′) × e−j(kx0ρ ′ cosϕ ′+ky0ρ ′ sinϕ ′)

× e−j
{

m
[

2π(ρ ′ cosϕ ′+xoc)
a

]
+n

[
2π(ρ′ sin ϕ ′+yoc)

b

]}
d ϕ′

]
ρ′ d ρ ′

(50)
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where (ρ ′
min,p, ρ

′
max,p) = (ρ1p, ρ2p) in the case of Fig. 2(b)

and (d), (ρ′
min,p, ρ

′
max,p) = (0, ρ0p) in the case of Fig. 2(f),

(ϕ′
min,p, ϕ

′
max,p) = (0, 2π) in the case of Fig. 2(b), and

(ϕ′
min,p, ϕ

′
max,p) = (ϕ1p, ϕ2p) in the case of Fig. 2(d) and (f).

If the variables ρ′ and ϕ′ of the integrand of (50) are
sampled, it is possible to obtain an approximate expression
for (50) of the type shown in (46). The expressions of γk , μk

and νk would be in this case

γk(i, j ) = e−j(kx0 xoc+ky0 yoc)

ab
ρ′

ip � ρ′
p � ϕ′

p F pq
rs

(
ρ′

ip, ϕ′
j p

)
× e−j

(
kx0ρ ′

ip cosϕ ′
j p+ky0ρ ′

ip sinϕ ′
j p

)
(k =0, . . . , NT −1)

(51)

μk(i, j ) = 2π
(

ρ′
ip cos ϕ′

j p +xoc
)

a
(k = 0, . . . , NT − 1) (52)

νk(i, j ) = 2π
(

ρ′
ip sin ϕ′

j p +yoc
)

b
(k = 0, . . . , NT − 1) (53)

where

ρ ′
ip = ρ′

min,p +�ρ′
p

2
+�ρ′

p i (i =0, . . . , Nρ − 1) (54)

ϕ′
j p = ϕ′

min,p +�ϕ′
p

2
+�ϕ′

p j ( j =0, . . . , Nϕ − 1) (55)

with � ρ′
p= (ρ′

max,p − ρ′
min,p)/Nρ , � ϕ′

p= (ϕ′
max,p −

ϕ′
min,p)/Nϕ , and NT = Nρ Nϕ .
Finally, in the case of the patches/apertures of

Fig. 2(c), (e) and (g), F̃ pq,d
rs (kxm, kyn) would be given by

F̃ pq,d
rs (kxm, kyn)

= e−j(kx0 xoc+ky0 yoc)

ab

∫ α′
max,p

α′
min,p

×
[∫ β ′

max,p

β ′
min,p

F pq
rs (α′, β ′) e−j

(
kx0α′ cos β ′+ky0ηα′ sin β ′)

× e−j
{

m
[ 2π

(
α′ cos β′+xoc

)
a

]
+n

[ 2π

(
ηα′ sin β′+yoc

)
b

]}
dβ ′

]
× η α′ d α ′ (56)

where (α′
min,p, α

′
max,p) = (a1p, a2p) in the case of Fig. 2(c)

and (e), (α′
min,p, α

′
max,p) = (0, a0p) in the case of Fig. 2(g),

(β ′
min,p, β

′
max,p) = (0, 2π) in the case of Fig. 2(c), and

(β ′
min,p, β

′
max,p) = (β1p, β2p) in the case of Fig. 2(e) and (g).

If the variables α′ and β ′ of the integrand of (56) are
sampled, it is possible to obtain an approximate expression of
(56) in terms of these samples of the type shown in (46). In this
particular case, the expressions for γk , μk and νk would be

γk(i, j ) = e−j(kx0 xoc+ky0 yoc)

ab
η α′

ip �α′
p �β ′

p F pq
rs

(
α′

ip , β ′
j p

)
× e−j

(
kx0α′

ip cos β ′
j p+ky0ηα′

ip sin β ′
j p

)
(k=0, . . . , NT −1)

(57)

μk(i, j ) = 2π
(

α′
ip cos β ′

j p + xoc
)

a
(k = 0, . . . , NT − 1) (58)

νk(i, j ) = 2π
(
η α′

ip sin β ′
j p + yoc

)
b

(k = 0, . . . , NT − 1) (59)

where

α′
ip = αmin,p +�α′

p

2
+� α′

p i (i =0, . . . , Nα − 1) (60)

β ′
j p = β ′

min,p+ �β ′
p

2
+�β ′

p j ( j =0, . . . , Nβ − 1) (61)

with � α′
p= (α′

max,p − α′
min,p)/Nα , �β ′

p = (β ′
max,p−

β ′
min,p)/Nβ , and NT = Nα Nβ .

III. NUMERICAL RESULTS AND VALIDATIONS

In all the results presented in this Section we have used
M = 100, which means that 10 000 terms have been retained
in the computation of the double infinite summations of
(7) and (8). Also, the number of samples employed for an
accurate determination of the NUFFT has been roughly
NT ≈ 10 000 (around 100 samples per coordinate). Finally,
the number of basis functions used per patch/aperture for the
convergence of the results ranges from Nb = 4 to Nb = 18.
This implies that small MoM matrices have to be inverted, and
therefore, clearly shows the advantage gained when using edge
singularity basis functions in the application of the spectral
domain MoM.

Fig. 3(a) shows results for the transmission through band-
pass FSSs made of arrays of apertures with bow tie or barrel
shape. In this case the transmission refers to the ratio between
the total power transmitted and the incident power, even in the
presence of grating lobes, which means that

Transmission =
∑

m

∑
n

Tmn

∣∣∣
k2

xm+k2
yn<k2

0

(62)

In Fig. 3(a) the results obtained with the spectral domain
MoM described in Section II are compared with the results
published in [15, Fig. 4], and with results obtained with
the commercial software CST. Excellent agreement is found
among the three sets of results when four basis functions of the
type shown in (24) and (25) are used in the approximation of
the magnetic current density on the apertures. We can confirm
that our MoM software is around 80 times faster than CST
in a laptop computer with an Intel Core i7-4790 processor at
3.6 GHz, four cores and 32 GB of RAM. Fig. 3(b) shows
the convergence of the results of Fig. 3(a) as we increase the
number of basis functions used in the application of MoM.
The results obtained with three basis functions are nearly
coincident with those obtained for four basis functions, which
indicates the fast convergence provided by the edge singularity
basis functions.

Fig. 4(a) shows our spectral domain MoM-NUFFT results
for the transmission of the fundamental Floquet harmonic
m = n = 0 through a bandpass FSS consisting of a periodic
array of circular ring apertures. In the generation of these
MoM-NUFFT results we have used the basis functions of
(30) and (31) to approximate the magnetic current density on
the rings. In Fig. 4(a) our MoM-NUFFT results are compared
with the results plotted in [26, Fig. 2], and with results
provided by CST. Excellent agreement is noticed between our
results and CST results. Good agreement is found between our
results and those of [26] for frequencies below the first Wood’s
anomaly (occurring for ( f b)/c = 1), but the results of [26] are
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Fig. 3. (a) Transmission (in decibels) through two free-standing bandpass
FSSs made of apertures with bow tie shape and barrel shape. Our results
(solid lines) are compared with the results presented in [15, Fig. 4] (+), and
with results provided by CST (×). (b) Convergence of the results shown in (a)
with respect to the number of basis functions of the type shown in (24) when
applying the spectral domain MoM with NUFFT. Parameters: a = 14.4 mm;
b = 17.26 mm; 2L1 = 14.96 mm; d1 = 3c1 = 1.92 mm (bow-tie);
e = 3 f1 = 1.92 mm (barrel); h1 = h2 = 0; θinc = 45◦; ϕinc= 90◦; magnetic
field of the incident wave along the y-direction (TM polarization); N11 = 1
and N21 = 3 in (a); N12 = N22 = 1 in (a) and (b).

far from the MoM-NUFFT results and the CST results when
( f b)/c > 1.1. This is to be expected since only one basis
function without edge singularity was used in [26] to model
the magnetic current density on the aperture (which justifies
why the results of [26] do not match those of CST, even
when ( f b)/c < 1.1), and this single basis function is unable
to approximate the variations of the magnetic current density
when ( f b)/c > 1.1, i. e., at frequencies for which the ring is
several wavelengths long. This is better explained in Fig. 4(b)
where we plot the convergence of the transmission through
the FSS with respect to the number of basis functions used in
the approximation of the magnetic current density. Note that
three basis functions suffice to provide excellent results for the
transmission when ( f b)/c < 1.1, but this is not the case when
( f b)/c > 1.1, where the results obtained with just three basis

Fig. 4. (a) Transmission (|S12| = √
T00) in natural units through a

bandpass FSSs made of an array of circular ring apertures on a dielectric
substrate. Our results (solid line) are compared with the results presented
in [26, Fig. 2(b), �] (dashed line), and with results provided by CST (×).
(b) Convergence of the results shown in (a) with respect to the number
of basis functions of the type shown in (30) and (31) when applying the
spectral domain MoM with NUFFT. Parameters: a = 1.5 mm; b = 3 mm;
ρ11= 0.5 mm; ρ21= 0.65 mm; h1 = 0.4 mm; εr,1 = 5; tan δ1 = 0;
h2 = 0 mm; θinc = 0◦; electric field of the incident wave along the
y-direction; N11 = 1, N21 = 11, N12 = 1 and N22 = 7 in (a).

functions for the azimuthal component of the magnetic current
density are not correct. Better results are obtained when the
number of basis functions for the azimuthal component of
the magnetic current density is increased up to 11, but three
additional basis functions for the radial component of the
magnetic current density are required to achieve complete
convergence. When 14 basis functions are used, we have
noticed that our MoM software is around 50 times faster than
CST in the laptop computer mentioned above.

In Fig. 5 we plot the phase of Ryy (see (14)) for a linear
polarization reflectarray element consisting of three parallel
dipoles. Our MoM-NUFFT results are compared with CST
results presented in [9, Fig. 3], and excellent agreement is
found. The edge singularity basis functions of (24) and (25)
have been used in the approximation of the electric current
density on the dipoles, and we have found that four basis
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Fig. 5. Phase of Ryy for a reflectarray element made of three parallel
dipoles on a two-layered substrate. The phase is plotted as a function of the
length of the longer dipole 2L2. Our results (solid and dashed lines) are
compared with the CST results shown in [9, Fig. 3] (+, ∗, ×). Parameters:
a = b = 16.5 mm; L1 = 0.7L2; s = 4.5 mm; w = 1 mm; h1 = 3 mm;
εr,1 = 1.067; tan δ1 = 0.0002; h2 = 0.508 mm; εr,2 = 3.38; tan δ2 = 0.005;
θinc = 0◦; N11 = 1, N21 = 3, N12 = N22 = 1.

functions per dipole suffice to achieve convergent results in
the values of � Ryy , which is in agreement with the results
shown in the convergence plots of [9, Fig. 2(a)]. It turns
out that for this particular case, the discrete 2-D Fourier
transforms [see (10) and (11)] of the basis functions (24)
and (25) can be obtained in closed-form in terms of Bessel
functions [12]. So, we have implemented two codes for the
spectral domain MoM of (1), (3), (5), (7) and (12), one in
which the 2-D Fourier transforms are computed in closed
form, and another one in which the 2-D Fourier transforms
are computed by means of the NUFFT. When generating the
results of Fig. 5, we have found that the code based on closed-
form Fourier transforms is only 15% faster than the code
based on the NUFFT. In order to explain this small difference,
we have to realize that the code based on closed-form Fourier
transforms computes the Fourier transforms in a sequential
way, and that the computation of all the Bessel functions
needed in (7) is lengthy. However, the code based on the
NUFFT provides all the required Fourier transforms of (7)
in just one shot. So, the computational efficiency of the
NUFFT algorithm counterbalances the mathematical efficiency
introduced by the availability of analytical Fourier transforms.
This statement implies that the spectral domain MoM-NUFFT
code is competitive with the traditional spectral domain MoM
of [2] in the cases where the Fourier transforms of the basis
functions are available in closed-form.

In Fig. 6 the phases of RRHCP,RHCP and RLHCP,LHCP (see
(15)) are plotted for a circular polarization reflectarray element
consisting of two concentric split rings. These phases are used
in [11] to design a dual-band circular polarization reflectarray.
A comparison is carried out between our MoM-NUFFT results
and the CST results published in [11, Fig. 7(b)], and excellent
agreement is found. Our MoM-NUFFT results have been
obtained with the circular arc version (η = 1) of the basis
functions of (36) and (37) in the approximation of the electric
current density on the arcs. Convergence results have been
obtained with just four basis functions per circular arc, which
is in agreement with the results shown in [11, Fig. 7(b)].

Fig. 6. Phase of RRHCP,RHCP and RLHCP,LHCP for a reflectarray
element made of two concentric split rings on a one-layered substrate.
The phase is plotted as the rotation angle of the inner ring α1. The
plane y′ − z′ is a mirror symmetry plane for the outer rings. Our results
(solid and dashed lines) are compared with the CST results shown in [11,
Fig. 7(b)] (+, ×). Parameters: a = b = 5 mm; ρ11 = ρ12 = 1.2 mm;
ρ21 = ρ22 = 1.4 mm; ρ13 = ρ14 = 1.85 mm; ρ23 = ρ24 = 2.05 mm;
ϕ21 − ϕ11 = ϕ22 − ϕ12 = ϕ23 − ϕ13 = ϕ24 − ϕ14 = 150.4◦ ;
h1 = 0.787 mm; εr,1 = 2.2; tan δ1 = 0.0009; h2 = 0 mm; θinc = 30◦;
ϕinc= 0◦; f = 29.75 GHz; N11 = 1, N21 = 3, N12 = N22 = 1.

Fig. 7. Isofrequency dispersion contour for a periodic array of square
patches with tilted slices on a one-layered substrate (kx a = kρsw cos α a
and kya = kρsw sin α a). Our results (solid lines) are compared with the
full-wave simulations of [22, Fig. 7(b)] (×). Parameters: a = b = 3 mm;
2L1 = 2.8 mm; c1 = 0.48 mm; d1 = 2.09 mm; s = 0.2 mm; h1 = 1.27 mm;
εr,1 = 10.2; tan δ1 = 0; h2 = 0 mm; N11 = N21 = N12 = N22 = 3.

As an additional proof of the efficiency of the spectral domain
MoM-NUFFT approach of Section II, we have compared the
CPU time required by this approach to generate the results of
Fig. 6 with the CPU time required by the Hankel transform
approach introduced in [11] (which proved to be around
16 times faster than CST for the structure analyzed in Fig. 6,
according to the results of [11, Table I]). The comparison
indicates the MoM-NUFFT approach is around five times
faster than the Hankel transform approach. Also, whereas the
Hankel transform approach of [11] is especially tailored for
the analysis of periodic structures in which the unit cell only
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Fig. 8. Color map representing the equivalent impenetrable reactance Xs of
(20) for a periodic array of half-ellipses separated by a slot on a one-layered
substrate. Xs is represented as a function of the axial ratio of the ellipses and
its rotation angle � . The direction of wave propagation is α= 0◦. Parameters:
a = b = 3 mm; a01 = a02 = 1.3 mm; b01 = b02; s = 0.2 mm; h1 = 3
mm; εr,1 = 9.8; tan δ1 = 0; h2 = 0 mm; f = 11 GHz; N11 = 2; N21 = 3;
N12 = N22 = 1.

contains concentric circular arcs, the MoM-NUFFT approach
can be applied to a much wider variety of geometries as shown
in Fig. 2.

Fig. 7 shows the isofrequency dispersion contours of a
periodic array of square patches with tilted slices. The unit cell
of this periodic structure was used in [27] to design a printed
patch tensor holographic impedance surface. In Fig. 7 our
MoM-NUFFT results are compared with the full-wave sim-
ulation results appearing in [22, Fig. 7]. Excellent agreement
is found between both sets of results at all frequencies. The
basis functions of (24) and (25) have been used to approximate
the electric current density on each of the two trapezoids
comprising the square patch with tilted slice. In order to obtain
convergent results in the application of the MoM-NUFFT, 18
basis functions per trapezoid were used.

In Fig. 8 a color map is shown for the equivalent impenetra-
ble reactance of a periodic array containting two half-elliptic
patches separated by a slot in the unit cell. This is the scalar
equivalent impenetrable reactance seen from the external side
by a surface wave propagating along the positive x-direction of
Fig. 1(b) [7]. In Fig. 8 the results for the reactance are plotted
as a function of the axial ratio between the minor semi-axis
and the major semi-axis of the half-ellipses, and as a function
of the tilting angle of the slot. A similar element based on
a circular patch with a tilted slice was used in [6] to design
a circularly polarized MTS antenna. In fact, impedance color
maps similar to that of Fig. 8 are shown in Fig. 12 of [6]
where the impedance is plotted as a function of the radius of
the sliced circular patches, and as a function of the tilting angle
of the slices. Another similar MTS antenna element consisting
of a tilted elliptic patch is studied in [7] where the impedance
is plotted as a function of the ellipses axial ratio, and as a
function of the ellipses tilting angle (see [7, Fig. 13]). The
slotted elliptic patch studied in Fig. 8 can be viewed as a
hybrid between the sliced circular patch of [6] and the elliptic
patch of [7], and it is proposed here as an alternative element
for the design of MTS antennas. In order to obtain the results
of Fig. 8, the basis functions of (40) and (41) have been

used in the approximation of the current density on the half-
ellipses where ϕ21 − ϕ11= 180◦ (i.e., the half ellipses have
been treated as elliptic sectors). We have checked that seven
basis functions per half-ellipse suffice to achieve convergence
in the application of the spectral domain MoM-NUFFT. The
generation of the results of Fig. 8 has required the computation
of 20 000 different MoM matrices, and this has required
around 10 h of CPU time in the laptop computer mentioned
above. This indicates the spectral domain MoM-NUFFT can
be used as a powerful numerical tool for the design of MTS
antennas.

IV. CONCLUSION

In this paper the authors introduce an efficient spectral
domain MoM approach for the analysis of a wide variety of
multilayered periodic arrays of patches and apertures. The unit
cell of these periodic arrays may contain either patches or aper-
tures with the shape of a surface limited by two parallel lines
and two arbitrary curves, with the shape of circular or elliptic
rings, circular or elliptic arcs, and circular or elliptic sectors.
Basis functions accounting for edge singularities are proposed
for the approximation of the electric/magnetic current density
on the patches/apertures of the periodic structures since these
basis functions ensure a fast convergence of MoM with respect
to the number of basis functions, and therefore, an efficient
implementation of MoM. Since the 2-D Fourier transforms of
these basis functions is not available in closed- form and is
needed in the application of the spectral domain MoM, these
2-D Fourier transforms are numerically computed by means of
the NUFFT algorithm in a fast and accurate way. The spectral
domain MoM-NUFFT approach proposed is applied to the
analysis of FSSs, and to the characterization of reflectarray
antenna elements and MTS antenna elements. Comparison is
carried out with results previously published in the literature
and with results provided by commercial software CST, and
good agreement is found in all cases. The combined use of
the edge-singularity basis functions and the NUFFT in the
application of the spectral domain MoM has made it possible
to implement a code which is between 50 and 80 times faster
than CST, and which is only 15% slower than the standard
spectral domain MoM approach used for multilayered periodic
structures in which the 2-D Fourier transform of the basis func-
tions for the current density can be obtained in closed-form.
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