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Communication

Extraordinary Transmission and Radiation From Finite
by Infinite Arrays of Slots

Miguel Camacho™, Rafael R. Boix ™, Francisco Medina™, Alastair P. Hibbins, and J. Roy Sambles

Abstract—In  this communication an efficient method of
moments (MoM) code is used for the analysis of the extraordinary
transmission (EOT) through a periodic array of rectangular slots in a
conducting screen, in the case where the number of slots is finite in
one direction and infinite in the orthogonal direction. The slots can
be arbitrarily rotated within the periodic unit cell. Once the magnetic
current density on the slots is obtained by means of MoM, both the
transmission coefficient and the far-field radiated by the array of slots
are computed. The onset of EOT turns out to be strongly dependent on
the orientation of the slots with respect to the direction in which the
array is infinite. If the slots are perpendicular to this direction, EOT
appears for a single infinite chain of slots. However, tens of parallel
chains of slots are required to reproduce the EOT response when
the slots are aligned along the parallel chains direction. The obtained
radiation patterns show the excitation of grating lobes as the number of
slots grow in the direction where the arrays are finite.

Index Terms— Arrays, moment

scattering.

methods, periodic structures,

I. INTRODUCTION

Two decades ago, experiments carried out at optical frequencies
found remarkable transmission of light through periodic arrays of
subwavelength holes in conducting screens at frequencies meaning-
fully lower than the cutoff frequency of the holes, which coined
the term extraordinary (optical) transmission (EOT) [1]. The EOT
phenomenon was initially explained in terms of the excitation of
surface plasmons supported by the air-metal interface [2], which
are significantly affected by the plasma-like behavior of electrons
at optical frequencies. However, the discovery of EOT at millimeter
wave frequencies [3], [4], where metals roughly behave as perfect
electric conductors (PEC), made it clear EOT is not related to the
properties of metals at optical frequencies, and is ultimately due to the
periodicity of the arrays of holes through which the electromagnetic
waves transmit [4]. Although most of the theoretical and experimental
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studies on EOT have focused on 2-D periodic arrays of holes [1]-[4],
the EOT phenomenon also occurs in 1-D periodic arrays of holes as
shown in [5]. In fact, linear chains of subwavelength holes can be
considered as the basical geometrical unit showing this property [5].
In the last few years, the EOT phenomenon has found an application
in the design of antennas [6]. An excellent review on the EOT topic
can be found in [7].

Just a few years after the experimental discovery of EOT, the-
oretical computations on the transmission through periodic infinite
arrays of holes and periodic finite arrays of holes were carried out
by means of the coupled mode method [7]. In this numerical method,
the fields inside the holes are expanded in terms of waveguide modes,
and the fields in the air regions surrounding the conducting screen
are expressed in terms of a discrete (infinite case) or continuous
(truncated case) spectrum of plane waves. The coupled mode method
converges very quickly with respect to the number of waveguide
modes when the conducting screens are electrically thick, but it may
require hundreds of waveguide modes for accurate results in the case
of electrically thin conducting screens [8], since the magnetic current
singularities at the holes conducting edges are not modeled in an
accurate way by waveguide modes.

In this communication we explore the phenomenon of EOT through
periodic arrays of tilted rectangular slots in zero thickness PEC
screens in the case where the number of slots is finite in one
direction, and infinite in the orthogonal direction. Other authors
have studied the analysis of the scattering by finite and infinite
periodic arrays of PEC rectangular patches or dipoles in free space
(see [9] and references therein), and also, by finite and infinite
periodic arrays of slots in a conducting screen [10]. However, the
aforementioned papers focus on the scattering and radiation properties
of the arrays and on their frequency selective properties, whereas,
in this communication we focus on the occurrence of the EOT
phenomenon. In this communication the spatial domain version of
method of moments (MoM) has been used for the determination of
the magnetic currents on the slots. Owing to the use of basis functions
which account for the singularities of the magnetic currents at the
edges of the slots [11], the MoM turns out to converge very quickly
with respect to the number of basis functions per slot, which makes it
possible to study large truncated arrays of slots in conducting screens
of negligible thickness, as opposed to the coupled mode method. Both
the use of basis functions accounting for edge singularities and the
use of Ewald’s method for the determination of the 1-D periodic
Green'’s function [12], have made it possible to implement a version
of MoM that outperforms the ones presented in previous papers [9],
[10]. The code implemented has been used to study the phenomenon
of EOT in single infinite chains of narrow rectangular apertures in
different orientations (which complements the studies carried out in
[5]), and to check how the EOT results obtained for a finite number of
parallel chains (1-D periodic problem) converge to those obtained for
an infinite number of chains (2-D periodic problem) as the number of
parallel chains becomes larger. The same MoM code can also be used
to obtain the dispersion relation of the leaky waves that can propagate
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Fig. 1.  Perspective view of a 1-D periodic array of rectangular holes.
A finite number N; of slots is assumed to be located in the y-direction with
a spacing b, while the number of holes in the x-direction is infinite with a
spacing a. The slots are rotated an angle o, which also defines a new set of
coordinates (¢, &), aligned with the axes of the slots.

through the 1-D periodic perforated screens in case Ewald’s method
for 1-D periodic Green’s function is adequately adjusted to deal
with leaky waves [13]. Also in this communication, an asymptotic
expansion of the electric field has been carried out to obtain the
radiation pattern of the array at large distances from the perforated
screen. The results obtained for these radiation patterns show how
transmitted power is split between the direction of the impinging
waves and the direction of the excited grating lobes.

II. NUMERICAL APPROACH

Let us consider the geometry depicted in Fig. 1, in which an infinite
perfectly conducting plane of negligible thickness is perforated with
a periodic array of slots, which is infinite in the x-direction and finite
in the y-direction. The periodic unit cell is a rectangle of dimensions
a x b, and Ny unit cells are considered in the y-direction. The slots
are centered in each unit cell, their width and length are ws and /s,
respectively, (wg < Iy < min(a, b)), and they are tilted an angle
o with respect to the y-axis as shown in Fig. 1. Let the surface
occupied by the periodic unit cells be S;; = {ia < x < (i + Da;
jb<y<(@G+DbG=---,-1,0,1,...; j=0,...,Ng — 1),
and let 7;; be the surface of the slot located on S;;.

In the following, a harmonic time dependence of the physical quan-
tities of the type el®" will be assumed and suppressed throughout.
Let us assume that a plane wave propagating in the half-space z < 0
of Fig. 1 in a direction given by the spherical coordinates (¢inc, finc)
obliquely impinges on the perforated screen. Let Ef°(x, y, z=0) =
EX(x,y,z = 0)X + E{°(x,y,z = 0)y be the tangential scattered
electric field induced on the screen (Ej°(x,y,z = 0) = 0 on the
conducting portion of the perforated screen) by the incident plane
wave. Then, the functions E{°(x, y, z = 0) on the Nj slots 779; will
be the solution of the following set of Ny coupled integral equations:

+o00 Nv_l o
et X X [ Gut-riy-y)
i=—o00 j=0 Nij

B,y z=0) dx'dy' =0 (x,y) € noj
G=0,.. . Ny=1) ()

where J*(x, y) is the electric current density excited by the plane
wave impinging on the conducting screen in the absence of the slots,

and Gy (x, y) is the dyadic Green’s function defined in [14, Egs. (2)
and (3)]. Since E{°(x, y, z = 0) is a Floquet-periodic function of x
of period a (and therefore, once we find a solution Ef°(x, y, z = 0)
in the slots 7o; (j = 0,..., Ny — 1), the electric field on the rest
of the slots of Fig. 1 will be automatically determined), (1) can be
rewritten as

Ny—1
e+ Y [ Spe-ry -y

j=0 1o
B (LY, z=0) dx'dy =0 (x,y) € no;

where Elfg(x, y) is the 1-D periodic dyadic Green’s function given
by
400
—per _ ) -
Gip(.y) = D Gylx —ia, y)elkod 3)

i=—00

and kyo = —kosin(@inc) cos(ginc) (ko = o/uoeo = 27 /%0, 4o
being the free space wavelength). In order to determine the value of
Ei°(x,y,z=0)intheslots 5o; (j =0, ..., Ny—1), we have applied
Galerkin’s version of MoM to the set of Ny integral equations of (2).
The basis functions for E{°(x, y, z = 0) have been chosen in such a
way that the corresponding basis functions for the magnetic current
density on the slots, M*¢(x, y) = 2 x E°(x, y, z = 0), coincide with
the basis functions used in [15] to approximate the electric current
density on the rectangular dipoles of a multilayered periodic structure
(see [15, Egs. (17)—(19)]). These basis functions have the advantage
that they account for the physical edge singularities of the magnetic
current density at the slot edges, and therefore, they ensure a fast
convergence of MoM with respect to the number of basis functions
as shown in [15, Fig. 8]. For the particular problem treated in this
communication, numerical simulations have shown that only four
basis functions per slot suffice to provide very accurate results in the
MoM solution of (2). This is checked in Section III where our results
are compared with CST results, and a good agreement is found.

The MoM matrix entries have been computed in a very efficient
way. In particular, these entries have been expressed as double
integrals in a rectangular domain with respect to the two coordinates
¢ and ¢ shown in Fig. 1. The integrand of these integrals are
products of cross-correlations between the basis functions (or between
their divergences) times the free-space scalar 1-D periodic Green’s
function (see [14, Eqgs. (43)—(45)]). The scalar 1-D periodic Green’s
function (different from the Green’s functions of [14]) has been
efficiently obtained by means of Ewald’s method as explained in [12,
Section IV]. For large separations between source and field points
(R¢ in [12]), where the spectral series of Ewald’s method may show
numerical problems, we have used the spectral representation of the
1-D periodic Green’s function for its computation (see [12, Eq. (34)]).
The singularities of the integrands of the double integrals have been
handled as explained in [14].

If we solve the wave equation in the half-space z > 0 of Fig. 1,
it can be shown that the electric field scattered by the perforated
conducting screen in that half-space can be written as

1 +00 too _
EX(x,y,2>0)= 5= > / E* (k. ky, z = 40)
2 m=—oco0” ~®

X ej(kxmx+kyy*kzm Z)dky (4)

where kym = Qam/a) + kxo, kzn = ,/k(z) —k)%m —k% when
kg + k% < k(z) and kzm = —j,/k;%m + k% — k(% when k)%m—i-k% > k(%,

and where Esc(kxm,ky,z = +40) is the 2-D Fourier transform,
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discrete in x and continuous in y, of ES¢(x,y,z = +0). If we
introduce spherical coordinates in (4), the electric field radiated by
the dominant m = 0 Floquet mode of (4) (the only radiative mode
when a < A¢) will be given by

EC (r>,0, 9)
z>0
Xej(ky sin sin ¢—, /kg —k2) —k3 cos O)r

L ikeorsin@cos ¢ +oo~sc
=_—elk0 E* (kyo, ky, z=+0)
T —00

dky )

r>

Now, if we carry out an asymptotic evaluation of the integral of
(5) by means of Rayleigh’s method of stationary phase (see [16,
pp. 284-286]), it turns out that

el (kxo sin0 cos g—fps (0.7 o5 9
V2mr(1 — sin? 6 cos? ¢)
1/4
o 1 — sin? Oinc cos? @inc /
1 — sin2 0 cos? ¢

x B (kyo, ky = =k} (0, 4), 2= +0)  (6)

EO(r >,0,9)| 0 ~

where

Bps (0. )=o) (1—sin? Bine c0s2 ine) (1 —sin2 Bcos2 ) (7)

and
ps _ : : (1_Sin2 Oine cOS? Pinc)
ky (0, ¢)= kosinOsing, | b s ®)

When (4) is used in the equation V - E¢(x,y,z > 0) = 0,
the z component of the vector quantity Esc(kx(),ky,z = +0)
appearing in (6) can be expressed in terms of the two components
of E?C (kyo, ky, z=0) as shown below

ESC(ky0, ky, z = +0)
1 —~ -
=0 (kx0 E3S (k. ky, 2= 0)+ky Ey (kx0, ky, 2= 0). (9)

Once MoM is applied, E?C(kxo,ky,z = 0) can be obtained
as the 2-D Fourier transform, discrete in x and continuous in y,
of Ef(x,y,z = 0). This fact, together with (9), implies that
the solution of (2) makes it possible to compute the far-field
ESSO(r >, 0, $)|,-0 by means of (6).

For the wave impinging on the perforated screen of Fig. 1, we can
define the scattering width [17] of the dominant m = 0 Floquet mode
along the incidence direction as

2 y +z |E§c O(” 0 = Oinc, ¢ = ¢1nc)|
i [Eo|?
ko €08 Binc|[E¥ (kx0, ky = kyo, 2 = +0)|*

= . — (10)
(1- sin? Oinc cos? ¢inc)1/2|EO|2

lim

r—00

o5 Bine» Pine)

where we have made use of (6). The quantity JIOD of (10) will be a
measure of the length in the y-direction that the truncated array of
slots of Fig. 1 presents to a wave impinging on the array.

In order to estimate the amount of power transmitted through the
array of holes of Fig. 1, we are going to define a dimensionless
transmission coefficient, 71p, as the ratio between the power radiated
into the half-space z > 0 by the Ny unit cells located within the
interval 0 < x < a, Pad |z~0. and the power of the impinging plane

wave available at those Ny cells, PP, that is,
plD
dlz>0
Tip = —fad1z>0 (11)
Py

The quantitiy PalvD| z~0 of (11) is given by

Nyab cos Oine|Eg |
270

PP = (12)

where Zog = /up/€p is the free space wave impedance, and where
Eqy is the complex vector amplitude of the electric field of the
impinging plane wave. The quantity P, rad D of (11) is given by

plD 0= 73 Re Z//m) [E(x, y, z=+0)
j

x(H*(x, y, z=40))*] - 2dxdy} (13)

where H%¢(x, y, z) stands for the magnetic field scattered by the per-
forated conducting screen. After some mathematical manipulations,
it is possible to express Pad|Z>0 in a simple way in terms of the
weight coefficients of the basis functions of E{°(x, y, z=0), and in
terms of the MoM matrix entries.

III. NUMERICAL RESULTS

Fig. 2 shows the frequency dependence of the normalized scat-
tering width of single infinite chains of slots for different ori-
entations of the slots with respect to the periodicity direction.
The direction of the electric field of the impinging wave has
always been taken perpendicular to the slots direction. Our results
obtained with the MoM approach described in Section II for the
normalized scattering width are compared in Fig. 2 with results
obtained by means of the commercial software CST [18] for the
case Iy = 0.4 a. Excellent agreement is found between both sets
of results. We have found that the CPU time required by CST
is around 200 times larger than that required by our in-house
software, and this CPU time ratio excludes the CPU time required for
adaptive-mesh convergence with CST. The important CPU time sav-
ing clearly shows the advantages of developing an efficient in-house
software for the study of EOT phenomena in truncated periodic
structures.

Please note that a Wood’s anomaly, consisting of a zero in transmis-
sion at a/Ag = 1, is found in Fig. 2(b) and (c). The Wood’s anomaly
is associated with the onset of “grating lobes” that propagate along
the plane of the array at this frequency, with a wavelength equal to
the periodicity. It is preceded by an associated EOT peak (maximum
of transmission) for I;/a = 0.4 as expected [4], [14]. However,
the Wood’s anomaly and the EOT peak are not present in Fig. 2(a).
In order to explain the lack of Wood’s anomaly in Fig. 2(a) from a
physical point of view, we have to think that the Wood’s anomaly
at a/lg = 1 is connected with the onset of the grating lobes

= =+1 scattered by the periodic structure of Fig. 1 [14]. In the
case of Fig. 2(a), the planes x = ga (¢ = ---,—1,0,+1,...) act
as magnetic walls, and for the particular direction of the excitation
electric field in Fig. 2(a), the two grating lobes m = =1 launched
when a/4p > 1 merge to form a TE; mode that propagates along an
equivalent parallel-plate waveguide limited by two magnetic walls at
x = 0 and x = a. However, TE modes in the equivalent parallel-plate
waveguide do not lead to Wood’s anomalies and EOT peaks, which is
explained in detail in [4] by means of an equivalent circuit containing
frequency-dependent capacitances and inductances. Note that the
Wood’s anomaly occurs in Fig. 2(c) for a/lg = 1 (when the axis
of the slot is orthogonal to the direction of the periodicity) in spite
of the apparent similarity with the case of Fig. 2(a). This is because
in the former case the planes x = ga (¢ =---,—1,0,+1,...) act as
electric walls, and for the particular direction of the excitation electric
field in Fig. 2(c), the two grating lobes m = =41 launched when
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Fig. 2. Normalized scattering width of single infinite periodic chains of
slots (Ng = 1 in Fig. 1) for different values of the slots length under
normal incidence conditions. Results are presented for (a) slots parallel to the
periodicity direction, a = 90°, (b) slots tilted an angle a = 45° with respect
to the periodicity direction, and (c) slots perpendicular to the periodicity
direction, a = 0°. Our results obtained with MoM for the case I;/a = 0.4
(solid lines) are compared with CST results (x). Parameters: wg/a = 0.05,
Oine = 0°.

a/ig > 1 merge to form a TMy mode that should propagate along
an equivalent parallel-plate waveguide limited by two electric walls
at x = 0 and x = a. And TM modes in the equivalent waveguide
do generate Wood’s anomalies and EOT peaks as explained in detail
in [4], which justifies the presence of the Wood’s anomaly when
a/Ag = 1 in Fig. 2(c). Finally, in the case of Fig. 2(b), there are
no symmetry conditions at the onset of grating lobes (no electric or
magnetic walls at the planes x = ga) that prevent the excitation of
TM modes in the equivalent waveguide, and the Wood’s anomaly at
a/ly =1 is present.

We have carried out CST simulations of the periodic structures of
Fig. 2 for [;/a = 0.4 in the case where the width of the conducting
plane of Fig. 1 is finite in the y-direction. The CST results obtained
for the normalized scattering width of the array in that case practically
coincide with those of Fig. 2, provided, the edges of the conducting
plane in the y-direction are further than three periods from the array.

(b)

0.4
0.3

0.2

Tip

0.1

Fig. 3. Transmission coefficient of N; parallel infinite periodic chains of
slots for different values of Ny under normal incidence conditions. Results are
presented for (a) slots parallel to the periodicity direction, & = 90°, (b) slots
tilted an angle o = 45° with respect to the periodicity direction, and (c) slots
perpendicular to the periodicity direction, a = 0°. Parameters: [s/a = 0.4,
wg/a = 0.05, b = 1.1a, Oipc = 0°.

This can serve as a guide for realistic applications of the phenomena
presented here.

The implemented MoM code has also been used to obtain the
dispersion relation of waves traveling along the x-direction in the
periodic structure of Fig. 2(b) when /;/a = 0.4. For that purpose,
Ewald’s method for the determination of the scalar 1-D periodic
Green’s function has been modified to account for complex wavenum-
bers along the x-direction as described in [13]. The results obtained
indicate that in the neighborhood of the EOT peak, a backward proper
leaky wave can propagate along the periodic chain of slots, and that
the leaky wave radiates at broadside direction when a/lg = 0.995,
which exactly corresponds to the frequency of the EOT peak appear-
ing in Fig. 2(b). This finding connects with the surface plasmon
explanation of the EOT phenomenon described in [2]. Unfortunately,
the dispersion relation results cannot be shown in this communication
due to size limitations.

In Fig. 3 we plot results for the transmission coefficient 71p of Nj
parallel infinite chains of slots in a periodic configuration as shown
in Fig. 1. The period in the y-direction where the periodic array
is finite, b = 1.1a, is chosen to be different from the period in
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Normalized radiation patterns in the yz plane for z > 0 (¢ = £90°) of the periodic arrays of slots analyzed in Fig. 3 when (a) o = 90° and

a/lg = 0.887, (b) a = 45° and a/Ag = 0.897, (c) & = 45° and a/Ag = 0.995, and (d) @ = 0° and a/Ay = 0.960. The direction of the grating lobes is

indicated in red. Parameters: /s /a = 0.4, ws/a = 0.05, b = 1.1a, Ojpc = 0°.

the x-direction where the array is infinite, a, so that the different
phenomena related to the periodicity in each direction can be clearly
distinguished. By comparison with Fig. 2, in Fig. 3 we have restricted
ourselves to the case where [;/a = 0.4, since this is the case
for which EOT peaks are expected to appear according to Fig. 2.
Note that in Fig. 3(a) a Wood’s anomaly starts being apparent when
Ns > 20 for b/Ag = 1 (which corresponds to a/Ag = 0.91 in the
figure), and the associated EOT peak also becomes observable. This
Wood’s anomaly would correspond to the onset of the grating lobes
m = 0, n = %1 if the periodic array of slots were infinite in the
x- and y-directions (as in the case treated in Section II of [14]).
In accordance with the explanation given in the previous paragraph
for the results of Fig. 2(c), this Wood’s anomaly is allowed by the
structure of Fig. 3(a) because the slots are perpendicular to the y-
direction, and as the number of slots in the y-direction grows and the
periodicity in this direction becomes more defined, the phenomena
associated with this periodicity (Wood’s anomaly and EOT peak)
become observable in Fig. 3(a). The Wood’s anomaly for a/Ag = 1 is
not present in Fig. 3(a) for the same symmetry arguments introduced
in the comments to Fig. 2(a). In Fig. 3(c) the Wood’s anomaly
for a/Ag = 1 and the associated EOT peak appear for all values
of Ny since the symmetry arguments used to explain the Wood’s
anomaly of Fig. 2(c) still hold for Fig. 3(c). However, the Wood’s
anomaly for b/Ag = 1 is absent because the slots in the structure
of Fig. 3(c) are parallel to the y-direction, and as this structure
becomes periodic in this direction, the grating lobes associated with
this periodicity direction will not be excited when b/lg = 1 for
the same symmetry reasons the grating lobes associated with the
periodicity in the x-direction were not excited in Fig. 2(a) when
a/Ag = 1. Concerning Fig. 3(b), since the structure analyzed in
this latter figure is not symmetric, the two Wood’s anomalies for
b/lo = 1 and for a/Ap = 1 and the associated EOT peaks are
present in the results plotted. However, whereas the Wood’s anomaly
for a/Lg = 1 is present for all values of N, the Wood’s anomaly for
b/Lg = 1 becomes noticeable for Ny > 20. This is due to the fact
that the Wood’s anomaly for a/1g = 1 is related to the periodicity
in the x-direction, which exists for all values of Ny, the Wood’s
anomaly for b/1g = 1 is related to the periodicity in the y-direction,
which requires a large value of Ny to start being apparent. Please
note that when Ny > 20, an additional Wood’s anomaly is formed
in Fig. 3(a)~(c) when a/Ag = 1.35, which corresponds to the case
where the relation (1/a)? + (1/b)2 = (1/Ag)? fulfills. This latter
Wood’s anomaly would exactly correspond to the onset of the grating

lobes m = %1, n = =£1 if the periodic array of slots were infinite
both in the x- and y-directions, and therefore, it is something to be
expected as the array of slots increases its size in the y-direction.

In Fig. 4 we have represented the normalized power radiation
patterns emitted by the truncated array of slots of Fig. 1 in the yz
plane at the EOT peaks of Fig. 3(a)—(c). Since there are two EOT
peaks in Fig. 3(b) (one for a/1y = 0.897 and one for a/ig = 0.995),
two different radiation patterns are plotted in this case, one for each
EOT peak. Note that as Ny increases, the radiation of the dominant
m = 0 Floquet mode along the incidence direction (¢ = 0°) becomes
more and more directive. Of course, this would be the only radiation
direction in case the array were infinite in the y-direction. In the
cases of Fig. 4(c) and (d), one can see the excitation of two grating
lobes that would correspond to the grating lobes m = 0, n = £1 if
the periodic array of slots were infinite in the x- and y-directions.
In this latter case, the directions of radiation of these two grating
lobes with respect to the positive z-axis would be given by the
angles

Ao/b
V1= (/b))
The angles predicted by (14) are marked in red in Fig. 4(c) and (d)
[0%%! = £66.06° in the case of Fig. 4(c) and 6% = £71.26° in
the case of Fig. 4(d)], and it can be checked that these two angles
coincide with the radiation maxima related to the grating lobes when

Ns > 20, which provides an indirect validation for the computed
radiation patterns.

Hgl’il =4 arctan( (14)

IV. CONCLUSION

An efficient MoM code has been implemented for the analysis
of EOT in periodic arrays of tilted slots which are infinite in one
direction and truncated in the orthogonal direction. Good agreement
has been found between our results and CST, with our code being
around 200 times faster than CST. The results obtained indicate
even though EOT peaks and Wood’s anomalies may not reveal in
single chains of infinite slots owing to the lack of periodicity in
the direction perpendicular to the chains, they become apparent
when more than twenty of these chains are periodically gathered.
An asymptotic expansion of the fields scattered by the arrays has
been carried out to compute the far-field radiation patterns These
radiation patterns clearly show the excitation of grating lobes as
radiation maxima that become sharper and sharper as the num-
ber of slots grows in the direction where the arrays are finite,
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irrespective of the existence or not of a Wood’s anomaly at their
onset.
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