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Internal energy fluctuations of a granular gas under steady uniform shear flow
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The stochastic properties of the total internal energy of a dilute granular gas in the steady uniform shear
flow state are investigated. A recent theory formulated for fluctuations about the homogeneous cooling state is
extended by analogy with molecular systems. The theoretical predictions are compared with molecular dynamics
simulation results. Good agreement is found in the limit of weak inelasticity, while systematic and relevant
discrepancies are observed when the inelasticity increases. The origin of this behavior is discussed.
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I. INTRODUCTION

The macroscopic properties of the steady uniform shear
flow (USF) of monocomponent granular gases have been
extensively studied [1–6]. The required quantities to close the
exact balance equations for the hydrodynamic fields, density,
velocity, and internal energy or temperature are the pressure
tensor and the cooling rate, since the heat flux vanishes.
Explicit expressions for all the components of the pressure
tensor for arbitrary values of the shear rate have been obtained
in the literature by using kinetic theory ideas. In addition,
particle simulation methods, molecular dynamics (MD), and
direct simulation Monte Carlo (DSMC) techniques have been
employed, and the agreement found between the theoretical
predictions and the simulation results can be considered as
quite satisfactory. On the other hand, in all the theories we are
aware of, no rheological effects for the cooling rate have been
reported. Actually, approximate expressions corresponding to
zeroth order in the gradients, i.e., in the shear rate, are always
considered. Although it seems that the cooling rate of the
steady USF state has never been directly measured in the
simulations, the accuracy of the predictions for the steady
temperature provides strong support for the smallness of the
corrections to the cooling rate due to the finite shear rate.

In this work, the focus is put on the stochastic description
of a global property of a granular gas in the steady USF
state, namely, the total internal energy. Studying fluctuations
requires using a mesoscopic description of the hydrodynamics
of the system, instead of the macroscopic description provided
by the usual hydrodynamic equations. In the case of molec-
ular fluids at equilibrium, the standard mesoscopic theory
is the fluctuating hydrodynamics proposed by Landau and
Lifshitz [7]. This theory has been extended to systems out
of equilibrium, mainly in the context of the Navier-Stokes
order, although particular states beyond it have also been
addressed [8–11].

Recently, a theory for hydrodynamic fluctuations in an
isolated dilute granular gas in the homogeneous cooling
state (HCS) has been developed by extending the methods
of nonequilibrium statistical mechanics for molecular gases
[15–17]. The results are expressed as Langevin-like equations
for the fluctuating density, velocity, and internal energy fields,
that generalize those by Landau and Lifshitz. The derived
equations are not directly applicable to other (inhomogeneous)
states of a granular gas and, in particular, to the steady USF
state. Then, what is done in the present work is to formulate,

without proof, a generalization of the theory in Ref. [17] based
on two main assumptions:

(i) The stochastic deviations of the hydrodynamic fields
from their average values in the steady USF state verify
the linearization of the general macroscopic hydrodynamic
equations around that state, supplemented by a fluctuating
random force term; i.e., they obey a set of coupled linear
Langevin equations.

(ii) The random force terms in the above equations follow
from the fluctuating parts of the constitutive relations and also
from the intrinsic noise induced by the energy dissipation
in collisions. It is assumed that both noise sources have the
same properties as for the HCS, with the only difference that
the macroscopic quantities associated to the HCS have to be
replaced by their values in the steady USF state.

These two assumptions are prompted and stimulated by
the results found in molecular fluids, where similar properties
have been derived by different methods and have proven to
be useful in many different situations [8,10]. Since general
hydrodynamic equations are only available to Navier-Stokes
order, the study of fluctuations around the steady USF state
has to be restricted to that order. Consequently, the results
obtained can only be expected to hold for small gradients,
that for the steady USF state also means small inelasticity,
due to the coupling between gradients and inelasticity that is
characteristic of steady states of granular systems.

The work presented here must be clearly differentiated
from other studies in which fluctuations of driven granular
gases, in contact with some external energy source or thermal
bath, have been considered [12–14]. The latter influences the
stochastic properties of the granular gas in a nontrivial way
and, consequently, the relationship between fluctuations in
granular systems with and without an external source of noise
is not clear.

The plan of the paper is as follows. In the next section,
the macroscopic properties of the steady USF state of a
granular gas are shortly reviewed, and the theory of fluctuations
around that state is formulated. The Navier-Stokes order
of approximation is considered, since this is the order at
which the fluctuating hydrodynamic equations around the
homogeneous cooling state are known. The application of the
theory to the total internal energy of the steady USF state is
presented in Sec. III. The fluctuating energy deviations from
the macroscopic values obey a linear Langevin equation with
a nonwhite noise. This equation is used in Sec. IV to compute
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the energy fluctuations, as well as the two-time correlation
function. The theoretical results are compared with molecular
dynamics simulations of a two-dimensional system of hard
disks. Good agreement is found in the quasielastic limit,
with increasing discrepancy as the inelasticity increases, as
expected. The final section contains some general conclusions
and comments. Some of the technical details of the calculations
are given in two appendices.

II. FLUCTUATIONS IN THE STEADY USF STATE

Consider a granular gas composed of smooth inelastic hard
spheres (d = 3) or disks (d = 2) of mass m and diameter σ .
The macroscopic balance equations for the number density
n(r,t), velocity u(r,t), and internal energy density e(r,t) at
position r and time t are [18,19]

∂n

∂t
+ ∇ · (nu) = 0, (1)

∂u
∂t

+ u · ∇u + (nm)−1∇ · P = 0, (2)

∂e

∂t
+ ∇ · (eu) + P : ∇u + ∇ · q + ζe = 0, (3)

where P(r,t) is the pressure tensor, q(r,t) is the heat flux,
and ζ (r,t) is the cooling rate, the latter following from the
energy dissipation in collisions. Equations (1)–(3) become a
closed set of differential equations for the fields n, u, and
e, once P, q, and ζ are expressed as functionals of them by
means of the constitutive relations. Then, the equations provide
a macroscopic or hydrodynamic description of the granular
gas, whose domain of validity is determined by that of the
constitutive relations.

The steady uniform, or simple, shear flow (USF) state of a
granular gas is characterized by time-independent and uniform
number and internal energy densities and a velocity field given
by

u
(0)
i (r) = aij rj , aij ≡ aδi,xδj,y . (4)

Here, summation over repeated indexes is implicit, δi,j is the
Kronecker delta symbol, and i,j = x,y for d = 2, while i,j =
x,y,z for d = 3. Therefore, the velocity profile is linear with a
constant shear rate a. In addition, the heat flux q vanishes. For
this steady flow, Eq. (1) becomes an identity, Eq. (2) implies
that the pressure tensor is uniform, and Eq. (3) reduces to

aP (0)
yx + ζ (0)e(0) = 0. (5)

In a hydrodynamic description, P (0)
yx is a given function of

a, n(0), and e(0). Consequently, Eq. (5) expresses the steady
internal energy density as a function of the number density
and the shear rate. In a compact notation, the hydrodynamic
equations following from Eqs. (1)–(3) plus some constitutive
relations can be expressed as

∂cβ(r,t)
∂t

= �β[r,t |{cγ }], (6)

with �β[r,t |{cγ }] being a nonlinear space functional of the
fields {cβ} ≡ {n,u,e}. The notation indicates that all the space
and time dependence on the right hand side of Eq. (6) is entirely
determined from the fields themselves.

Consider now the fluctuating mesoscopic fields Cβ(r,t)
whose stochastic averages, denoted by angular brackets, are
the macroscopic fields cβ(r,t),

〈Cβ(r,t)〉 = cβ(r,t), (7)

and introduce the deviations

C ′
β(r,t) ≡ Cβ(r,t) − c

(0)
β , (8)

where c
(0)
β is the value of cβ in the steady USF state. Then, it is

assumed that the deviations C ′
β obey Langevin-like equations

of the form

∂C ′
β(r,t)

∂t
= 	β

[
r,t

∣∣{c(0)
γ ,Cγ

}] + Fβ(r,t), (9)

with 	β being a linear term which is related to the hydrody-
namic equations by

	β

[
r,t

∣∣{c(0)
γ ,Cγ

}]

=
∫

d r ′
(

δ�β[r,t |{cγ }]
δcλ(r ′,t)

)
{cγ }={c(0)

γ }
C ′

λ(r ′,t). (10)

Moreover, it is also assumed that the noise termsFβ (r,t) can be
identified from the fluctuating parts of the constitutive relations
and the intrinsic fluctuations, both evaluated in the HCS. The
only change to be made is the replacement of the macroscopic
properties of the HCS by their values in the steady USF state.

Equation (9) provides a complete formal theoretical scheme
to study hydrodynamic fluctuations in the steady USF state of
a granular gas. Nevertheless, a difficulty arises when trying to
implement it. Although the macroscopic state of the system is
known, at least approximately, to all orders in the shear rate,
to get a similar knowledge of the fluctuations and correlations,
the most general hydrodynamic equations, i.e., valid for an
arbitrarily large gradient of all the hydrodynamic fields, should
be available. Since this is not the case, attention will be limited
in the following to the Navier-Stokes order. This restricts the
expected validity of the theory to small values of the shear
rate a and, due to the coupling between α and a implied by
Eq. (5), to values of the coefficient of normal restitution close
to unity.

For a dilute gas and keeping only terms up to first order
in the gradients of the hydrodynamic fields, the constitutive
relations are given by [20,21]

Pij = pδij − η

(
∂ui

∂rj

+ ∂uj

∂ri

− 2

d
δij∇ · u

)
, (11)

q = −κ∇T − μ∇n, (12)

ζ ≈ ζ0, (13)

where p = 2e/d is the hydrodynamic pressure, T = 2e/nd

is the granular temperature, η is the shear viscosity, κ is
the (thermal) heat conductivity, and μ is the diffusive heat
conductivity, which vanishes in the elastic limit. Moreover, ζ0

is the zeroth order in the gradients cooling rate. In the first
Sonine approximation, it is

ζ0 = 2ζ ∗e
η0d

, (14)

η = η∗η0. (15)
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In the above expressions η0 is the viscosity in the elastic limit:

η0 = 2 + d

8
�(d/2)π− d−1

2 (mT )1/2σ−(d−1), (16)

and the dimensionless functions are given by

ζ ∗(α) = 2 + d

4d
(1 − α2)

(
1 + 3a2

16

)
, (17)

a2(α) = 16(1 − α)(1 − 2α2)

9 + 24d + (8d − 41)α + 30α2 − 30α3
, (18)

η∗(α) =
[
ν∗

1 (α) − ζ ∗

2

]−1

, (19)

ν∗
1 (α) = (3 − 3α + 2d)(1 + α)

4d

(
1 − a2

32

)
. (20)

The expressions of the transport coefficients κ and μ associated
to the heat flux will not be needed in the following.

III. LANGEVIN EQUATION FOR THE
TOTAL INTERNAL ENERGY

The specific property to be studied in this paper is the
fluctuating total internal energy of the system. More precisely,
the quantity considered is ε(t) defined by

ε(t) ≡ 1

V

∫
d r

E(r,t) − e(0)

e(0)
, (21)

where the integral extends over the volume (for d = 3) or
area (for d = 2) V of the system and E(r,t) is the fluctuating
internal energy density. The deviation E ′(r,t) ≡ E(r,t) − e(0)

is assumed to obey the corresponding particularization of
Eq. (9). The equation for ε(t) follows by integration over the
volume (or area) of the system. At this point, the boundary
conditions play quite a relevant role, as it is also the case
even in molecular systems at equilibrium. For the purposes of
the study being presented here, periodic boundary conditions
in the Lagrangian frame moving with the local macroscopic
velocity field are a very convenient choice. The first reason
is that they are the boundary conditions consistent with the
ones used in the numerical simulations that will be reported
later on to test the accuracy of the theoretical predictions. The
second and more fundamental reason is that they lead to a
decoupling of the equation for ε(t) from the equations for the
fluctuating number of particles and velocity, so that the former
obeys a closed simple Langevin-like equation. The details of
the calculations are given in Appendix A, while only the result
will be reported here. The equation obeyed by ε reads

∂ε

∂s
+ ζ 0 = �ε(s). (22)

A dimensionless time scale s has been introduced, defined by

s ≡ v0t

λ
, (23)

with

v0 ≡ 2

(
e(0)

mn(0)d

)1/2

(24)

and

λ ≡ (n(0)σd−1)−1. (25)

The parameter λ is proportional to the mean free path of the
gas and v0 is a thermal velocity. Then, it is easily seen that s is
proportional to the average accumulated number of collisions
per particle in the time interval between 0 and t . Moreover, ζ 0

is a dimensionless cooling rate defined from ζ
(0)
0 by

ζ 0 ≡ λζ
(0)
0

v0
= 4

√
2π

d−1
2

(d + 2)�(d/2)
ζ ∗. (26)

The noise term in Eq. (22) is related with the noise term in the
energy equation through

�ε(s) = λ

V v0e(0)

∫
d r Fe(r,t). (27)

It has two contributions of a rather different physical origin:

�ε(s) = Rε(s) + Sε(s). (28)

The properties of the above two noise terms are summarized
below. Some details of the reasonings leading to them are
given in Appendix B. The contribution Rε comes from the
nonhydrodynamic part of the fluctuating pressure tensor and
it has the properties

〈Rε(s)〉 = 0, (29)

〈Rε(s)Rε(s ′)〉 = 4ζ 0

Ndη
G(|s − s ′|). (30)

Here N ≡ n(0)V is the total number of particles, η is the
dimensionless shear viscosity defined as

η ≡ η(0)

n(0)mλv0
, (31)

and the function G(s) has the form

G(s) = 1 + a2(α)

4
esλ4 , λ4 = ζ (α) + 4I (α)

1 + a2(α)
, (32)

with

I (α) = − (2d + 3 − 3α)(1 + α)π
d−1

2

2
√

2d(d + 2)�(d/2)

[
1 + 23a2(α)

16

]
. (33)

The second noise contribution on the right hand side of Eq. (28)
arises directly from the fluctuations of the energy dissipation
in phase space, and vanishes in the elastic limit α → 1. It is

〈Sε(s)〉 = 0, (34)

and

〈Sε(s)Sε(s ′)〉 = 4

N
ζ 0a33(α)δ(s − s ′), (35)
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where

a33(α) = d + 1

2d
+ d + 2

4d
a2(α) + b(α), (36)

b(α) = 2 + d − 6d2 − (10 − 15d + 2d2)α − 2(2 + 7d)α2 + 2(10 − d)α2

6d(2d + 1) − 2d(11 − 2d)α + 12dα2 − 12dα3
. (37)

Moreover the two noise terms are uncorrelated,

〈Rε(s)Sε(s ′)〉 = 0, (38)

for all s and s ′. Also, as usual in the Langevin description, the
fluctuating noise term at a given time is not correlated with the
energy variable at previous times,

〈�ε(s)ε(s ′)〉 = 0, (39)

for s > s ′.

IV. ENERGY FLUCTUATIONS AND
TIME CORRELATION FUNCTION

The general solution of Eq. (22) reads

ε(s) = e−sζ 0ε(0) +
∫ s

0
ds ′e−(s−s ′)ζ 0�ε(s ′). (40)

Taking into account Eq. (39), it is found that

〈ε2(s)〉 = e−2sζ 0〈ε2(0)〉 +
∫ s

0
ds ′

∫ s

0
ds ′′

× e−(2s−s ′−s ′′)ζ 0〈�ε(s ′)�ε(s ′′)〉. (41)

For times s � ζ
−1
0 , the first term on the right hand side of the

above equation can be neglected, and using Eqs. (30), (35),
and (38), we have

〈ε2(s)〉 = 4ζ 0

N

∫ s

0
ds ′

∫ s

0
ds ′′e−(2s−s ′−s ′′)ζ 0

×
[

1

ηd
G(|s ′ − s ′′|) + a33(α)δ(s ′ − s ′′)

]
, (42)

where the function G(s) is defined in Eq. (32). An easy
calculation leads to

〈ε2(s)〉 = 2

N
a33(α) + 4

Nηd

[ ∫ s

0
dτ G(τ )e−τζ 0

− e−2sζ 0

∫ s

0
dτ G(τ )eτζ 0

]
. (43)

Considering again the limit s � ζ
−1
0 and keeping in mind that

G(τ ) decays faster than exp(−τζ 0), the steady value

〈ε2〉 = 1

N

[
2a33(α) + 4

ηd

∫ ∞

0
dτ G(τ )e−τζ 0

]
(44)

is obtained. Finally, evaluation of the integral on the right hand
side yields

〈ε2〉 = 1

N

[
2a33(α) + 1 + 2a2(α)

4η|I (α)|d
]

. (45)

A term quadratic in a2(α) has been neglected by consistency
with the approximation in which Eq. (18) is derived [22,23].

To check this theoretical prediction, molecular dynamics
(MD) simulations of a system of inelastic hard disks in a square
box of side L have been performed, using Lees-Edwards
boundary conditions [24]. These are periodic boundary condi-
tions in the Lagrangian frame moving with the local velocity
of the fluid, so that in that frame the system is macroscopically
homogeneous [25]. The simulations have been carried out
using an event driven algorithm [26]. The number of particles
in the system was N = 2000, corresponding to a number
density n(0) = 0.02σ−2. In all the simulation results to be
reported in the following, it was checked that the system
reached, after a transient period, a steady state with the
macroscopic profiles corresponding to the USF. The steady
values shown in the following have been obtained by averaging
over a number of trajectories, typically 100, and also on time,
about 150 collisions per particle.

In Fig. 1, the results obtained for the second moment of
the normalized internal energy fluctuations 〈ε2〉 are plotted
as a function of the coefficient of normal restitution α. The
data shown have been obtained in a system with a = 6.32 ×
10−3[T (0)/m]1/2σ−1, where T (0) is the initial temperature,
but equivalent simulation results have been obtained with other
values of the shear rate, in agreement with Eq. (45), that does
not depend on a. This function is also plotted in the figure (solid
line). In the small inelasticity region, say α � 0.95, a fairly
good agreement between theory and simulation is observed,
but when the coefficient of restitution is further decreased,

0.7 0.8 0.9 1
α

1

1.5

2

2.5

<ε2
>

FIG. 1. (Color online) Dimensionless second moment of the total
energy fluctuations 〈ε2〉 of a granular gas of hard disks in the steady
USF state, as a function of the coefficient of normal restitution α. The
(red) symbols are from MD simulations of a system of hard disks of
density n(0) = 0.02σ−2, the solid line is the Navier-Stokes theoretical
prediction given by Eq. (45), and the dashed line has been obtained
by using the rheological expression for the viscosity instead of the
Navier-Stokes one.
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significant quantitative discrepancies show up. This behavior
was expected, since the Navier-Stokes approximation being
used here implies small inelasticity as discussed above. Let us
mention that the shape of the probability distribution for the
internal energy fluctuations has also been investigated, and that
it is always very well fitted by a Gaussian, within the statistical
uncertainties.

A trivial way of incorporating some rheological effects into
the theory is to substitute in Eq. (45) the Navier-Stokes shear
viscosity by a generalized shear viscosity, valid to all orders
in the gradients, and defined by

η
(0)
G = −P (0)

xy

a
. (46)

Several theoretical expressions for the generalized viscosity
η

(0)
G of a dilute granular gas have been obtained in the

literature [2–4,27]. They are practically indistinguishable in
the range of values of α considered in Fig. 1. When any
of these expressions is used in Eq. (45), after reducing it
accordingly to Eq. (31), the result indicated in Fig. 1 by
means of the dashed line is obtained. Although there is a
significant improvement as compared with the Navier-Stokes
approximation result, it is clear that this effect is not enough
to explain the observed increase of the energy fluctuations as
the coefficient of restitution decreases.

The time correlation function CE(t,t ′) for the total energy
is defined as

CE(t,t ′) ≡
∫

d r
∫

d r ′〈E(r,t)E(r ′,t ′)〉 − V 2e(0)2

= V 2e(0)2〈ε(t)ε(t ′)〉, (47)

for t � t ′ � 0. Use of Eq. (22) gives

〈ε(t)ε(t ′)〉 = e−(s−s ′)ζ 0〈ε2〉, (48)

with

s − s ′ = v0(t − t ′)
λ

. (49)

In the derivation of the above results, Eq. (39) has been
employed. Therefore, the theory of fluctuations developed
here leads to the rather strong prediction that the decay of
total internal energy fluctuations of a dilute granular gas is
governed by the same quantity in the steady USF state as in
the homogeneous cooling state [15], being exponential in both
cases.

Results obtained from MD simulations for the decay of
the energy time correlation function are shown in Fig. 2,
using a logarithmic scale. The plotted quantity is C∗

E(s,s ′) ≡
CE(t,t ′)/CE(t ′,t ′). An exponential decay is clearly identified,
since the deviations observed for large times are due to lack of
statistics.

By fitting the decay of the time correlation function CE

to an exponential, its decay rate has been estimated as a
function of α. The theoretical prediction is that it agrees
with the zeroth order in the gradients cooling rate ζ 0 [see
Eq. (48)]. The comparison is carried out in Fig. 3. Again,
a good agrement is found for small inelasticity and an
evident systematic discrepancy shows up as the coefficient of
restitution decreases. It is worth remarking that in this case the
theoretical prediction cannot be improved by incorporating in

0 5 10 15 20
s-s’

-3

-2

-1

0

log C
E

*

α=0.70
α=0.80
α=0.90
α=0.95

FIG. 2. (Color online) Normalized dimensionless internal energy
time correlation function C∗

E as a function of the time interval s − s ′

for several values of the coefficient of normal restitution, as indicated
in the inset. This dimensionless time interval is proportional to the
accumulated number of collisions per particle. The density is the
same as in Fig. 1.

a trivial way rheological effects, as done above for the energy
fluctuations. It has already been indicated that there is strong
evidence that rheological corrections to the cooling rate, if any,
are not relevant. The consequence seems to be that some new
physical effects must be incorporated into the theory to extend
it to the not small inelasticity region.

V. DISCUSSION

In this paper, a recent theory of fluctuations and correlations
for a dilute granular gas in the homogeneous cooling state [17]
has been extended in a nontrivial way to a system in the steady
uniform shear flow state. The extension has been carried out
by similarity to what happens in molecular systems. From the
theory, predictions have been derived for the second moment

0.7 0.8 0.9 1
α

0

0.2

0.4

0.6 ζ0
decay

FIG. 3. (Color online) Dimensionless decay rate of the internal
energy time correlation function in the steady USF state. The symbols
are numerical results obtained by fitting the results in Fig. 2. The
solid line is the theoretical prediction, i.e., the zeroth order cooling
rate given by Eq. (26).
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of the internal energy fluctuations and also for its two-time
correlation function. They have been compared with molecular
dynamics simulation results, and good agreement has been
found in the small inelasticity region, while discrepancies
become evident and systematic as the inelasticity increases.
This was expected, as the theory is formulated at the level of
the Navier-Stokes order of approximation, and limitation to
small gradients also implies limitation to small inelasticity,
because of the coupling between both parameters in the steady
USF state. Nevertheless, there is a conceptually relevant
difference between fluctuations and time correlations. While
in the former, the role played by rheological effects can be
easily foreseen, for instance through the viscosity, in the latter
non-Newtonian effects seem to be negligible for the cooling
rate, that is the quantity governing the rate of decay to
Navier-Stokes order. Therefore, some new physical effects
are needed to explain the failure of the theory to describe the
decay of the energy time correlation function for high and
moderate inelasticity. In particular, this requires us to consider
the transport coefficients characterizing the response of the
system to small perturbations of the steady shear state [28,29].

It is worth stressing the two main differences of the
Langevin equation for the total internal energy of the steady
USF state as compared with similar equations for equilibrium
molecular states. First, the noise source term coming from the
fluctuating part of the pressure tensor is not delta correlated in
time; i.e., the noise is not white. Second, there is another noise
term that is intrinsic to the energy dissipation and vanishes
in the elastic limit. Both terms are relevant, in the sense of lead-
ing to non-negligible contributions to the energy fluctuations
and time correlations. This is an indication that extending the
theory of equilibrium fluctuations to nonequilibrium situations
can be far from trivial.
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APPENDIX A: LINEARIZATION OF THE NAVIER-STOKES
EQUATIONS AROUND THE STEADY USF STATE

Define the fluctuating fields

N ′(0)(r,t) ≡ N (r,t) − n(0), (A1)

U ′(0)(r,t) ≡ U(r,t) − u(0), (A2)

E ′(0)(r,t) ≡ E(r,t) − e(0), (A3)

where N (r,t), U(r,t), and E(r,t) are the fluctuating number
density, velocity field, and internal energy density, respec-
tively. The aim of this Appendix is to derive the equation
for ε(t), defined in Eq. (21). Accordingly with the theory
formulated in this paper, this requires us to linearize the
hydrodynamic Navier-Stokes equation for the energy by
applying Eq. (9) followed by a space integration over the
volume or surface of the system. In the process, a relevant role
will be played by the assumed periodic boundary conditions

for the fluctuations of the hydrodynamic fields C ′(0)
β (r,t). Each

of the terms in the Navier-Stokes equation for the energy will
be now considered separately. Application of the linearization
indicated in Eq. (9) to the convective term gives

∇ · (eu) → e(0)∇ · U ′(0) + u(0) · ∇E ′(0). (A4)

Upon writing the above equation the form of the macroscopic
velocity field of the USF has been taken into account.
Moreover, it is ∫

d r ∇ · U ′(0)(r,t) = 0, (A5)

and∫
d r u(0) · ∇E ′(0)(r,t) =

∫
d r ay

∂

∂x
E ′(0)(r,t) = 0, (A6)

because of the periodic boundary conditions. Consequently,
there is no contribution to the equation for ε(t) due to the
convective term of the hydrodynamic equation. Actually, this
is a general result, that is not restricted to the Navier-Stokes
order. Next, consider the term involving the pressure tensor in
Eq. (3). It leads to

P : ∇u → P(0) : ∇U ′(0) + aP ′(0)
yx , (A7)

where P ′(0)
yx is the deviation of the yx component of the

fluctuating pressure tensor from its macroscopic value in the
steady USF state. Due to the homogeneity of P(0) it follows
by using Eq. (A5) that the first term on the right hand side
vanishes when integrated over the system. To analyze the
term proportional to the fluctuation of the pressure tensor, the
constitutive Navier-Stokes relations will be taken into account.
Then,

P ′(0)
yx (r,t) =

∫
d r ′

(
δPyx(r,t)
δn(r ′,t)

)(0)

N ′(0)(r ′,t)

+
∫

d r ′
(

δPyx(r,t)
δu(r ′,t)

)(0)

· U ′(0)(r ′,t)

+
∫

d r ′
(

δPyx(r,t)
δe(r ′,t)

)(0)

E ′(0)(r ′,t). (A8)

Use of Eq. (11) yields

δPyx(r,t)
δn(r ′,t)

= η

2n
(∇yux)δ(r − r ′), (A9)

because η ∝ (e/n)1/2. Then,∫
d r

∫
d r ′

(
δPyx(r,t)
δn(r ′,t)

)(0)

N ′(0)(r ′,t)

= η(0)a

2n(0)

∫
d r N ′(0)(r,t) = 0, (A10)

again because of the periodic boundary conditions and the
conservation of the number of particles. For the same reason
it is ∫

d r
∫

d r ′
(

∂Pyx(r,t)
∂ui(r ′,r)

)(0)

U ′(0)
i (r ′,t)

= −η(0)
∫

d r
[∇yU ′(0)

x (r,t) + ∇xU ′(0)
y (r,t)

] = 0.

(A11)
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The last contribution from the fluctuating pressure tensor
involves

δPyx(r,t)
δe(r ′,t)

= − η

2e
(∇yux)δ(r − r ′), (A12)

so that∫
d r ′

(
δPyx(r,t)
δe(r ′,t)

)(0)

E ′(0)(r ′,t) = −η(0)a

2e(0)
E ′(0)(r,t). (A13)

This is the only nonvanishing contribution arising from the
linearization of the viscous term. The heat flux term gives

∇ · q → ∇ · Q, (A14)

where Q is the fluctuating heat flux. Although its explicit
expression to Navier-Stokes order can be easily obtained, it
is not needed here, since the periodic boundary conditions
directly imply ∫

d r ∇ · Q = 0. (A15)

This result holds beyond the Navier-Stokes order and it is valid
to all orders in the gradients of the hydrodynamic fields.

The last term to be linearized is the one describing the
energy dissipation in collisions:

ζ0e → ζ
(0)
0 E ′(0) + eoZ ′(0)

0 . (A16)

The fluctuating cooling rate Z ′(0) is

Z ′(0)
0 (r,t) =

∫
d r ′

(
δζ0(r,t)
δn(r ′,t)

)(0)

N ′(0)(r ′,t)

+
∫

d r ′
(

δζ0(r,t)
δu(r ′,t)

)(0)

· U ′(0)(r ′,t)

+
∫

d r ′
(

δζ0(r,t)
δe(r ′,t)

)(0)

E ′(0)(r ′,t). (A17)

The only term leading to a nonzero contribution after integra-
tion over r is∫

d r
∫

d r ′
(

δζ0(r,t)
δe(r ′,t)

)(0)

E ′(0)(r ′,t) = ζ
(0)
0

2e(0)

∫
d r E ′(0)(r,t),

(A18)

where it has been taken as given that ζ0 ∝ (ne)1/2. Putting
together all the above results, it follows that ε(t) obeys the
evolution equation[

∂

∂t
+ �(0)

ε

]
ε(t) = �ε(t), (A19)

where

�ε(t) = 1

V e(0)

∫
d r Fe(r,t) (A20)

and

�(0)
ε = −η(0)a2

2e(0)
+ 3ζ

(0)
0

2
= ζ

(0)
0 . (A21)

Upon writing the last equality, it has been taken as given that
to Navier-Stokes order Eq. (5) reads

a2η(0) − ζ
(0)
0 e(0) = 0. (A22)

Equation (22) follows directly from Eq. (A19) by making the
change of time scale given in Eq. (23).

APPENDIX B: NOISE TERM IN THE LANGEVIN-LIKE
EQUATION FOR THE INTERNAL ENERGY

Let R(r,s) be the nonhydrodynamic part of the fluctuating
pressure tensor. From the energy balance equation, Eq. (3), it
is seen that

Rε(s) = aλ

V e(0)v0

∫
d r Ryx(r,s). (B1)

In Ref. [17], a noise term RBMG
ij (k,s) was considered [see

Eqs. (53) and (54) of that reference] for the HCS. Its definition
is related to Rij (r,s) by∫

d r Ryx(r,s) = 4e(0)λd

d
RBMG

yx (k = 0,s). (B2)

The factor on the right hand side arises because of the scaling
of the length and velocity in Ref. [17]. Then, assuming that the
results for the HCS can be mapped into relations for the steady
USF state as discussed in the main text, Eqs. (29) and (30)
here are easily derived from Eqs. (53) and (54) in Ref. [17].

The second term on the right hand side of Eq. (28) is a
direct consequence of the inelasticity of collisions. Denoting
by Sε(r,t) the intrinsic noise term appearing in the equation
for the fluctuating energy E ′(0)(r,t), it is

Sε(s) = λ

V e(0)v0

∫
d rSε(r,s). (B3)

This intrinsic noise term has also been studied in Ref. [17] for
the HCS. It is easily verified that∫

d r Sε(r,s) = λd−1e(0)v0S
BMG
ε (k = 0,s), (B4)

where SBMG
ε (k,s) is the intrinsic noise term defined in

Ref. [17]. Properties (34) and (35) in this paper are then
equivalent to properties (29) and (D.4) in that reference. Of
course, this reasoning requires us to assume that the properties
of the intrinsic noise in the HCS are the same as in the steady
USF state, the only difference being in the macroscopic fields.
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