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Starting from the hierarchy of equations for microscopic densities in phase space, a general theory for
fluctuations and correlations in a dilute granular gas of hard particles is developed. Then, the particular case of
the homogeneous cooling state is addressed. Explicit expressions for some distributions describing the pres-
ence of velocity correlations and their dynamics are obtained. These correlations are inherent to the dissipative
dynamics of the collisions. The implications for the behavior of the total energy of the system are analyzed and
the results are expressed in terms of a fluctuation-dissipation theorem. The theoretical predictions are shown to
be in agreement with results obtained by molecular dynamics simulations, which also indicate that energy
fluctuations are well described by a Gaussian distribution.
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I. INTRODUCTION

The understanding of the microscopic and macroscopic
physical mechanisms involved in rapid granular flows has
experimented a great advance in the last years[1,2]. Kinetic
theory and nonequilibrium statistical mechanics methods
have been extended to include inelasticity of collisions,
which is the main feature of grain interactions and is associ-
ated with their macroscopic character. In these studies, the
most widely employed idealized model for granular fluids is
a system of smooth hard spheres(or disks in two dimen-
sions) whose collisions are characterized by a constant coef-
ficient of normal restitution. This coefficient measures the
decrease in magnitude of the normal component of the rela-
tive velocity of the two colliding particles.

Starting from the dynamics of the particles, it is possible
to derive the corresponding Liouville equation providing the
basis for the application of many-body methods[3,4]. In
particular, the inelastic Boltzmann equation describing the
time evolution of the one-body distribution function is ob-
tained in the dilute limit. This kinetic equation has been ex-
tensively used to address many fundamental issues and to
compute averages of dynamical properties. Primary among
these are the hydrodynamic equations, with explicit expres-
sions for the transport coefficients, which have been derived
by using a generalization of the Chapman-Enskog algorithm
[5,6]. More recently, the hydrodynamic description has been
identified in the context of the eigenfunctions and eigenval-
ues of the linearized inelastic Boltzmann collision operator
[7,8]. To put these results in a proper context, it must be
pointed out that there is no proof of time scale separation in
rapid granular flows. At the level of the Boltzmann equation,
this would require that the rest of the spectrum of the linear-
ized operator is bounded away from the hydrodynamic
modes, having a larger real part. This property has only been
established for some simplified model Boltzmann collision
operators[8,9]. On the other hand, granular hydrodynamics
has been applied with success to many different situations,
and the Chapmann-Enskog expressions for the transport co-
efficients have been confirmed by direct Monte Carlo simu-
lations [10].

Most of the work carried out up to date has focused on
kinetic equations for the one-body distribution and the infor-

mation following from them, while the knowledge about
fluctuations and correlations in granular gases is much more
limited. First studies were based on mesoscopic fluctuating
hydrodynamics[11] and also on model equations[12], and
focused on the initial buildup of spatial correlations in the
development of the clustering instability starting from an ho-
mogeneous system. Precollisional velocity correlations have
been analyzed in detail at a fundamental level starting from
the microscopic equations of motion and considering corre-
lated sequences of collisions[13]. The system was initially in
a state of thermal equilibrium and the results are valid at the
short time and length scales. Then, although evidently rel-
evant, they do not provide too much insight into the structure
of the velocity correlations in any particular macroscopic
state of the granular fluid.

The main goal of this paper is to formulate a theory of
fluctuations for dilute granular gases and to apply it to one of
the simplest possible situations, exploiting the scaling prop-
erties of the particular state under consideration. This will
allow us to obtain explicit expressions for some distributions
characterizing velocity fluctuations in the system. Special at-
tention will be paid to the possibility of expressing the re-
sults in the form of a macroscopic theory of fluctuations,
including fluctuation-dissipation relations. In order to de-
velop a theory for equal and different time fluctuations, the
hierarchy method will be used[13,14]. The general idea of
the method is to derive from the Liouville equation hierar-
chies of coupled equations for the distribution functions de-
scribing the fluctuations. Then the hierarchies are closed by
using the same kind of approximations as needed to derive
the corresponding kinetic equation, in our case the Boltz-
mann equation. In this way, a unified formalism provides the
usual kinetic equation as well as evolution equations for the
one-time and two-time correlations.

An isolated fluid with elastic collisions tends to the equi-
librium Gibbs state. The single particle distribution function
is Maxwellian and there are no correlations between the ve-
locities of the particles. Equilibrium fluctuations are well un-
derstood since long ago[15,16]. For inelastic collisions,
there is no stationary state for an isolated system. The sim-
plest state is the so-called “homogeneous cooling state”
(HCS) with a monotonically decreasing temperature. Of
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course, this is a consequence of the dissipation of energy in
collisions. For the same reason, the single particle distribu-
tion function deviates from the Maxwellian, both at small
and large velocities[17–19]. Here, we will investigate a third
implication of the dissipative character of collisions: the
presence of velocity correlations, even in the low density
limit. It must be realized that the existence of velocity cor-
relations does not invalidate by itself the Boltzmann equa-
tion, as long as they are small enough, since they are ob-
tained within a self-consistent theoretical frame, expected to
be valid in the low density limit.

The study of fluctuations in the HCS is of primary impor-
tance for the development of a general theory of fluctuations
in granular systems. The HCS defines the reference state
from which macroscopic hydrodynamic equations can be de-
rived [5], thus playing in this context a similar role to the
equilibrium state in molecular systems. In the same way, a
general theory of hydrodynamic fluctuations requires, as a
necessary first step, the knowledge of the fluctuations and
correlations occurring in the HCS. It should be stressed that
no conceptual difficulty arises from using the HCS, which is
a time-dependent state, as a reference state. In fact, the ref-
erence state is determined by the kinetic equation itself and
cannot be arbitrarily chosen[20].

In the next section, hierarchies of equations for the one-
time and two-time reduced distribution and correlation func-
tions are derived. The closure relations obtained in the low
density limit, leading in particular to the Boltzmann equa-
tion, are also discussed. The specific case of the HCS is
considered in Sec. III, where the scaling property of this state
is used to simplify the equations and eliminate trivial time
dependencies. With an appropriate change of variables, the
equations looks like corresponding to a stationary, but non-
Gibbs, state. In Secs. IV and V, marginal distributions for the
one-time and two-time velocity correlations are introduced
and their hydrodynamic parts are evaluated. The derived ex-
pressions are then used to obtain the second moment of the
total energy fluctuations and the two-time energy correlation
function. The theoretical predictions are compared with mo-
lecular dynamics simulation results and a quite good agree-
ment is found over a wide range of values of the restitution
coefficient. Moreover, the simulation data show that the
scaled energy fluctuations are Gaussian within the numerical
errors. Finally, Sec. VI contains a summary of the main re-
sults, and also a discussion of their connection with a
fluctuation-dissipation relation.

II. EVOLUTION EQUATIONS FOR THE REDUCED
DISTRIBUTION FUNCTIONS

We consider a dilute gas of smooth inelastic hard spheres
sd=3d or diskssd=2d of massm and diameters. Let Xjstd
;hRjstd ,V jstdj denote the position and velocity of particlej
at timet. BothRjstd andV jstd are parametric functions of the
initial positions and velocities of all particles. Fort.0 the
time evolution of a phase functionAfhXjstdjg is defined by
[3,4]

AfGstdg = etLsGdAfGs0dg, s1d

where G;hXj ; j =1, . . . ,Nj denotes theN-particle phase
point. The generator of the dynamicsL is

LsGd = Ls0dsGd +
1

2o
j

N

o
iÞ j

N

TsXi,Xjd, s2d

with the first term generating free streaming,

Ls0d = o
j=1

N

V j ·
]

] Rj
, s3d

and the second terms describing velocity changes in colli-
sions,

TsXi,Xjd = sd−1E dŝQs− Vi j · ŝduVi j · ŝudsRi j − sd

3fbssVi,V jd − 1g. s4d

Here s=sŝ, dŝ is the solid angle element forŝ, Ri j ;Ri
−Rj, Vi j ;Vi −V j, Q is the Heaviside step function, and the
operatorbssVi ,V jd changes functions ofVi ,V j to the same
functions of the scattered velocities given by

Vi → Vi8 ; bsVi = Vi −
1 + a

2
sŝ ·Vi jdŝ,

V j → V j8 ; bsV j = V j +
1 + a

2
sŝ ·Vi jdŝ. s5d

Inelasticity of collisions is characterized by means of the
coefficient of normal restitutiona taking values in the inter-
val 0,aø1.

Microscopic densities in phase spaceFssx1,x2, . . . ,xs,td
are defined by

F1sx1,td = o
j=1

N

d sx1 − Xjstdd, s6d

F2sx1,x2,td = o
i

N

o
jÞi

N

dsx1 − Xistddd „x2 − Xjstd…, s7d

etc. The lower-case variablesxi ;hr i ,vij are field variables
referring to a particular point inm space. A hierarchy of
equations for the above densities is obtained from Eq.(1).
The first two equations, valid fort.0, are

F ]

] t
+ Ls0dsx1dGF1sx1,td =E dx2T̄sx1,x2dF2sx1,x2,td, s8d

F ]

] t
+ Ls0dsx1,x2dGF2sx1,x2,td = T̄sx1,x2dF2sx1,x2,td

+E dx3fT̄sx1,x3d + T̄sx2,x3dgF3sx1,x2,x3,td, s9d

where

Ls0dsx1,x2d = Ls0dsx1d + Ls0dsx2d, Ls0dsxid = vi ·
]

] r i
,

s10d

and T̄sxi ,xjd is the binary collision operator
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T̄sxi,xjd = sd−1E dŝQsvi j · ŝduvi j · ŝu

3fa−2d sr i j − sdbs
−1svi,v jd − dsr i j + sdg.

s11d

The operatorbs
−1svi ,v jd replaces all the velocitiesvi and v j

appearing to its right by the precollisional valuesv1
* andv2

* ,

vi → vi
* ; bs

−1vi = vi −
1 + a

2a
sŝ ·vi jdŝ,

v j → v j
* ; bs

−1v j = v j +
1 + a

2a
sŝ ·vi jdŝ. s12d

The averages of the microscopic densities
Fssx1,x2,¯ ,xs,td over the probability distribution function
rsG ,0d characterizing the initial state of the system are the
usual one-time reduced distribution functions,

fssx1, . . . ,xs,td ; kFssx1, ¯ ,xs,tdl, s13d

where we have introduced the notation

kGl ; E dG GsGdrsG,0d. s14d

The one-time reduced distributions obey a hierarchy of equa-
tions that follow directly by averaging the hierarchy for the
microscopic densities. This is the generalization for inelastic
collisions of the BBGKY hierarchy. In particular, from Eqs.
(8) and (9) it is trivially obtained[3]:

F ]

] t
+ Ls0dsx1dG f1sx1,td =E dx2T̄sx1,x2df2sx1,x2,td,

s15d

F ]

] t
+ Ls0dsx1,x2dG f2sx1,x2,td = T̄sx1,x2df2sx1,x2,td

+E dx3fT̄sx1,x3d + T̄sx2,x3dgf3sx1,x2,x3,td. s16d

Two-time reduced distribution functions can also be de-
fined in terms of the microscopic densities as

f r,ssx1, . . . ,xr,t;x18, . . . ,xs8,t8d ; kFrsx1, . . . ,xr,td

3Fssx18, . . . ,xs8,t8dl.

s17d

It will be assumed thatt. t8.0 for concreteness. Again,
evolution equations for these quantities are derived from the
hierarchy for the densitiesFr. The lowest order distribution,
f1,1, is seen to obey the equation

F ]

] t
+ Ls0dsx1dG f1,1sx1,t;x18,t8d

=E dx2T̄sx1,x2df2,1sx1,x2,t;x18,t8d, s18d

which has to be solved with the initial condition

f1,1sx1,t8;x18,t8d = dsx1 − x18dfsx1,t8d + f2sx1,x2,t8d, s19d

that follows directly from the definition in Eq.(17). With
regard to the above equations for the reduced distribution
functions, it must be reminded that although the streaming
operators also generate unphysical trajectories for unphysical
initial conditions, the latter have a vanishing weight in the
initial probability distribution and, therefore, the dynamics in
all the equations for the reduced distribution functions is in
fact well behaved.

It is convenient to introduce also correlation functions
through the usual cluster expansions. From the one-time re-
duced distributions, one-time correlationsgssx1, . . . ,xs,td are
defined by

f2sx1,x2,td = f1sx1,tdf1sx2,td + g2sx1,x2,td, s20d

f3sx1,x2,x3,td = f1sx1,tdf1sx2,tdf1sx3,td + f1sx1,tdg2sx2,x3,td

+ f1sx2,tdg2sx1,x3,td + f1sx3,tdg2sx1,x2,td

+ g3sx1,x2,x3,td, s21d

etc. Similarly, two-time correlation functionshr,s can be de-
fined. In particular,h1,1 andh2,1 are introduced through

f1,1sx1,t;x18,t8d = f1sx1,tdf1sx18,t8d + h1,1sx1,t;x18,t8d,

s22d

f2,1sx1,x2,t;x18,t8d = f1sx1,tdf1sx2,tdf1sx18,t8d

+ g2sx1,x2,tdf1sx18,t8d

+ h1,1sx1,t;x18,t8df1sx2,td

+ h1,1sx2,t;x18,t8df1sx1,td

+ h2,1sx1,x2,t;x18,t8d. s23d

Evolution equations for the correlation functions are ob-
tained from the equations for the corresponding reduced dis-
tributions. Thus from Eqs.(15) and (16) one gets

F ]

] t
+ Ls0dsx1dG f1sx1,td =E dx2T̄sx1,x2dff1sx1,tdf1sx2,td

+ g2sx1,x2,tdg, s24d

F ]

] t
+ Ls0dsx1,x2dGg2sx1,x2,td

= T̄sx1,x2dff1sx1,tdf1sx2,td + g2sx1,x2,tdg

+E dx3s1 + P12dT̄sx1,x3dfg2sx1,x2,tdf1sx3,td

+ g2sx2,x3,tdf1sx1,td + g3sx1,x2,x3,tdg, s25d

where the permutation operatorP12 interchanges the labels
of particles 1 and 2 in the quantities to its right. In an analo-
gous way, from Eq.(18) it results
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F ]

] t
+ Ls0dsx1dGh1,1sx1,t;x18,t8d

=E dx2T̄sx1,x2dfh1,1sx1,t;x18,t8df1sx2,td

+ h1,1sx2,t;x18,t8df1sx1,td + h2,1sx1,x2,t;x18,t8dg.

s26d

The last equation holds fort. t8 and the initial condition is

h1,1sx1,t8;x18,t8d = g2sx1,x18,t8d + dsx1 − x18df1sx1,t8d.

s27d

All the equations derived in this section are exact conse-
quences of the dynamics of the particles as defined by the
generator given in Eq.(2). In fact, they are the extension to
inelastic hard particles of the equations discussed in Ref.
[14]. In the next sections, the low density limit and the par-
ticular case of the HCS will be addressed.

III. LOW DENSITY FLUCTUATIONS AROUND
THE HOMOGENEOUS COOLING STATE

In order to obtain closed kinetic equations for the reduced
distribution functions, some kind of closure relations for the
hierarchies of equations derived in the previous section are
required. Here we are interested in the limit of a dilute in-
elastic gas and the method we will apply is based on the
general assumption that the order in the density of correla-
tion functions increases as the number of involved particles
increases. More precisely, what it is assumed is that the
above is true for the precollisional part of the correlation
functions when two of the particles are at contact[21]. This
method was discussed in detail by Ernst and Cohen for the
hard sphere gas with elastic collisions[14] and it has been
already applied to the study of one-time reduced distribu-
tions for inelastic hard particles[4,22]. Closely related re-
sults follow from a formal small parameter expansion of the
reduced distribution functions[20,23]. From a physical point
of view, the underlying idea of these kinetic theories is that
no hypothesis are necessary to derive equations for fluctua-
tions and time-correlations beyond those required to derive
the kinetic equation for the one-particle distribution function,
i.e., the Boltzmann equation in the dilute gas. Let us stress
that this seems to be a quite general property, beyond the
range of validity of the Boltzmann equation, as emphasized
in Ref. [24].

Then, in the low density limit, the term involving

T̄sx1,x2dg2sx1,x2,td in Eq. (24) is assumed to be negligible as

compared with the one involvingT̄sx1,x2df1sx1,tdf1sx2,td.
Furthermore, in the same limit the spatial separation between
the centers of colliding particles can be neglected, so that the
above mentioned equation reduces to

F ]

] t
+ Ls0dsx1dG f1sx1,td = Jfx1,tuf1g, s28d

where

Jfx1,tuf1g =E dx2 dsr12dT̄0sv1,v2df1sx1,tdf1sx2,td, s29d

T̄0sv1,v2d = sd−1E dŝQsv12 · ŝduv12 · ŝu

3fa−2bs
−1sv1,v2d − 1g. s30d

This is the Boltzmann equation for smooth inelastic hard
spheres[3,17]. Similarly, Eq.(25) reduces to

F ]

] t
+ Ls0dsx1,x2d − Kfx1,tuf1g − Kfx2,tuf1gGg2sx1,x2,td

= dsr 12dT̄0sv1,v2df1sx1,tdf1sx2,td, s31d

where we have introduced the operator

Kfxi,tuf1g ; E dx3 dsr i3dT̄0svi,v3ds1 + Pi3df1sx3,td.

s32d

Therefore, two particle correlations are generated from the
uncorrelated product of solutions of the Boltzmann equation
through inelastic binary collisions. Of course, the solutions
of this equation must be consistent with the approximation
leading to the Boltzmann equation. The low density limit of
the equation for the two-time correlations, Eq.(26), follows
by neglecting the term proportional toh2,1 on the right-hand
side and also the distance between colliding particles, so that
it is given by

F ]

] t
+ Ls0dsx1d − Kfx1,tuf1gGh1,1sx1,t,x18,t8d = 0. s33d

Finally, an equation forh1,1sx1,t ;x18 ,td is obtained by tak-
ing time derivative in Eq.(27) and using Eqs.(28) and(31),

F ]

] t
+ Ls0dsx1,x18d − Kfx1,tuf1g − Kfx18,tuf1gGh1,1sx1,t;x18,td

= Gsx1,x18,td, s34d

with

Gsx1,x18,td = dsx1 − x18dJfx1,tuf1g − sKfx1,tuf1g

+ Kfx18,tuf1gddsx1 − x18df1sx1,td

+ dsr1 − r18dT̄0sv1,v18df1sx1,tdf1sx18,td. s35d

It is worth pointing out that the above derivation makes
no reference to whether collisions are elastic or inelastic. In
fact, when it is compared with the analysis carried out in Ref.
[14], the only difference is in the replacement of the elastic
binary collision operators by the inelastic ones and this does
not affect the density dependence of each of the contribu-
tions to the equations. This is also the case when the kinetic
equations are obtained from a formal expansion in a dimen-
sionless density parameter[20,23]. Therefore, at least at a
superficial level, it seems that the theoretical basis for low
density kinetic theory is the same both for elastic and inelas-
tic systems. Of course, the actual range of validity of the
kinetic equations, i.e., how small the density of the system
must be so that the above kinetic equations provide an accu-
rate description, might depend on the inelasticity of the sys-
tem, and also on the particular state being considered.
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The inelastic Boltzmann equation(28) admits a special
solution fHCSsv ,td describing the HCS for which all the time
dependence of the distribution function occurs through the
granular temperature(defined from the average kinetic en-
ergy). This solution has the scaled form[17]

fHCSsv,td = nHv0
−dstdxHCSscd. s36d

HerenH is the uniform number of particles density,

v0std ; F2kBTHCSstd
m

G1/2

, s37d

kB being the Boltzmann constant, andxHCSscd an isotropic
function of scaled velocityc=v /v0std. The above scaling
property implies that the temperature obeys the equation

] THCSstd
] t

+ zHCSstdTHCSstd = 0. s38d

The cooling ratezHCSstd is a given bilinear functional of
fHCS, and it is proportional toTHCSstd1/2. Its explicit expres-
sion will not be given here[7,17]. Substitution of Eq.(36)
into the Boltzmann equation(28) and use of Eq.(38) leads to
a closed equation forxHCSscd,

z0

2

]

] c
· scxHCSd = JcfcuxHCSg, s39d

where

z0 =
,zHCSstd

v0std

=
s1 − a2dpsd−1d/2

2 GSd + 3

2
Dd

E dc1E dc2 c12
3 xHCSsc1dxHCSsc2d

s40d

is the time-independent dimensionless cooling rate of the
HCS and

JcfcuxHCSg =E dc1 T̄0sc,c1dxHCSscdxHCSsc1d, s41d

T̄0sc,c1d =E dŝQfsc − c1d · ŝgsc − c1d · ŝfa−2bs
−1sc,c1d − 1g.

s42d

The operatorbs
−1sc,c1d is again defined by Eqs.(12), but

replacing the velocitiesvi andv j by c andc1, respectively.
It is useful to introduce dimensionless time and length

scales by

s=E
0

t

dt1
v0st1d

,
, l = ,−1r , s43d

respectively, where,;snHsd−1d−1 is proportional to the
mean free path of the gas. Thus,sstd is a measure of the
average number of collisions per particle in the interval
s0,td. In terms ofs, Eq. (38) becomes

] THCS

] s
= − z0THCSssd, s44d

showing that the temperature of the HCS decreases exponen-
tially on this time scale. The equivalent expression in the
original time scale is given by Haff’s law[25],

THCSstd = THCSs0df1 + 1
2zHCSs0dtg−2. s45d

In order to particularize the equations for the two-particle
correlations, the concept of the HCS as introduced above
will be extended. It will be assumed that in the HCS the
N-particle distribution function of the system,rHCSsG ,td, is
given by a scaling function for which all the time depen-
dence occurs through the scaling of the velocities with the
thermal velocityv0std [3],

rHCSsG,td = fv0stdg−dNrHCS
* shr i j ,cijd. s46d

The scaled distributionrHCS
* is invariant under space transla-

tions. Therefore,rHCSsG ,td represents a spatially homoge-
neous fluid. The above scaling implies a similar scaling for
all the reduced distribution functions and, in particular, the
one given by Eq.(36) for the one-particle distribution func-
tion. Then, Eq.(31) when applied to the HCS becomes

Fc12 ·
]

] l12
− Lsc1d − Lsc2dGg̃HCSsl12,c1,c2d

= dsl12dT̄0sc1,c2dxHCSsc1dxHCSsc2d, s47d

whereLscid is the linearized Boltzmann collision operator in
the scaled representation,

Lscid =E dc3 T̄0sci,c3ds1 + Pi3dxHCSsc3d −
z0

2

]

] ci
·ci ,

s48d

and the scaled two-particle one-time correlation function is
defined by

g̃HCSsl12,c1,c2d = nH
−1,dv0

2dstdg2,HCSsr12,v1,v2,td. s49d

This quantity does not depend ons as a consequence of the
scaling property. In a similar way, Eq.(33) yields

F ]

] s
+ c1 ·

]

] l1
− Lsc1dGh̃HCSsl1 − l18,c1,s− s8;c18d = 0,

s50d

with

h̃HCSsl1 − l18,c1,s− s8;c18d = nH
−1,dv0

dstdv0
dst8d

3h1,1,HCSsx1,t;x18,t8d. s51d

The initial condition for this equation is

h̃HCSsl1 − l18,c1,0;c18d ; h̃HCSsl1 − l18,c1;c18d

= g̃HCSsl1 − l18,c1,c18d

+ dsc1 − c18ddsl1 − l18dxHCSsc1d.

s52d
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In the above expressions, we have made explicit the transla-
tional invariance of the HCS. Finally, Eq.(34) becomes

Fc1 ·
]

] l1
+ c18 ·

]

] l18
− Lsc1d − Lsc18dGh̃HCSsl1 − l18,c1;c18d

= dsl1 − l18dG̃sc1,c18d, s53d

G̃sc1,c18d = − fLsc1d + Lsc18dgdsc1 − c18dxHCSsc1d

+ T̄0sc1,c18dxHCSsc1dxHCSsc18d. s54d

Equations(47) and(53) describe the correlations between
equal time fluctuations. Their solutions are related through
Eq. (52). In both equations, the distribution function of the
HCS is needed and has to be found from Eq.(39). The same
happens with Eq.(50) for the unequal time fluctuations. Nev-
ertheless, the analytical form ofxHCSscd is only partially
known. In particular, an expansion about the Gaussian in
Sonine polynomials has been used. To first order,xHCSscd is
approximated by

xHCSscd =
e−c2

pd/2f1 + a2sadSs2dsc2dg, s55d

where

Ss2dsc2d =
c4

2
−

d + 2

2
c2 +

dsd + 2d
8

. s56d

The coefficienta2 is related with the fourth moment of
xHCSscd by

a2sad =
4kc4l

dsd + 2d
− 1; kc4l ; E dc c4xHCSscd. s57d

Substitution of Eq.(55) into Eq. (39) leads to a closed equa-
tion for the coefficienta2, and by neglecting nonlinear terms
in a2 one gets[17,18]

a2sad =
16s1 − ads1 − 2a2d

9 + 24d + s8d − 41da + 30a2 − 30a3 . s58d

Using Eq.(55), the following approximate expression for
the dimensionless cooling rate is found:

z0 =
Î2psd−1d/2s1 − a2d

GSd

2
Dd

F1 +
3

16
a2sadG . s59d

The above expressions have been shown to agree with
numerical results obtained by means of the direct simulation
Monte Carlo method in the thermal velocity region, i.e. for
velocitiesc of the order of a few units[26]. Let us mention
that the shape of the scaling distribution has also been ana-
lyzed for large velocities and found to have an exponential
form [18,19].

IV. ENERGY FLUCTUATIONS IN THE HCS

To study the effect of velocity fluctuations on the behavior
of the total energy of the system in the HCS, we introduce a
marginal velocity correlation function by

wHCSsc1,c2d ; E dl12h̃HCSsl12,c1;c2d. s60d

An equation for this distribution is obtained by integrating
Eq. (53),

fLsc1d + Lsc2dgwHCSsc1,c2d = − G̃sc1,c2d. s61d

From the definition ofg2 in Eq. (20) and the scaling of the
several distributions defined in the previous section it fol-
lows that

E dc1 wHCSsc1,c2d =E dc2 wHCSsc1,c2d = 0. s62d

Instead of trying to find the complete solution of Eq.(61),
we will restrict ourselves to compute what we will call the
hydrodynamic part ofwHCSsc1,c2d, defined as follows. We
consider the eigenvalue problem associated with the linear-
ized homogeneous Boltzmann operator[7,8]

Lscdjiscd = lijiscd. s63d

The hydrodynamic part of the spectrum ofL is defined by
those eigenvalues that coincide with the eigenvalues of the
balance equations for the number density, momentum, and
temperature following from the homogeneous linearized
Boltzmann equation. Such eigenvalues are

l1 = 0, l2 =
z0

2
, l3 = −

z0

2
. s64d

The corresponding eigenfunctions ofL for each of the above
eigenvalues are found to be[7,8]

j1scd = xHCSscd +
]

] c
· fcxHCSscdg,

j2scd = −
] xHCSscd

] c
, j3scd = −

]

] c
· fcxHCSscdg, s65d

respectively. The eigenvaluel2 is, therefore,d-fold degener-
ated. The scalar product of two functionsfscd and gscd is
defined as

kf ugl ; E dc xHCS
−1 scdf*scdgscd, s66d

with f* being the complex conjugate off. The eigenfunctions
jb given in Eq.(65) are not orthogonal, as a consequence of
the operatorL being non-Hermitian in the associate Hilbert
space. On the other hand, it is easily verified that the set of
functions

j̄1scd = xHCSscd, j̄2scd = cxHCSscd,

j̄3scd = Sc2

d
+

1

2
DxHCSscd s67d

verify the biorthogonality condition
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kj̄bujb8l = db,b8, s68d

b ,b8=1,2,3. Thedefinition of the scalar product given
above is trivially generalized to two-velocity functions by

kfsc1,c2dugsc1,c2dl ; E dc1E dc2 xHCS
−1 sc1dxHCS

−1 sc2d

3f*sc1,c2dgsc1,c2d. s69d

Then, a projector operatorP is defined as

Pfsc1,c2d = o
b=1

3

o
b8=1

3

jbsc1djb8sc2dkj̄bsc1dj̄b8sc2dufsc1,c2dl

s70d

and the “hydrodynamic part” ofwHCSsc1,c2d is by definition

wHCS
shd sc1,c2d ; PwHCSsc1,c2d. s71d

Next we applyP on both sides of Eq.(61) and, in order to
get a closed equation forwHCS

shd , we make the approximation

PLscid = PLscidP. s72d

A theoretical estimationa priori of the accuracy of this ap-
proximation would require to know more about the spectrum
of Lscd and its adjoint than it is available at present. There-

fore, it will be taken here as a working hypothesis to be
evaluated later on by comparing the predictions it leads to
with the results from particle simulations of the system. In
this way, we obtain from Eq.(61)

fLsc1d + Lsc2dgwHCS
shd sc1,c2d = − PT̄0sc1,c2dxHCSsc1dxHCSsc2d

+ fLsc1d + Lsc2dgPdsc1 − c2dxHCSsc2d. s73d

By writing

wHCS
shd sc1,c2d = o

b,b8=1

3

abb8jbsc1djb8sc2d, s74d

the above equation can be easily solved for the coefficients
abb8. Some details of the calculations are given in the Ap-
pendix. The result is:

wHCS
shd sc1,c2d = a33j3sc1dj3sc2d, s75d

where

a33sad =
d + 1

2d
+

d + 2

4d
a2sad + bsad. s76d

In the first Sonine approximation,a2sad is given by Eq.(58)
and

bsad =
2 + d − 6d2 − s10 − 15d + 2d2da − 2s2 + 7dda2 + 2s10 −dda3

6ds2d + 1d − 2ds11 − 2dda + 12da2 − 12da3 . s77d

The structure of the result forwHCS in Eq. (75) is a con-
sequence of the strict conservation of the number of particles
and total momentum. Moreover, in the elastic limita→1, a2
vanishes andb=−s1+dd /2d, so thata33 also vanishes, re-
flecting that the energy is also strictly conserved in this limit,
and there are no velocity correlations. On the other hand, for
a,1, velocity correlations are induced by the inelasticity of
collisions and, as a consequence, fluctuations of the total
energyE=o j

N mVj
2/2 show up. These fluctuations have an

intrinsic dissipative character. To compute their second mo-
ment, we start by realizing that the energy can be expressed
as

EfGstdg =E dx
mv2

2
F1sx,td, s78d

with F1sx,td being the microscopic phase space density de-
fined in Eq. (6). The instantaneous deviations ofEfGstdg
from its average value in the HCS are given by

dEsG,td ; EfGstdg − kEstdlHCS, s79d

kEstdlHCS;E dG EsGdrHCSsG,td. s80d

Then, using Eq.(78) it is easily seen that

kfdEstdg2l =
m2

4
E dx1E dx2 v1

2v2
2h1,1,HCSsx1,t;x2,td

= NkB
2THCS

2 std E dc1E dc2 c1
2c2

2wHCSsc1,c2d

= NkB
2THCS

2 stdd2kj̄3sc1dj̄3sc2duwHCS
shd sc1,c2dl

= NkB
2THCS

2 stdesad, s81d

where

esad = d2a33sad. s82d

As expected, this function monotonically increases as the
value of a decreases, vanishing in the limit of elastic colli-
sions.

To verify the above theoretical predictions, we have per-
formed Molecular Dynamics(MD) simulations of a freely
evolving system of inelastic hard disks, i.e.d=2, in a square
box of sizeL with periodic boundary conditions. The event
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driven algorithm[27] has been used. Three different, low
values, of the density have been considered, namelynH
=0.02s−2, 0.01s−2, and 5310−3s−2. The number of particles
used for each of the above densities isN=1000,2000, and
4000, respectively. These values guarantee that, in all the
simulations to be reported in the following, the size of the
system is smaller than the critical size,Lc, beyond which the
HCS becomes unstable and velocity vortices and spatial in-
homogeneities are developed[28]. An estimation ofLc has
been made by using the hydrodynamic equations obtained
from the Boltzmann equation[5,29]. Using this expression,
one gets that for the most unfavorable situation to be re-
ported (a=0.7), it is L /Lc<0.86. Therefore the system is
inside the stable homogeneous region. Moreover, we have
checked in all the simulations that the system actually stays
in the HCS, by monitoring the local velocity and density
fluctuations.

For each value of the density and the restitution coeffi-
cient a number of trajectories have been generated. By aver-
aging over these trajectories, the time evolution of the aver-
age energy and, therefore, of the granular temperature
THCSstd, has been obtained. In all cases it was very well fitted
by Haff’s law, Eq.(45). The average value ofE2std has been
obtained in the same way. Afterwards, we have verified that,
when the time-dependent energy deviation is scaled with
THCS

2 std, it fluctuates around a stationary average value, as
predicted by Eq.(81). An example, corresponding toa
=0.85 andnH=0.02 is shown in Fig. 1. In this case, the
results have been averaged over 800 trajectories.

In Fig. 2, the results for the steady values ofsE
2

;ksdEd2lHCS/NkB
2THCS

2 are plotted as a function of the coef-
ficient of restitutiona for 0.7øaø1 for nH=5310−3s−2.
Also plotted is the theoretical prediction, i.e., the function
esad given by Eq.(82). A quite good agreement is observed
between the theoretical and numerical results. As expected,
the amplitude of the fluctuations monotonically increases as

a decreases, vanishing in the limit of elastic collisions. The
error bars in the figures have been determined from the de-
viations of the instantaneous values of the scaled energy dis-
persion from its stationary average value. Similar results
have been found for the other two larger densities considered
in this paper, although discrepancies between theory and
simulations of the order of 10%, probably due to density
effects, are observed fora=0.7.

We have also investigated the shape of the probability
distribution for the energy fluctuations. For each trajectory of
the system, the trace ofsEstd−kEstdlHCSd / kEstdlHCS has been
partitioned into nonoverlapping bins of value 0.001 and the
frequency distribution has been built using the data from all
the trajectories corresponding to the same values ofN anda.
The resulting normalized distribution is shown in Fig. 3 for
the casenH=0.01s−2 and a=0.9, where it is seen that it is
very well fitted by a Gaussian distribution(solid line). Simi-

FIG. 1. Scaled dispersion of the energy fluctuationssE
2

;NksdEssdd2l / kEssdl2, as a function of the dimensionless times
defined in the main text, for a system of inelastic hard disks with
a=0.85 andnH=0.02s−2. The angular brackets average has been
taken over 800 trajectories.

FIG. 2. Average steady values of the scaled second moment of
the energy fluctuationssE,st

2 , as a function of the restitution coeffi-
cient. The symbols are from MD simulations of a system of hard
disks of densitynH=5310−3s−2 while the solid line is the theoret-
ical prediction given in Eq.(82).

FIG. 3. Normalized distribution of the relative energy fluctua-
tions for a system of inelastic hard disks withnH=0.01s−2. the
symbols are from MD simulation and the solid line the fit to a
Gaussian.
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lar results are found for the other values ofa andnH consid-
ered along this work. This suggests the existence of a physi-
cal potential governing the amplitude of the energy
fluctuations in the HCS, similar to the equilibrium state of
ordinary fluids, but we have not been able to identify it.

V. ENERGY TIME CORRELATION FUNCTION
IN THE HCS

In this section, the time correlation function of the total
energy of the HCS, will be studied. To begin with, a global
two-time velocity correlation function is introduced by

cHCSsc1,s− s8;c18d ; E dl1 h̃HCSsl1 − l18,c1,s− s8;c18d,

s83d

wheresùs8. Then, from Eq.(50) it follows that

F ]

] s
− Lsc1dGcHCSsc1,s− s8;c18d = 0, s84d

whose formal solution is

cHCSsc1,s− s8;c18d = ess−s8dLsc1dwHCSsc1,c18d. s85d

As in the previous section, we are interested in the hydro-
dynamic part ofcHCS,

cHCS
shd sc1,c2d ; PcHCSsc1,c2d. s86d

Using again the approximation given in Eq.(72), Eq. (85)
can be rewritten as

cHCS
shd sc1,s− s8;c18d = ess−s8dLsc1dwHCS

shd sc1,c18d s87d

and substitution of Eq.(75) yields

cHCS
shd sc1,s− s8;c18d = a33e

−fz0ss−s8d/2gj3sc1dj3sc18d. s88d

This is our primary result for the spatially integrated hydro-
dynamic part of the two-time velocity correlation function in
the HCS. It shows that the correlation decays exponentially
with a rate determined by the cooling rate. In the following,
we are going to employ the above expression to compute the
HCS time correlation functionCEEst ,t8d for the total energy,
defined by

CEEst,t8d ; kEstdEst8dlHCS− kEstdlHCSkEst8dlHCS, s89d

with tù t8ù0. Here,

kEstdEst8dlHCS=E dG EfGstdgEfGst8dgrHCSsG,0d. s90d

Taking into account Eqs.(83) and(51), it is easy to show that
the above definition can be transformed into

CEEst,t8d = NkB
2THCSstdTHCSst8d

3E dc1E dc18 c1
2c18

2cHCSsc1,s− s8;c18d

= NkB
2THCSstdTHCSst8dd2

3kj̄3sc1dj̄3sc18ducHCS
shd sc1,s− s8;c18dl

= NkB
2THCSstdTHCSst8desade−fz0ss−s8d/2g. s91d

This result is consistent with Eq.(81), since the former re-
duces to the latter fort= t8 and, therefore,s=s8.

In Fig. 4 results from MD simulations for a system with
a=0.85 andn=0.02s−2 are shown. They have been averaged
over 800 trajectories. In the figure, CEE

* ss,s8d
;CEEst ,t8d /NkB

2esadTHCSstdTHCSst8d is plotted as a function
of s−s8 for several values ofs8, namelys8=15.16,31.12, and
47.07. It is seen that the results do not depend on the value of
s8 as implied by Eq.(91). This is a consequence of the scal-
ing property of the HCS, as discussed in Sec. III. Moreover,
there is a quite good qualitative and quantitative agreement
with the exponential decay predicted by the equation, given
by the solid line in the figure and that has been evaluated by
using Eq.(59) for the cooling ratez0. This is more clearly
observed in Fig. 5, where a logarithmic scale has been used.
For large times the simulation data become very noisy, but
there seems to be some evidence of a systematic deviation
from the exponential behavior, becoming stronger as the
value of a decreases. Whether this is the case and its pos-
sible relationship with hydrodynamic mode coupling effects

FIG. 4. Normalized energy time autocorrelation function
CEE

* ss,s8d as a function ofs−s8 for three different values ofs8. The
dimensionless time scales has been defined in the main text. The
symbols are from MD simulations of a system of inelastic hard
disks witha=0.85 andnH=0.02s−2. The solid line is the theoretical
prediction as given by Eq.(91).
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deserves more extensive study. Similar results have been
found for other values of the coefficient of restitution in the
range 0.7øa,1.

VI. SUMMARY AND DISCUSSION

In this paper, a general theory for fluctuations and corre-
lations in a dilute granular gas has been formulated, by ex-
tending in a natural way the standard methods of kinetic
theory. The theory has been particularized for the HCS of a
freely evolving granular gas, taking advantage of the scaling
properties of this state. Two marginal distribution functions,
characterizing the global velocity one-time and two-time cor-
relations, respectively, have been introduced and their hydro-
dynamic parts have been computed. They are defined by the
lowest order eigenfunctions and eigenvalues of the linearized
Boltzmann equation, similarly to the case of ordinary fluids
with elastic collisions[30,31]. The results, given by Eqs.
(75) and(88), show the existence of intrinsic velocity corre-
lations that are induced by the inelasticity of collisions.
When properly scaled with the temperature of the system,
they decay exponentially with a characteristic time deter-
mined by the cooling rate if the time is measured by the
average of the accumulated number of collisions per particle.
It must be stressed that the existence of these velocity corre-
lations does not imply a violation of the “molecular chaos”
assumption that underlies the Boltzmann equation. This is
because the latter only refers to theprecollisionalpart of the
two-body distribution(at contact) [21]. In fact, it is easily
seen that the velocities of two particles are necessarily cor-
relatedafter they collide, as a consequence of the collision
rules. In any case, the simulation results reported in this
work show that the correlations are small at least as long as
the system is dilute and stays in the HCS.

Let us mention that velocity correlations in the HCS have
been recently considered by Pöschelet al. [32]. On the basis
of symmetry and simplicity, they assume a form for the re-
duced two-particle distribution functionf2,HCSsx1,x2,td that
incorporates both static and dynamic correlations. From this
form, it is easy to obtain an expression for the marginal
velocity correlation functionwHCSsc1,c2d, introduced in Eq.

(60), by using the definitions given in Sec. II, and afterwards
its hydrodynamic part. The functional dependence on the ve-
locity of the particles of the result differs from the one de-
rived here, even in the limit of very small inelasticity. Since
no physical foundation is provided by the authors in Ref.
[32] for the expression they propose, it is not possible to
discuss the origin of the discrepancies.

The one-time and two-time marginal velocity correlation
functions determine the fluctuations of the total energy of the
system and also its two-time correlation function. Their ex-
pressions, given by Eqs.(81) and (91), are two of the main
results reported in this paper. To put them in a proper con-
text, it is interesting to analyze the differential equations they
obey. Let us first considerCEEst ,t8d. By taking time deriva-
tive in Eq. (91) and using Haff’s law, it is obtained:

]

] t
CEEst,t8d +

3

2
zHCSstdCEEst,t8d = 0, s92d

valid for t. t8ù0. This equation can be given a physical
interpretation as follows. Let us write the macroscopic equa-
tion for the temperature of the HCS, Eq.(38), in the form

]

] t
EstdHCS+ MfkEstdlHCSg = 0, s93d

where MfkEstdlHCSg;zHCSstdkEstdlHCS. Then, Eq. (92) is
equivalent to

]

] t
CEEst,t8d + LstdCEEst,t8d = 0, s94d

with

Lstd =
] MfkEstdlHCSg

] kEstdlHCS
. s95d

The above relationship between the macroscopic equation
for the energy, Eq.(93), and the equation for the time decay
of the energy fluctuations, Eq.(94), provides a generalization
of the Onsager regression hypothesis for the decay of spon-
taneous fluctuations in equilibrium, in the sense that the
equation describing the dynamics of fluctuations can be ob-
tained from the macroscopic equation describing the evolu-
tion of the system.

In a similar way, it is seen that the expression given in Eq.
(81) corresponds to the long time limit of the general solu-
tion of the equation

]

] t
CEEst,td + 2LstdCEEst,td = Istd, s96d

with the source termIstd given by

Istd = NesadzHCSstdkB
2THCS

2 std. s97d

The structure of this equation shows thatIstd can be associ-
ated with a “noise amplitude,” since it is the average cova-
riance of the noise in an equivalent Langevin formulation
[14,35]. In this way, Eqs. (96) and (97) formulate a
fluctuation-dissipation theorem for the HCS.

The above results reflect the intuitive notion that the dy-
namics of low-order correlation functions is essentially of

FIG. 5. The same as in Fig. 4 but in a logarithmic plot.
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macroscopic character. In fact, similar generalizations have
been found for many nonequilibrium states of ordinary(elas-
tic) systems by means of different methods and approxima-
tions [33,34]. Nevertheless, it must be reminded that the
derivation here makes use of the approximation given in Eq.
(72).

The theoretical predictions for the fluctuations and the
time-correlation function of the total energy of the HCS have
been compared with MD simulations, and a good agreement
has been found. This provides strong support for the theory
developed here, including the hydrodynamic description in
terms of the lowest order eigenfunctions and eigenvalues of
the linearized Boltzmann collision operator. Of course, the
same procedure of analysis can be applied to more involved
problems, such as linear response to spatial perturbations,
mode coupling effects, and so on.
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APPENDIX

In this appendix we are going to solve Eq.(73) for the
coefficientsabb8. This is facilitated by using that, for arbi-
trary functionsfsc1,c2d andgsc1,c2d, it is

E dc1E dc2 fsc1,c2dT̄0sc1,c2dgsc1,c2d

=E dc1E dc2 gsc1,c2dT0sc1,c2dfsc1,c2d, sA1d

where

T0sc1,c2d =E dŝQsc12 · ŝdc12 · ŝfbssc1,c2d − 1g.

sA2d

The operatorbs has been defined in Eq.(5).
Substitution of Eq.(74) into Eq.(73) and use of the linear

independence of the functionsjb yields

slb + lb8dabb8 = − kj̄bsc1dj̄b8sc2duT̄0sc1,c2dxHCSsc1dxHCSsc2dl

+ slb + lb8dkj̄bscduj̄b8scdl. sA3d

For b=b8=1 the three terms in the above equation van-
ish, then becoming an identity. Nevertheless, it isa1=0 be-
cause of Eq.(62). For b=1 andb8=2, it is

kj̄1sc1dj̄1sc2duT̄0sc1,c2dxHCSsc1dxHCSsc2dl

=E dc1E dc2 c2T̄0sc1,c2dxHCSsc1dxHCSsc2d

=
1

2
E dc1E dc2 xHCSsc1dxHCSsc2dT0sc1,c2dsc1 + c2d

= 0 sA4d

and kj̄1scduj̄2scdl also vanishes because of parity. Then we
get a21=a12=0.

The remaining coefficients are obtained in a similar way
by using Eq.(A1) and the collision rules. The only coeffi-
cient different from zero isa33 whose expression reads

a33 =
kc4l
d2 +

b1sad
z0sad

+
1

4
=

d + 2

4d
a2sad +

b1sad
z0sad

+
d + 1

2d
,

sA5d

where

b1sad = −
psd−1/2d

GSd + 5

2
Dd2

3E dc1E dc2xHCSsc1dxHCSsc2dqsc1,c2d,

sA6d

with

qsc1,c2d =
s1 − a2dsd + 1 + 2a2d

16
c12

5

+
sd + 5d − a2sd + 1d + 4a

4
c12

3 G2

−
1 + a

2
s2d + 3 − 3adc12sG ·c12d2 sA7d

and

G =
c1 + c2

2
. sA8d

An approximate expression forb1sad can be obtained by
using the result forxHCS in the first Sonine approximation,
Eq. (55). In the same approximationz0 is given by Eq.(59).
In this way, Eq.(75) for bsad=b1sad /z0sad follows.
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