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Energy fluctuations in the homogeneous cooling state of granular gases
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Starting from the hierarchy of equations for microscopic densities in phase space, a general theory for
fluctuations and correlations in a dilute granular gas of hard particles is developed. Then, the particular case of
the homogeneous cooling state is addressed. Explicit expressions for some distributions describing the pres-
ence of velocity correlations and their dynamics are obtained. These correlations are inherent to the dissipative
dynamics of the collisions. The implications for the behavior of the total energy of the system are analyzed and
the results are expressed in terms of a fluctuation-dissipation theorem. The theoretical predictions are shown to
be in agreement with results obtained by molecular dynamics simulations, which also indicate that energy
fluctuations are well described by a Gaussian distribution.
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I. INTRODUCTION mation following from them, while the knowledge about

The understanding of the microscopic and macroscopi uctuations and correlations in granular gases is much more
physical mechanisms involved in rapid granular flows ha Imited. First studies were based on mesoscopic fluctuating
experimented a great advance in the last ygh/d. Kinetic ydrodynamicg11] and also on model equatioi$2], and

theory and nonequilibrium statistical mechanics methoddocused on the initial buildup of spatial correlations in the
have been extended to include inelasticity of COmsions,development of the clustering instability starting from an ho-

which is the main feature of grain interactions and is associl09eneous system. Precollisional velocity correlations have
ated with their macroscopic character. In these studies, thgeen analyzed in detail at a fundamental level starting from
most widely employed idealized model for granular fluids ist'€ Microscopic equations of motion and considering corre-
a system of smooth hard spher@s disks in two dimen- lated sequences of collisiofit3]. The system was initially in

siong whose collisions are characterized by a constant coef® state of thermal equilibrium and the results are valid at the

ficient of normal restitution. This coefficient measures theSnOrt time and length scales. Then, although evidently rel-

decrease in magnitude of the normal component of the reldVant they do not provide too much insight into the structure
tive velocity of the two colliding particles. of the velocity correlations in any particular macroscopic
Starting from the dynamics of the particles, it is possibleState of the granular fluid.

to derive the corresponding Liouville equation providing the, 1he main goal of this paper is to formulate a theory of
basis for the application of many-body methos4]. In fluctuations for dilute granular gases and to apply it to one of

particular, the inelastic Boltzmann equation describing théN€ Simplest possible situations, exploiting the scaling prop-

time evolution of the one-body distribution function is ob- erties of the particular state under consideration. This will
tained in the dilute limit. This kinetic equation has been ex-allow us to obtain explicit expressions for some distributions

tensively used to address many fundamental issues and ffaracterizing velocity fluctuations in the system. Special at-
compute averages of dynamical properties. Primary amor;gfnt'on will be paid to the possibility of expressing the re-
these are the hydrodynamic equations, with explicit expres2ults in the form of a macroscopic theory of fluctuations,
sions for the transport coefficients, which have been derivedicluding fluctuation-dissipation relations. In order to de-
by using a genera"zation of the Chapman_Enskog a'gorithnYelop a theory fOI‘ equal a.nd d|ﬁerent time f|UCtuatI0nS, the
[5,6]. More recently, the hydrodynamic description has beerhierarchy method will be usefd3,14. The general idea of
identified in the context of the eigenfunctions and eigenvalithe method is to derive from the Liouville equation hierar-
ues of the linearized inelastic Boltzmann collision operatorchies of coupled equations for the distribution functions de-
[7,8]. To put these results in a proper context, it must bescribing the fluctuations. Then the hierarchies are closed by
pointed out that there is no proof of time scale separation irusing the same kind of approximations as needed to derive
rapid granular flows. At the level of the Boltzmann equation,the corresponding kinetic equation, in our case the Boltz-
this would require that the rest of the spectrum of the linearmann equation. In this way, a unified formalism provides the
ized operator is bounded away from the hydrodynamiausual kinetic equation as well as evolution equations for the
modes, having a larger real part. This property has only beeane-time and two-time correlations.
established for some simplified model Boltzmann collision An isolated fluid with elastic collisions tends to the equi-
operatorg8,9]. On the other hand, granular hydrodynamicslibrium Gibbs state. The single particle distribution function
has been applied with success to many different situationss Maxwellian and there are no correlations between the ve-
and the Chapmann-Enskog expressions for the transport cticities of the particles. Equilibrium fluctuations are well un-
efficients have been confirmed by direct Monte Carlo simu-derstood since long ag@l5,16. For inelastic collisions,
lations[10]. there is no stationary state for an isolated system. The sim-
Most of the work carried out up to date has focused orplest state is the so-called “homogeneous cooling state”
kinetic equations for the one-body distribution and the infor-(HCS) with a monotonically decreasing temperature. Of
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course, this is a consequence of the dissipation of energy in 1NN
collisions. For the same reason, the single particle distribu- L) =LOT) + = > T(X, %)), (2)
tion function deviates from the Maxwellian, both at small 277 4]
and large velocitiegl7-19. Here, we will investigate a third

implication of the dissipative character of collisions: theWlth the first term generating free streaming,

presence of velocity correlations, even in the low density N P
limit. It must be realized that the existence of velocity cor- LO=> Vi, (3)
relations does not invalidate by itself the Boltzmann equa- j=1 IR,

tion, as long as they are small enough, since they are ob- d th dt q ibi locity ch . li
tained within a self-consistent theoretical frame, expected {6 € second terms describing velocity changes in cofli-

be valid in the low density limit. slons,

The study of fluctuations in the HCS is of primary impor-
tance for the development of a general theory of fluctuations  T(X;,X;) = ad‘lf doO(-Vj; - 0)|V;; - ]8R - o)
in granular systems. The HCS defines the reference state
from which macroscopic hydrodynamic equations can be de- X[be(V;,V)) - 1]. (4)
rived [5], thus playing in this context a similar role to the
equilibrium state in molecular systems. In the same way, &lere o=o00, do is the solid angle element far, R =R;
general theory of hydrodynamic fluctuations requires, as aR;, Vij=V;-V;, O is the Heaviside step function, and the
necessary first step, the knowledge of the fluctuations andperatorb,(V;,V;) changes functions o¥;,V; to the same
correlations occurring in the HCS. It should be stressed thaunctions of the scattered velocities given by
no conceptual difficulty arises from using the HCS, which is
a time-dependent state, as a reference state. In fact, the ref- V. 5V =b. V.=V — m(&,\,_)&
erence state is determined by the kinetic equation itself and ' ) ne
cannot be arbitrarily chos€i20].

In the next section, hierarchies of equations for the one- 1+a
time and two-time reduced distribution and correlation func- Vj— V| =b,V;=V;+ T(ff Vi)o. ©)
tions are derived. The closure relations obtained in the low
density limit, leading in particular to the Boltzmann equa- Inelasticity of collisions is characterized by means of the
tion, are also discussed. The specific case of the HCS isoefficient of normal restitutiom taking values in the inter-
considered in Sec. Ill, where the scaling property of this statgal 0<a<1.
is used to simplify the equations and eliminate trivial time  Microscopic densities in phase spaBgX;,X,, ... Xs,t)
dependencies. With an appropriate change of variables, thge defined by
equations looks like corresponding to a stationary, but non- N
Gibbs, state. In Secs. IV and V, marginal distributions for the _
one-time and two-time velocity correlations are introduced F1(x,1) _21 S (= Xj(1)), 6)
and their hydrodynamic parts are evaluated. The derived ex- =
pressions are then used to obtain the second moment of the N N
total energy fluctuations and the two-time energy correlation - v Vs
function. The theoretical predictions are compared with mo- Fala o) 2% A= X060 =Xi(1), (7)
lecular dynamics simulation results and a quite good agree- ) . )
ment is found over a wide range of values of the restitutiorftC. The lower-case variables=1r;,v;} are field variables
coefficient. Moreover, the simulation data show that thereferring to a particular point in. space. A hierarchy of
scaled energy fluctuations are Gaussian within the numericgduations for the above densities is obtained from &g.
errors. Finally, Sec. VI contains a summary of the main re-The first two equations, valid far>0, are
sults, and also a discussion of their connection with a P o
fluctuation-dissipation relation. [E + L(O)(xl)}Fl(xl,t) = J AXT(Xq, %) Fo(Xg, %o, 1), (8)

II. EVOLUTION EQUATIONS FOR THE REDUCED
DISTRIBUTION FUNCTIONS [

We consider a dilute gas of smooth inelastic hard spheres
(d=3) or disks(d=2) of massm and diametew. Let X;(t) o o
={R;(1),V;j(t)} denote the position and velocity of partigle +f dxa[ T(Xg,X3) + T(Xp,X3) [F3(X1, X0, X3, 1), (9)
at timet. Both R;(t) andV/(t) are parametric functions of the
initial positions and velocities of all particles. For-0 the  \where
time evolution of a phase functioA[{X;(t)}] is defined by

& -
7t + L(O)(lexz)} Fa(X1,X2,1) = T(Xq,X2) F o(Xq, X, 1)

J
(3.4 LO0.x) =LOxy) + LO0xp),  LOx) =wi-—,
AT ()] =e“VAT(0)], (1) |
10
where I'={X;;j=1,... N} denotes theN-particle phase . (10
point. The generator of the dynamigsis andT(x;,x;) is the binary collision operator
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T(x.%) = o_d—lf d60(; - &)|o; - o] f (X, U5 x4, 1) = 8%y = X)) F(Xq, 1) + F(Xq,%0,t7), (19)
that follows directly from the definition in Eq17). With
x[a‘zé(rij - a)b;l(vi,vj) = rjj + o)]. regard to the above equations for the reduced distribution
(11) functions, it must be reminded that although the streaming
operators also generate unphysical trajectories for unphysical

The OperaIOIb:,l(vi,vj) replaces all the velocitiegi and v initial conditions, the latter have a vanishing weight in the
appearing to its right by the precollisional valugsandv,, initial probability distribution and, therefore, the dynamics in
1+ all the equations for the reduced distribution functions is in
* -1 o ~
vi— v =b v =v; - 2—(0 00, fact well behaved.
(64

It is convenient to introduce also correlation functions
through the usual cluster expansions. From the one-time re-
- 1ta A duced distributions, one-time correlatioggx X, 1) are
_ "=plp =p + o). 12 _ ' 1o Xs
vj ~ v =bgvj=vj+ —-=(0 vy o (12 Gefined by
The averages of the microscopic densities
Fo(X1,%2,**,Xs,t) Over the probability distribution function
p(I',0) characterizing the initial state of the system are the

f2(X11X21t) = fl(XlIt)fl(XZt) + gZ(XIIXZIt)1 (20)

usual one-time reduced distribution functions, fa(X1, X0, Xa, 1) = F1(Xq, D) F1 (X, D) F1 (X3, 1) + F1(X1,1)G(Xp, X5, 1)
fo(Xp - Xot) = (Fo(Xqg, -+ Xg 1), (13) + f1(X0,1)Ga(X1, Xa, 1) + F1(Xg, 1) GalXq, X, 1)
where we have introduced the notation + g3(Xq, X2, X3, 1), (21
_ etc. Similarly, two-time correlation functiorf s can be de-
©)= f dl* Gp(T',0). (14) fined. In particularh, ; andh, ; are introduced through

The one-time reduced distributions obey a hierarchy of equa- ¢ (x t-x/ t') = f(x,. ) (X' ') + hr (X 1% .1’
tions that follow directly by averaging the hierarchy for the 110, 6, 1) = 106,070, 1) + 10, txq, 1),

microscopic densities. This is the generalization for inelastic (22)
collisions of the BBGKY hierarchy. In particular, from Egs.
(8) and(9) it is trivially obtained[3]: 22X, %, £ X0, 1) = F1(%q, D) F1 060, ) F 1, )
J — rgr
{5 + L(O)(Xl)i| f1(xg,t) = j A T(Xq,X0) F2(X1, %o, 1), * 02(X0, %, D13, 1)
(15) +hy (X, £ %3, 1) Fa (%, 1)
+hy 4%, x4, 1) F1(Xq, 1)
J — !t
{E " L(O)(Xl,xz)] fa(X1, %o, 1) = T(Xq, X2) F2(Xq, X0, 1) +hg 1(Xg, Xo, 15X, 1) (23

Evolution equations for the correlation functions are ob-

+ | dxlT(x Xa) + T, %) Fa(Xa, X0, Xa ). (16 tained from the equations for the corresponding reduced dis-
f AT0xs) + T X lfsba,Xp X 1) (16) tributions. Thus from Eqg15) and(16) one gets

Two-time reduced distribution functions can also be de-
fined in terms of the microscopic densities as [

% + L(O)(Xl):| f1(xq,t) = f dxz?(xlvxz)[fl(xlvt)fl(x21t)

froXg, oo X 6Xg, o X ) = (Fr(Xy, .o X 1)

’ + 92(X11X21t)]1 (24)
XFg(Xg, oo X&)

(17) [

It will be assumed that>t’>0 for concreteness. Again,

evolution equations for these quantities are derived from the _
hierarchy for the densitieB,. The lowest order distribution, = T(Xq, %) [F1(Xq, ) F1 (%o, 1) + Go(Xq, X2, 1)]
f1 1, is seen to obey the equation

Jd
3t + L(O)(lexz)}gz(xl,xz,t)

p + f dxg(1 + Plz)?(xl’X3)[92(X11X21t)f1(x3:t)
[E + L(O)(Xﬁ} f11(Xq,tixg,t)

+ 0o(Xp, Xa, 1) F1(Xq, 1) + Ga(Xq, X, X3, 1) ], (25)
=fdXzT(XLXz)fz,l(Xl,Xz,t;Xi,t'), (18)  where the permutation operat®¥, interchanges the labels
of particles 1 and 2 in the quantities to its right. In an analo-
which has to be solved with the initial condition gous way, from Eq(18) it results
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] . — _ . . .
{E + L(O)(Xl)]hl,l(xlvt;xl't ) To(v1,02) = 0* lf doB®(vy,- 6)|vy,- o]
= ' e X[a 20, vy,v5) - 1]. 30
:fdsz(xl,xz)[hlyl(xl,t;xl,t )(Xo,1) [ b2 ] (30)
This is the Boltzmann equation for smooth inelastic hard
+hy 1%, X0, 1) F1(Xq, 1) + Dy 1(Xg, %, 1 X7,t)]. sphered3,17]. Similarly, Eqg.(25) reduces to
(26) d
. o o — + L0, %) = Kxq,t 1] = KD, 1] | Go(Xg, %o, )
The last equation holds far>t’ and the initial condition is Jat
hy 2,5 %q,7) = Ga(Xg, X, 1) + 8(xg = X)) Fa(xg,t"). = 8(r 12) To(v1,02) F1 (%1, D) f1(Xo, 1), (31

(27)  where we have introduced the operator

All the equations derived in this section are exact conse- _
quences of the dynamics of the particles as defined by the  K[x;t/f;]= j dxg &(riz) To(vj,v3) (1 + Pig)f1(x3,1).
generator given in Eq2). In fact, they are the extension to
inelastic hard particles of the equations discussed in Ref. (32
[14]. In the next sections, the low density limit and the par-

; . Therefore, two particle correlations are generated from the
ticular case of the HCS will be addressed. P g

uncorrelated product of solutions of the Boltzmann equation
lIl. LOW DENSITY FLUCTUATIONS AROUND through inelastic binary collisions. Of course, the solutions
THE HOMOGENEOUS COOLING STATE of this equation must be consistent with the approximation
_ o . leading to the Boltzmann equation. The low density limit of
_ In_ ord_er to obt_am closed k|r_1et|C equations for _the reducec{he equation for the two-time correlations, Eg6), follows
distribution functions, some kind of closure relations for theby neglecting the term proportional g ; on the right-hand

hierarchies of equations derived in the previous section argije and also the distance between colliding particles, so that
required. Here we are interested in the limit of a dilute in-j; ;g given by

elastic gas and the method we will apply is based on the
general assumption that the order in the density of correla-
tion functions increases as the number of involved particles
increases. More precisely, what it is assumed is that the ) oo )
above is true for the precollisional part of the correlation ~Finally, an equation fohy ;(x;,t;;,1) is obtained by tak-
functions when two of the particles are at contg4]. This  ing time derivative in Eq(27) and using Eqs(28) and(31),
method was discussed in detail by Ernst and Cohen for the | ,
hard sphere gas with elastic collisiofts4] and it has been {E +LO(xq, xp) = K[xq,t] 1] - K[xi,t|fl]}hlyl(xl,t;xi,t)
already applied to the study of one-time reduced distribu-

tions for inelastic hard particlegt,22. Closely related re- =T(xq, X1, 1), (34)
sults follow from a formal small parameter expansion of the |

reduced distribution function£0,23. From a physical point  With

d
|:E + L(O)(Xl) - K[Xl,t|f1]:| hlvl(Xl,t,Xi,t') = O (33)

of view, the underlying idea of these kinetic theories is that T (Xq, X3, 1) = 8(Xq = X1)I[Xq,t|F1] = (K[Xq,t/f4]
no hypothesis are necessary to derive equations for fluctua- , ,
tions and time-correlations beyond those required to derive + KIxq, [ f1]) 8(xg = x9) f1(xq,t)

the kinetic equation for the one-particle distribution function, i , ,
i.e., the Bolt(imann equation inpthe dilute gas. Let us stress + 8r = 1) To(we,09)fa (X0, DTa0q,0). - (35)

that this seems to be a quite general property, beyond the It is worth pointing out that the above derivation makes

range of validity of the Boltzmann equation, as emphasizeto reference to whether collisions are elastic or inelastic. In
in Ref. [24]. fact, when it is compared with the analysis carried out in Ref.

__Then, in the low density limit, the term involving [14], the only difference is in the replacement of the elastic

T(Xq,%)0x(X1, %, 1) in EQ.(24) is assumed to be negligible as binary collision operators by the inelastic ones and this does
compared with the one involvin&(xl,xz)fl(xl,t)fl(xz,t). not affect the density dependence of each of the contribu-

Furthermore, in the same limit the spatial separation betwee?llons i the equations. This is also the case when ihe kinetic

the centers of colliding particles can be neglected, so that th%quatlons are.obtamed from a formal expansion in a dimen-
above mentioned equation reduces to sionless density parametf20,23. Therefore, at least at a

superficial level, it seems that the theoretical basis for low
density kinetic theory is the same both for elastic and inelas-
tic systems. Of course, the actual range of validity of the
kinetic equations, i.e., how small the density of the system
where must be so that the above kinetic equations provide an accu-
_ rate description, might depend on the inelasticity of the sys-
Ixg, 1] = f dxy 8(r1)To(v1,v2)f1 (X, DF1(X2,1), (29 tem, and also on the particular state being considered.

[% * L(O)(Xl)} fa(xq,t) = Ixq, 1 f4], (28)
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The inelastic Boltzmann equatiai28) admits a special 9 Thes
solution fcs(v,t) describing the HCS for which all the time s {oThes(S), (44)
dependence of the distribution function occurs through the
granular temperaturédefined from the average kinetic en- showing that the temperature of the HCS decreases exponen-

ergy). This solution has the scaled forfh7] tially on this time scale. The equivalent expression in the
» original time scale is given by Haff's lai25],
frcs,t) = nyug (D xHcs(©).- (36) . s
Thes(® = Tues(O)[ 1+ e O] 2. (45)

Heren, is the uniform number of particles density,
ok 12 In order to particularize the equations for the two-particle
vo(t) = {M} , (37) correlations, the concept of the HCS as introduced above
m will be extended. It will be assumed that in the HCS the
N-particle distribution function of the system,cdI',1), is
given by a scaling function for which all the time depen-
dence occurs through the scaling of the velocities with the
thermal velocityv(t) [3],

kg being the Boltzmann constant, angcgc) an isotropic
function of scaled velocityc=v/vy(t). The above scaling
property implies that the temperature obeys the equation

9 Thed(t o
;CtS( ) + {hed D) Thedt) = 0. (38) prcs(T,1) = [vo T MNopcd{rij.cb). (46)

. . . . , The scaled distributiopy,.s is invariant under space transla-
The cooling ratefiics(t) IS a given bilinear functional of tions, Therefore pyco(T',1) represents a spatially homoge-
fucs and it is proportional (ycs(t)™". Its explicit expres-  neqys fluid. The above scaling implies a similar scaling for
sion will not be given herg7,17]. Substitution of EQ(36)  a| the reduced distribution functions and, in particular, the

into the Boltzmann equatiof28) and use of Eq(38) leads to  one given by Eq(36) for the one-particle distribution func-

a closed equation fog,cs(C), tion. Then, Eq(31) when applied to the HCS becomes
@i ( - J -
~(Cxres) = Id €l xmesl, (39) Cio- —— = A(Cy) = A(C) |Tres(l12:C1,C)
24dc dliy
where = 8(119) To(C1,6) Xtcs( €0 Xhes(C2). (47)
lo= QH_CS(t) whereA(c;) is the linearized Boltzmann collision operator in
vo(t) the scaled representation,
(1 _ 012) ,n_(d—l)IZ o P
- d+3 de; | dc; Cipxres(Cr)Xres(C) Alc) = f dcs To(Ci,C3)(1 + Pig) Xics(Ca) — 5_20(9_ “Gi,
21| —|d Gi
2 (48)
(40) and the scaled two-particle one-time correlation function is
is the time-independent dimensionless cooling rate of thelefined by
HCS and

Onesll12:€1,C) = nﬁlgdvgd(t)gz,Hcs(rlzaUlyvzyt)- (49)

Jdclxhcs] :J dc, ?O(C’Cl)XHCS(C)XHcs(Cl)v (41)  This quantity does not depend sras a consequence of the
scaling property. In a similar way, E@33) yields

— J J + ’ FeAly —
To(C,cy) = f doO[(c-cy) - al(c—cy) - ol 2 Mc,cy) — 1. Setar FI A(cy) [hpes(ly = 13,€3,8=-8";¢1) =0,

(42) (50
The operatorb,(c,c,) is again defined by Eqg12), but with
replacing the velocities; andv; by ¢ andc;, respectively.

+ _1 _o-ny=n"1lpd d depr
It is useful to introduce dimensionless time and length hres(ly = 11,61,8 = 83¢0) =M Cug(ivg(t')

scales by Xhy 1 pedXet; X, t"). (51
t The initial condition for this equation is
= f dtlvoé l), I=¢", (43) - 5

0 hrcs(la = 11,¢1,05¢1) = hues(ls = 13,¢15¢)
respectively, wheref=(ny0% 1) is proportional to the =Gucs(l1 = 14,¢1.¢})
mean free path of the gas. Thusf) is a measure of the , ,
average number of collisions per particle in the interval +8(cy = el = 1) xres(Cy)-
(0,1). In terms ofs, Eq. (38) becomes (52
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In the above expressions, we have made explicit the transla- ~
tional invariance of the HCS. Finally, E¢34) becomes PHedC,Cp) = f dl12hhes(l12,C15C2) - (60)
c- 9 +cp - i{ - A(cy) — A(c)) ﬁHcs(ll— 11,¢1;€1) An equation for this distribution is obtained by integrating
dly aly Eq. (53),
=8, - 1)T(cy,c} 53 =
Aa-lleney), 9 [Ae) + Alc)Jgncs(euc) =~ T(erc). (61
T'(cy,¢}) = = [Alcy) + A(c))]8(cy = €} xrcs(Cr) From the definition ofg, in Eq. (20) and the scaling of the
o several distributions defined in the previous section it fol-
+ To(C1,€1) Xhcs(C1) Xres(C) - (54)  lows that
Equationg47) and(53) describe the correlations between
equal time fluctuations. Their solutions are related through Jdcl PHes(C1,C2) =J dc; ened€y,c2)=0. (62
Eqg. (52). In both equations, the distribution function of the
HCS is needed and has to be found from £9). The same Instead of trying to find the complete solution of E§1),

happens with Eq50) for the unequal time fluctuations. Nev- we will restrict ourselves to compute what we will call the
ertheless, the analytical form ofycs(c) is only partially  hydrodynamic part ofpycg(Cy,C,), defined as follows. We
known. In particular, an expansion about the Gaussian ionsider the eigenvalue problem associated with the linear-
Sonine polynomials has been used. To first orgges(c) is  ized homogeneous Boltzmann operatn;s)]

approximated by

2 A(c)&i(c) =Né(c). (63
Xnes(C) = %[1 +ay(@)S?(cA)], (55) The hydrodynamic part of the spectrum/fis defined by
™ those eigenvalues that coincide with the eigenvalues of the
where balance equations for the number density, momentum, and
. temperature following from the homogeneous linearized
S9(c?) = c_d+ 202+ dd+2) (56) Boltzmann equation. Such eigenvalues are
2 2 8
o do
The coefficienta, is related with the fourth moment of A =0, Ap= X 3=~ EE (64)
Xrcs(©) by
Ach The corresponding eigenfunctions Affor each of the above
ay(a) = 342 -1; (H= f dc c*yues(©).  (57) eigenvalues are found to K&,8]
J
Substitution of Eq(55) into Eq.(39) leads to a closed equa- £1(C) = xpedo) + e [exucdo)],

tion for the coefficient,, and by neglecting nonlinear terms
in a, one getg17,1§

16(1 - a)(1 - 2% - £(0)= - t?chs(C), £(0) = ai Ioxuedd], (65
9+ 24d + (8d — 41) o + 30a? — 300" c C

ay(a) =

respectively. The eigenvalue is, therefored-fold degener-
ated. The scalar product of two functiom&) and g(c) is
defined as

Using Eq.(55), the following approximate expression for
the dimensionless cooling rate is found:

\E 7T(d—l)/z( 1- az) {

gO
2

The above expressions have been shown to agree withith f* being the complex conjugate 6fThe eigenfunctions

numerical results obtained by means of the direct simulatior¢s 91Ven in Eq.(65) are not orthogonal, as a consequence of
Monte Carlo method in the thermal velocity region, i.e. for the operatorA being non-Hermitian in the associate Hilbert

velocitiesc of the order of a few unit§26]. Let us mention ~ SPace: On the other hand, it is easily verified that the set of
that the shape of the scaling distribution has also been anf4nctions
lyzed for large velocities and found to have an exponential

1+ iaz(a)] . (59)

16 (flg) = f de xiics©f (9)g(c), (66)

form [18,19. £1(0) = Xnes(©),  £2(€) = Cxnes(©),
IV. ENERGY FLUCTUATIONS IN THE HCS o 2
_(co 1
To study the effect of velocity fluctuations on the behavior §(0)= (E * 5)"“05(0) (67)
of the total energy of the system in the HCS, we introduce a
marginal velocity correlation function by verify the biorthogonality condition
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» _ fore, it will be taken here as a working hypothesis to be
=054, 68 : h ;
<§ﬁ|§ﬂ> BB (68) evaluated later on by comparing the predictions it leads to
B,B'=1,2,3. Thedefinition of the scalar product given with the results from particle simulations of the system. In
above is trivially generalized to two-velocity functions by  this way, we obtain from Eq61)

(fencolgler,co) = f dey f de; Xiies(CXies(C2) [A(ey) + Alep)]fits(er,ca) = = PTo(e, Colxmed Cxesl 0
. +[A(cy) + A(Cr)IPS(C; = Co) xpcs(Co) - (73
X f(cy,¢2)9(Cy,C) - (69) »
By writing
Then, a projector operatd? is defined as .
3 3 o ) B
Pf(cy,co) = E E fﬁ(cl)fﬁ'(cz)<§5(cl)§ﬁ'(C2)|f(01102)> Prics(CuCo) = ,8%:1 aﬂﬁ,g’g(cl)gﬁ/(%)' 49
B=lp=1 }

(70)  the above equation can be easily solved for the coefficients

_ . o age. Some details of the calculations are given in the Ap-
and the “hydrodynamic part” ofcs(cs,C,) is by definition  pendix. The result is:

(h) =
#rics(CCo) = Perce(C1,C2)- 73 Piie(€1,C5) = gt (o), (75)
Next we applyP on both sides of Eq61) and, in order to where
get a closed equation fqas(:"és, we make the approximation
PA(c;) = PA(c)P. (72 ags(@) = M + szaz(a) +b(a). (76)

2d 4d
A theoretical estimatiora priori of the accuracy of this ap-

proximation would require to know more about the spectrumin the first Sonine approximatioay(«) is given by Eq(58)
of A(c) and its adjoint than it is available at present. There-and

2+d-6d%- (10 - 15 + 2dd)a - 2(2 + 7d)a? + 2(10 -d)a®

b =
(@) 6d(2d + 1) - 2d(11 - A)er + 12da? — 12da®

(77)

The structure of the result fapycsin Eq. (75) is a con-
sequence of the strict conservation of the number of particles (E(hcs= f dl' E(D)ppcsl D). (80)
and total momentum. Moreover, in the elastic limit- 1, a,
vanishes and=-(1+d)/2d, so thatas; also vanishes, re- Then, using Eq(798) it is easily seen that
flecting that the energy is also strictly conserved in this limit, 2
and there are no veloc_lty correllatlons. On the c_)ther h?.nd, for ([sE(W)]P)=— J dxlf dx, Uivghl,l,Hcs(Xl,tixz,t)
a<1, velocity correlations are induced by the inelasticity of 4

collisions and, as a consequence, fluctuations of the total
energy E=3 m\#/2 show up. These fluctuations have an = NIETZ 40 f dclf dc, c2cppce(C1,Co)
intrinsic dissipative character. To compute their second mo-
;nsent, we start by realizing that the energy can be expressed - NkéTﬁCS(t)d2< &(C)&(Cy)| qu): {c1,C))
=NIgThcs(e(a), (81)
mo> where

As expected, this function monotonically increases as the
with F;(x,t) being the microscopic phase space density devalue of a decreases, vanishing in the limit of elastic colli-
fined in Eq. (6). The instantaneous deviations BfI'(t)] sions.

from its average value in the HCS are given by To verify the above theoretical predictions, we have per-
formed Molecular DynamicgMD) simulations of a freely

evolving system of inelastic hard disks, idg=2, in a square
SE(I',t) = E[I'(1)] = (E(t)) s (79) box of sizeL with periodic boundary conditions. The event
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FIG. 2. Average steady values of the scaled second moment of

FIG. 1. Scaled dispersion of the energy fluctuation$ the energy ﬂuctuationeésl, as a function of the restitution coeffi-
=N((5E(s))2/(E(s))%, as a function of the dimensionless tirge cient. The symbols are from MD simulations of a system of hard
defined in the main text, for a system of inelastic hard disks withdisks of densityn;=5X 10~30~2 while the solid line is the theoret-
«=0.85 andny=0.02s"2 The angular brackets average has beenical prediction given in Eq(82).
taken over 800 trajectories.

a decreases, vanishing in the limit of elastic collisions. The
driven algorithm[27] has been used. Three different, low error bars in the figures have been determined from the dg—
values, of the density have been considered, namgly V|at|9ns of the'lnstantgneous values of the scalled.energy dis-
=0.022, 0.010°2, and 5x 10-30"2. The number of particles Persion from its stationary average value. Similar results
used for each of the above densities\is 1000,2000, and have been found for the other two larger densities considered
4000, respectively. These values guarantee that, in all th this paper, although discrepancies between theory and
simulations to be reported in the following, the size of theSimulations of the order of 10%, probably due to density
system is smaller than the critical size, beyond which the ~ €ffects, are observed far=0.7. _,
HCS becomes unstable and velocity vortices and spatial in-, W& have also investigated the shape of the probability
homogeneities are developga8]. An estimation ofL, has distribution for the energy fluctuations. For each trajectory of
been made by using the hydrodynamic equations obtainetfi€ System, the trace €E(t) ~(E(t))cs)/ (E())ncs has been
from the Boltzmann equatiofs,29. Using this expression, Partitioned into nonoverlapping bins of value 0.001 and the
one gets that for the most unfavorable situation to be refrequency distribution has been built using the data from all
ported (a=0.7), it is L/L,~0.86. Therefore the system is the trajectories corresponding to the same valuds afida.
inside the stable homogeneous region. Moreover, we havEhe resulting normalized distribution |s'shown in Fig. 3 for
checked in all the simulations that the system actually stayf1e casen,=0.010"% and @=0.9, where it is seen that it is
in the HCS, by monitoring the local velocity and density Very well fitted by a Gaussian distributigeolid line). Simi-
fluctuations.

For each value of the density and the restitution coeffi-
cient a number of trajectories have been generated. By aver-
aging over these trajectories, the time evolution of the aver- K
age energy and, therefore, of the granular temperature 30 r * gy
Thed(t), has been obtained. In all cases it was very well fitted P
by Haff's law, Eq.(45). The average value @&?(t) has been

40

obtained in the same way. Afterwards, we have verified that, 20
when the time-dependent energy deviation is scaled with R
TZc4(b), it fluctuates around a stationary average value, as .
predicted by Eq.(81). An example, corresponding te 10 |
=0.85 andny=0.02 is shown in Fig. 1. In this case, the ]
results have been averaged over 800 trajectories.

In Fig. 2, the results for the steady values of o b - -

20.04 -0.02 0.00 0.02 0.04

=((8E)?)pcs/ NK3T? s are plotted as a function of the coef-
ficient of restitutiona for 0.7<a<1 for ny=5x 1073072
Also plotted is the theoretical prediction, i.e., the function F|G. 3. Normalized distribution of the relative energy fluctua-
e(a) given by Eq.(82). A quite good agreement is observed tions for a system of inelastic hard disks witiy=0.010"2. the
between the theoretical and numerical results. As expectedymbols are from MD simulation and the solid line the fit to a
the amplitude of the fluctuations monotonically increases a&aussian.

OE/<E>
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lar results are found for the other valuessfndny consid- 1.00 ;
ered along this work. This suggests the existence of a physi- PP
cal potential governing the amplitude of the energy 075 | * 8'=47.07
fluctuations in the HCS, similar to the equilibrium state of
ordinary fluids, but we have not been able to identify it.
0.50 | M
C.mz e
V. ENERGY TIME CORRELATION FUNCTION 025 | %
IN THE HCS ) 3
}o
In this section, the time correlation function of the total 0.00 + o
energy of the HCS, will be studied. To begin with, a global '
two-time velocity correlation function is introduced by ‘ . . .
08, 5 10 15 20 25
§-s°
Yrcs(C1,8-8'icy) Efdll hues(ly = 11,61,8-8";¢0), FIG. 4. Normalized energy time autocorrelation function

Cre(s,s') as a function os-s' for three different values of . The
dimensionless time scakehas been defined in the main text. The
symbols are from MD simulations of a system of inelastic hard
wheres=¢s'. Then, from Eq(50) it follows that disks witha=0.85 andh;=0.020"2. The solid line is the theoretical
prediction as given by Eq91).

(83)

a ! . Iy —
[a_s'A(Cl)]‘”HCS(C”S'S =0 (84 (EMEW)ncs= J dr ETOIEIT() Joncs(T,0). (90

whose formal solution is Taking into account Eqg83) and(51), it is easy to show that

the above definition can be transformed into
PhedCr,s—8'ic)) = €8N (e cl). (85)
As in the previous section, we are interested in the hydro-
dynamic part ofiycs,

Ceelt,t)) = NKGTrics() Thes(t)
X J dclf dcj cici?yhcs(C1,5— ;)
YATLs(€1,C) = Pifics(C1,Co). (86) = N Thes D Thes(t))d?

e £ (~\[,7(h) P
Using again the approximation given in E2), Eq. (85) X(&(Cuds(er)|dhies(Cr, s~ ')
can be rewritten as = NIEThes) Thes(te(a)e o021 (97)

(h) el — A(s=s)A(C) () / This result is consistent with E¢81), since the former re-
Pucs(C1,S—8";c) =€ Yehcs(CuC1) &7 duces to the latter for=t’ and, therefores=s'.

In Fig. 4 results from MD simulations for a system with
and substitution of Eq(75) yields «=0.85 anch=0.02"2 are shown. They have been averaged
over 800 trajectories. In the figure, Cce(s,s')
= Cee(t, ') /NIGe(@) ThedD) Theg(t') is plotted as a function
of s—¢’ for several values ad’, namelys'=15.16,31.12, and
47.07. It is seen that the results do not depend on the value of
This is our primary result for the spatially integrated hydro-s’ as implied by Eq(91). This is a consequence of the scal-
dynamic part of the two-time velocity correlation function in ing property of the HCS, as discussed in Sec. Ill. Moreover,
the HCS. It shows that the correlation decays exponentiallyhere is a quite good qualitative and quantitative agreement
with a rate determined by the cooling rate. In the following, with the exponential decay predicted by the equation, given
we are going to employ the above expression to compute thigy the solid line in the figure and that has been evaluated by
HCS time correlation functiolgg(t,t’) for the total energy, using Eq.(59) for the cooling ratel,. This is more clearly
defined by observed in Fig. 5, where a logarithmic scale has been used.
For large times the simulation data become very noisy, but
there seems to be some evidence of a systematic deviation
from the exponential behavior, becoming stronger as the
value of a« decreases. Whether this is the case and its pos-
with t=t'=0. Here, sible relationship with hydrodynamic mode coupling effects

PNL(Cr,5—8';C)) = agge 10 2g (e é5(c)).  (88)

Cee(t,t') = (EMEM)ncs = (EM e EA Dhcs, (89)
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0 ; ' ' (60), by using the definitions given in Sec. Il, and afterwards
pPAN its hydrodynamic part. The functional dependence on the ve-
* 8'=47.07 locity of the particles of the result differs from the one de-
-1t S 1 rived here, even in the limit of very small inelasticity. Since
InC, R no physical foundation is provided by the authors in Ref.
D) [32] for the expression they propose, it is not possible to
1 discuss the origin of the discrepancies.
% The one-time and two-time marginal velocity correlation
e functions determine the fluctuations of the total energy of the
3t LR N system and also its two-time correlation function. Their ex-
o pressions, given by Eg$81) and (91), are two of the main
results reported in this paper. To put them in a proper con-
‘ , , text, it is interesting to analyze the differential equations they
0 5 10 15 20 obey. Let us first conside€e(t,t"). By taking time deriva-

s tive in Eq.(91) and using Haff's law, it is obtained:

=2

-4

FIG. 5. The same as in Fig. 4 but in a logarithmic plot. J 3
ECEE(LI’) + §§HCS(I)CEE(t,t') =0, (92
deserves more extensive study. Similar results have been

found for other values of the coefficient of restitution in the valid for t>t"=0. This equation can be given a physical
range 0.7 a<1. interpretation as follows. Let us write the macroscopic equa-

tion for the temperature of the HCS, E®8), in the form

d
VI. SUMMARY AND DISCUSSION EE(t)HCS+ M[(E(t))cs] = O, (93)

In this paper, a general theory for fluctuations and corre- .
lations in a dilute granular gas has been formulated, by ex/Neré MI(EM)ucs] = ducs(EM)ucs Then, Eq.(92) is
tending in a natural way the standard methods of kineti€duivalent to
theory. The theory has been particularized for the HCS of a 9
freely evolving granular gas, taking advantage of the scaling ECEE(t’t,) +L(OCee(t,t') =0, (94)
properties of this state. Two marginal distribution functions,
characterizing the global velocity one-time and two-time cor-with
relations, respectively, have been introduced and their hydro-
dynamic parts have been computed. They are defined by the L(t) = M (95)
lowest order eigenfunctions and eigenvalues of the linearized ICEM)ncs
Boltzmann equation, similarly to the case of ordinary fluids

with elastic collisions[30,31. The results, given by Egs. The above relationship between the macroscopic equation

; R . for the energy, Eq(93), and the equation for the time decay
(75) and(88), show the existence of intrinsic velocity corre- of the energy fluctuations, E(@4), provides a generalization

W;]Oer:f tﬂgategreslcg?ggevsitr?%h??e$e§;t£3LZ ooff tﬁg”?'gpes'of the Onsager regression hypothesis for the decay of spon-
properly P YSteMneous fluctuations in equilibrium, in the sense that the

thgy decay expom:—zntlally V\."th a qharqctensuc time deter'equation describing the dynamics of fluctuations can be ob-
mined by the cooling rate if the time is measured by the

., - “tained from the macr i tion ribing the evolu-
average of the accumulated number of collisions per particl ained fro € macroscopic equation describing the evolu

. . Sion of the system.
It must be stressed that the existence of these velocity corre- In a similar way, it is seen that the expression given in Eq.

lattions d_oes not imply a violation of the molecul_ar cha(_)s_ 81) corresponds to the long time limit of the general solu-
assumption that underlies the Boltzmann equation. This i :
. ion of the equation

because the latter only refers to theecollisionalpart of the
two-body distribution(at contact [21]. In fact, it is easily d
seen that the velocities of two particles are necessarily cor- ECEE(“) +2L(HCee(t,) = 1(1), (96)
relatedafter they collide, as a consequence of the collision
rules. In any case, the simulation results reported in thigvith the source terni(t) given by
work show that the correlations are small at least as long as _ 212
the system is dilute and stays in the HCS. (0 = Nel@) e DkpThes(D)- 87

Let us mention that velocity correlations in the HCS haveThe structure of this equation shows thé) can be associ-
been recently considered by Pdsciedl. [32]. On the basis ated with a “noise amplitude,” since it is the average cova-
of symmetry and simplicity, they assume a form for the re-riance of the noise in an equivalent Langevin formulation
duced two-particle distribution functiofy, ycqX;,%,,t) that  [14,35. In this way, Egs.(96) and (97) formulate a
incorporates both static and dynamic correlations. From thifluctuation-dissipation theorem for the HCS.
form, it is easy to obtain an expression for the marginal The above results reflect the intuitive notion that the dy-
velocity correlation functionpycg(cq,C,), introduced in Eq.  namics of low-order correlation functions is essentially of
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macroscopic character. In fact, similar generalizations have For f=8'=1 the three terms in the above equation van-
been found for many nonequilibrium states of ordin@as-  ish, then becoming an identity. Nevertheless, iajs0 be-
tic) systems by means of different methods and approximasause of Eq(62). For =1 andg’=2, it is

tions [33,34. Nevertheless, it must be reminded that the — —  —

derivation here makes use of the approximation given in Eq. (£1(c0) £1(c2)[ To(Cy, C2) Xrics(C) Xhes(C2)

(72). _
The theoretical predictions for the fluctuations and the = f dc; f dc, €,To(C1,C2) Xhes(C1) xres(C2)
time-correlation function of the total energy of the HCS have

been compared with MD simulations, and a good agreement ~ _ 1 d q ) )T ), +C,)
has been found. This provides strong support for the theory ~ ~ 5 | 9¢1 | 9C2 Xrcs(C1Xres(C2) TolCr, C2) (€1 + €
developed here, including the hydrodynamic description in :

terms of the lowest order eigenfunctions and eigenvalues of =0 (A4)
the linearized Boltzmann _coII|S|on operator. Of course, the nd (£,(c)|&(c)) also vanishes because of parity. Then we
same procedure of analysis can be applied to more mvolveg

roblems, such as linear response to spatial perturbationge 2t~ 212=0- - L e
P ' P P P ' The remaining coefficients are obtained in a similar way

mode coupling effects, and so on. by using Eq.(A1) and the collision rules. The only coeffi-
cient different from zero i®3; whose expression reads
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where
APPENDIX by(a) = - it
d+5
In this appendix we are going to solve ET3) for the F( )dz
coefficientsagg . This is facilitated by using that, for arbi- 2
trary functionsf(c;,c,) andg(c,,c,), it is
X fdclf dcoxres(C) xHes(C2) 9(Cy, Co)
f dey J de, (C1,C) To(€1,C2)9(Cy,C2) (6)
with
=f dclf dc; 9(cy,C) To(Cy,C)f(Cy,C0),  (Al) (1-a?)(d+1+27 .
9(Cy,Cp) = 16 Ci2
where _ 2
. (d+5) aid +1)+ 4acf262
To(C1,C) = f doO(cyp- 0)C12- a{b,(Cy,Cp) — 1]. 1+a
- _(2d + 3 - 3a)C12(G . 012)2 (A?)
(A2) 2
and
The operatob, has been defined in E¢b).
Substitution of Eq(74) into Eq.(73) and use of the linear g% (A8)
independence of the functiordg yields 2

- — An approximate expression fdy;(«) can be obtained by
(\g*+Npagg = = (€4(C)Ep (C))[To(Cr,Co) Xhcs(Co) Xhcs(C2)) using the result forycs in the first Sonine approximation,
Eq. (55). In the same approximatiofy is given by Eq.(59).

+(Ng+ Ng)(€5(C)| €5 (C)). (A3)  In this way, Eq.(75) for b(a)=b;(a)/{y(a) follows.
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