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Abstract—The monitoring of distribution systems relies on a
critical set of pseudomeasurements and a varying but low number
of redundant measurements. In the light of the different refresh-
ing rates of both types of information, this paper considers a
state estimation model structured in two time scales. Possibilities
and limitations of the proposed model are discussed, and illus-
trated on a real distribution system comprising a diversity of
load patterns.

Index Terms—Smart distribution system, state estimation, two-
time scale measurements.

I. INTRODUCTION

THE NOTION of state estimation (SE) for transmission
systems can be traced back to the seventies [1]. Some

twenty years later, SE algorithms specifically tailored to distri-
bution systems were introduced [2], [3]. In practice, however,
it has not been until very recently that SE tools for distribution
feeders have been comprehensively considered [4]–[6].

Smart grid developments are progressively bringing more
and more information to distribution management sys-
tems (DMS), allowing applications that were long ago concep-
tually mature but still waiting for the required infrastructure
to be deployed at the distribution level [7], [8]. Eventually,
the massively distributed nature of medium-voltage and low-
voltage subsystems, and the resulting communication bottle-
necks, will force utilities to consider some kind of hierarchical
organization in today’s fully centralized DMS [9]. Indeed, only
if raw data are processed in a local manner [10] will it be pos-
sible for new and ubiquitous sources of information, such as
smart meters and the associated concentrators, to be scanned
at rates which are fast enough for real-time network operation.

Until this partly decentralized environment arrives, DMS
operators can only expect to have once-a-day or few-
times-a-day values of energy consumed by customers con-
nected to the distribution system [11]. This has motivated
the development of heuristic methods combining load flow
calculations [13], [14], machine learning functions [12] or
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pattern-based load allocation [15] with ad hoc SE techniques.
What these hybrid schemes generally have in common is
a preprocessing phase in which delayed smart meter data
or daily load patterns are somehow exploited to generate
pseudomeasurements for the SE phase.

In the foreseeable future, if not in the near term, smart
meter data will be collected and preprocessed by substation-
level management systems, at much faster scan rates than those
achievable if every piece of information had to be gathered at
the centralized DMS. Whereas a DMS is in charge of an entire
system, typically serving several million customers, a 60-MW
primary substation may serve three orders of magnitude less
customers, whose smart meter data are in turn concentrated at
less than a hundred intermediate points [generally secondary
substations serving the low voltage (LV) subsystem]. Having
these data collected at the primary substation, at rates ranging
from 5 to 20 times an hour, is a feasible choice even with
today’s bandwidths and technology.

In this context, the substation-level SE tool will have to deal
with two heterogeneous types of information, as explained in
more detail in the next section: 1) regular supervisory control
and data acquisition (SCADA) measurements, and eventually
those coming from new smart grid sensors, captured every
few seconds; and 2) smart meter (or smart meter concentrator)
readings and distributed generation production, updated every
few minutes.

This naturally leads to an information processing model in
two time scales. Even though two-time-scale problems have
long been known and exploited in several engineering fields
(see for instance [16]–[19]), including SE of chemical or bio-
logical processes [20], to the authors knowledge such a notion
has not been explored so far in power system SE. This paper
is aimed at developing and testing a weighted least-squares
(WLS) SE for distribution feeders with measurements captured
in two time scales. A thorough analysis performed in [21] con-
cluded that WLS SE is the most appropriate estimator for the
low redundancy levels typically found in distribution systems
(hardly higher than 1.1 even when pseudomeasurements are
included). This work is inspired by the recent development of
the so-called state reconstruction technique [22], by which few
fast-rate phasor measurement units (PMUs) are used to recon-
struct intermediate states between consecutive executions of
slow-rate conventional SE.

The structure of this paper is as follows. Section II reviews
and classifies the information sources available in smart distri-
bution systems. Then, Section III presents the SE model in the
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presence of two-time-scale measurements. Next, Section IV
discusses the limitations of the resulting SE model when
low measurement redundancy and pseudomeasurement obso-
lescence is considered. Simple interpolation and extrapolation
mechanisms, usually improving the accuracy of the estimates,
are considered in Section V. Finally, the proposed models and
solution refinements are tested on a real distribution system,
where their theoretically expected behavior is confirmed.

II. SOURCES OF INFORMATION IN SMART

DISTRIBUTION SYSTEMS

Unlike transmission and subtransmission systems, where
real-time telemetry provides sufficient redundancy to assure
network observability, medium voltage (MV) distribution feed-
ers have so far lacked the required infrastructure (sensors
and telecommunication) allowing the operating point to be
accurately determined.

In the upcoming smart grid paradigm, though, distribution
systems will have to cope with an heterogeneous set of infor-
mation sources, most of them not yet available at the DMS,
which can be roughly classified into the following categories.

1) Remote terminal unit (RTU) measurements captured at
HV-MV substations, collected by the SCADA system of
the DMS at rates ranging from few seconds to about
a minute (in general, much lower refreshing rates than
those employed at transmission-level SCADAs [23]). As
far as radial feeders are concerned, such measurements
typically reduce to the MV busbar voltage magnitude
and head line currents (assuming passive loads with an
average power factor, this allows the total P&Q delivered
by the feeder to be computed). So far, this is essentially
the only telemetered information at the MV level for a
majority of utilities which, unless a fault occurs, can only
have a very crude idea of what is going on downstream
with the help of load allocation techniques (item 4).

2) Higher reliability standards [i.e., lower system average
interruption frequency index/system average interrup-
tion duration index (SAIFI/SAIDI) indexes] are forcing
distribution utilities to deploy more and more feeder
automation devices, including remotely-operated inter-
mediate switching points for fault management. Once
the required communication channel is available, such
points can be converted into true RTUs with very little
extra investment. In fact, most vendors currently offer
this product in their catalogs. The information provided
by these additional RTUs can be useful for both fault
location and state estimation purposes.

3) Distributed generation is already a reality and will
increasingly spread in many radial feeders world-
wide. Depending on the specific regulation and rated
power, the production of distributed generators (DGs)
is required to be monitored at different rates, rang-
ing from day-ahead hourly forecasting to real telemetry
periodically submitted to the DMS.

4) Distribution utilities have customarily kept a more
or less elaborated data base of historic load pat-
terns/profiles. This information originates in several
sources, including load forecasting, load allocation

techniques in combination with feeder head measure-
ments, characteristic power factor values of aggregated
loads and systematic metering campaigns performed at
specific points. The feeder-level state estimator can ben-
efit from these not very precise values of P and Q,
which can be used as pseudo-measurements to extend
the observable area.

5) The latest and eventually most important addition to the
list of information sources at the feeder level comes
from the automatic meter reading/advanced metering
infrastructure (AMR/AMI) infrastructure (typically smart
meter concentrators), provided the right communication
bridge is built between AMI and DMS subsystems.
Nowadays this information is collected once a day in
many systems but, depending on bandwidth availability,
snapshot latencies of up to 15 min have been reported.

Notice that not all of the above data will necessarily reach
the DMS, but may remain at an intermediate place much
closer to the points where they are captured from the field.
In the hierarchical control system architecture envisioned else-
where [7], [9], [10], the right place where the raw information
should be collected and processed is the distribution substa-
tion, since there are currently no technical barriers for a state
estimator to be implemented in this environment.

For the purposes of this paper, all sources of information
summarized above, to which the feeder-level state estimator
can resort, will be grouped in two broad classes of different
nature, each with different accuracy and latency.

1) Telemetered data provided by RTUs (items 1, 2, and in
some cases, 3). This comprises quite accurate snapshots
captured with latencies ranging from few seconds to
about a minute. The set of measurements is insufficient
in any case to assure network observability.

2) Pseudomeasurements (items 3, 4, and 5). Updated at
intervals ranging from 15 min to 24 h, these bus-level
data are barely critical for observability purposes.

Clearly, in order to achieve a minimum redundancy level,
both information types should be properly combined, which
leads to the particular SE model described in the sequel.

III. STATE ESTIMATION IN TWO TIME SCALES

Let zm and zp denote the fast-rate measurement and slow-
rate pseudomeasurement vectors, respectively. As suggested
by Fig. 1, zm snapshots are updated at regular intervals of
width Tm, while zp is refreshed at much wider intervals of
period Tp = nTm. Between two consecutive snapshots of zp,
n snapshots of zm are captured (n = 4 in the figure).

At a given time instant, tk, the available information is
composed of the current snapshot zm,k and the past pseu-
domeasurement value zp,j. Therefore, the faster the load
increases or decreases the quicker and more obsolete zp,j

becomes. When the sign of the slope does not change between
tj and tj+n, the worst condition in terms of pseudomeasurement
obsolescence arises for tj+n−1, just before zp is updated again.

Dropping for simplicity the discrete-time indices, the result-
ing measurement model is[

zp

zm

]
=

[
hp(x)
hm(x)

]
+

[
εp

εm

]
(1)
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Fig. 1. Measurement (fast) and pseudomeasurement (slow) snapshots of two
electrical quantities.

where hp(·) and hm(·) represent the respective measurement
functions and εp and εm the associated errors.

The WLS SE solution is obtained by iteratively solving the
normal equations(

HT
p WpHp + HT

mWmHm

)
�x = HT

p Wp
[
zp − hp(x)

]
+ HT

mWm [zm − hm(x)] (2)

where the weighting coefficients should reflect whenever pos-
sible the information uncertainty. If errors can be assumed to
be Gaussian, the maximum likelihood estimation is obtained
when

W−1
p = cov(εp); W−1

m = cov(εm).

cov(·) represents the error covariance matrix. Notice that the
uncertainty of εp is generally much higher than that of εm.

The special structure of the normal (2) can be exploited
to save computational effort. Considering the relatively few
number of measurements in vector zm, a major source of com-
putational saving arises when the Cholesky factorization of
the gain matrix is not repeated at each SE run, but only when
the set zp is updated. Approximating the gain matrix in this
fashion may slightly increase the number of iterations, par-
ticularly when loads evolve quickly, but will not affect the
solution as long as the right-hand side of (2) is exactly com-
puted. Needless to say, using the solution of the previous run
as starting point, rather than the customary flat start profile, is
a convenient strategy to save iterations.

IV. LIMITATIONS ARISING FROM THE USE OF REDUCED

REDUNDANCY LEVELS

This section is devoted to qualitatively analyzing the lim-
itations of the two-scale state estimator (TSSE) in a context
characterized by extremely low redundancy levels. Intuitively,
one expects that adding a few branch Ampere measure-
ments, scattered throughout the feeder, to the set of bus
pseudomeasurements, will always improve the estimate of rel-
evant quantities (bus voltage magnitudes and branch power
flows), which is true so long as the feeder is taken as a whole.

Fig. 2. Generic scenarios illustrating an Ampere-measured branch with two
pseudo-measured buses downstream. (a) Two major laterals, each with an
equivalent load. (b) A single lateral load plus the remaining aggregated load.

However, depending on whether or not all loads downstream
have coincident evolution patterns, branch current measure-
ments may or may not be helpful to improve the estimates
of certain individual quantities when pseudomeasurements are
not duly updated.

As explained below, this limitation stems from the com-
bination of two adverse factors: 1) low redundancy of RTU
measurements, clearly insufficient to render the network
observable; and 2) gradual obsolescence of barely critical
pseudomeasurements as time elapses, of particular relevance
in periods when bus injections change at a fast rate.

In order to illustrate the analysis it is sufficient to consider
the two simplified radial feeders shown in Fig. 2. In both cases,
in addition to the head bus voltage, there is an Ampere mea-
surement at the branch which is closer to the feeder head,
while only P&Q pseudomeasurements are available at the two
buses downstream. Notice that, in spite of their simplicity, such
reduced feeders can be representative, in equivalent form, of
different realistic situations, by simply playing with the rela-
tive sizes of P1 − Q1 and P2 − Q2. For instance, in case (a)
each bus may represent the aggregated load of two main later-
als downstream a bifurcation, both of similar size. In case (b),
bus 1 can be a single load while bus 2 may represent the
aggregated load of the remaining buses downstream, etc.

Instead of using an exact SE model, the same qualitative
conclusions can be reached, with much less elaborated algebra,
by adopting a lossless model with flat voltage profile in which
active and reactive power injections constitute the state variables.

Given the latest pseudomeasurement values Pm
1 − Qm

1 and
Pm

2 − Qm
2 and the most recent current measurement, Im, which

is assumed to be much more accurate than power pseudomea-
surements, the WLS estimates for P1, P2, Q1, and Q2 can be
analytically obtained. As shown in the Appendix, the active
power estimates are

P̂1 = Pm
1 + �P1

P̂2 = Pm
2 + �P2 (3)

where

�P1 = w2

w1 + w2
(Km − 1)

(
Pm

1 + Pm
2

)

�P2 = w1

w1 + w2
(Km − 1)

(
Pm

1 + Pm
2

)
. (4)

w1 and w2 represent the weights of Pm
1 and Pm

2 , respectively,
and Km is the ratio

Km = Im√
(Pm

1 + Pm
2 )2 + (Qm

1 + Qm
2 )2

. (5)
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Notice that Km > 1 if the total load downstream has
increased since slow-rate pseudomeasurements were updated,
which is reflected in higher values of more recent Im snap-
shots, while Km < 1 when the total load has decreased. Similar
expressions are obtained for reactive powers by simply replac-
ing P with Q (for this reason, only active powers will be paid
attention to in the sequel).

In low-redundancy scenarios, like those considered in this
paper, the influence of the weighting coefficients w1 and w2
in the WLS estimates is crucial. In practice this poses a major
problem, since knowing at each time instant the real uncer-
tainty of pseudomeasurements is far from trivial. In this regard,
it is worth considering the following two cases.

1) Same weights adopted (w1 = w2). This would lead to

�P1 = �P2 = (Km − 1)
Pm

1 + Pm
2

2
(6)

which means that both Pm
1 and Pm

2 will be corrected by
the same amount to yield the respective estimates. In
absence of any other information this will be acceptable
provided both loads are of similar size. However, assume
for instance that P1 � P2. Then, according to (6), even
small changes in P1 might lead to relatively high devi-
ations in the smaller load, P2, irrespective of whether
this load has really changed or not.

2) Weights inversely proportional to the pseudomeasure-
ment (wi = 1/Pm

i ). In this case, it is easy to see
that

�Pi = (Km − 1)Pm
i ⇒ P̂i = KmPm

i (i = 1, 2) (7)

which means that each power will be corrected in pro-
portion to its size. In other words, for low-redundancy
scenarios, like the simplified ones represented in Fig. 2,
the total load variation detected by an Ampere mea-
surement at a given feeder section is prorated among
the loads located downstream in proportion to their
respective sizes.

Note that, irrespective of the weights adopted, the signs of
both �P1 and �P2 will be the same, according to (4), as
determined by the value of Km. If the total load increases
(decreases) then Km > 1 (Km < 1) and both estimates, P̂1 and
P̂2, will be higher (lower) than the outdated pseudomeasure-
ments, Pm

1 and Pm
2 . Indeed, this is an expected result for the low

redundancy considered, since there is no way to know whether
both loads have actually increased (decreased) or not (it is
worth stressing that replacing Im by power flow measurements
is not helpful in this regard).

In feeder sections where all transformer loads downstream
of an Ampere measurement evolve in an homogeneous way,
which happens when most customers have similar patterns,
this may not be a real limitation. However, in feeders com-
prising a mix of customers (residential, industrial, munici-
pal, etc.) some transformer loads may be increasing while
others are simultaneously decreasing, and combining few
Ampere measurements with critical pseudomeasurements can
be counterproductive, particularly if sudden load changes take
place.

Fig. 3. Tutorial example with homogeneous load trends.

Fig. 4. Tutorial example with opposite load trends.

Fig. 3 illustrates a case in which both P1 and P2 decrease
during the next 45 min. The power estimates obtained when Im

is incorporated (in this particular example w1 = w2) approach
the actual load evolution better than in absence of Im (stepwise
solid gray line).

The case in which both loads evolve in opposite directions
is shown in Fig. 4. In this case, note that, since the total aggre-
gated load is decreasing, the addition of Im is beneficial for the
load which is actually decreasing, P2, but detrimental to P1,
whose increasing trend remains hidden (unobservable) when
both loads are sensed upstream. From the point of view of
the losing load, P1, it would be preferable not to include Im

in the model, since the persistent pseudomeasurement value
(stepwise solid gray line) would better approximate the actual
load evolution.

This somewhat counterintuitive conclusion (i.e., adding an
accurate measurement can be counterproductive in certain
cases) will be reaffirmed by the results presented below.
Needless to mention, such limitations vanish when sufficient
redundancy levels are achieved.

V. SOLUTION ENHANCEMENTS

So far it has been implicitly assumed that pseudomeasure-
ments are only updated every n measurement snapshots. In
other words, at time instant tk, the TSSE combines the cur-
rent measurement snapshot, zm,k, with a pseudomeasurement
value, zp,k, given by the latest available pseudomeasurement

zp,k = zp,j k = j, . . . , j + n − 1.

This implies that pseudomeasurements are assumed to
evolve in a stepwise fashion, as suggested by the uppermost
diagram of Fig. 5.
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Fig. 5. Generation of pseudomeasurement intermediate values.

Depending on whether future pseudomeasurement values
are available in advance or not, other strategies to gener-
ate intermediate pseudomeasurement values are possible, as
discussed below.

A. Pseudomeasurement Extrapolations

The accuracy of the estimates can be frequently improved
if, instead of keeping the components of zp constant
since the last update (stepwise evolution), their values are
obtained by linear extrapolation from the last two sam-
ples (higher-order extrapolation is also possible, but the
results are usually worse owing to longer transient periods).
Mathematically

zp,k = zp,j + tk − tj
Tp

(zp,j − zp,j−1) k = j, . . . , j + n − 1.

The middle diagram of Fig. 5 shows two consecutive
intervals in which linear extrapolation behaves differently.
At interval (a) the linearly extrapolated value approximates
the actual evolution of the pseudo-measured quantity better
than the latest available value, z1. At interval (b), however,
owing to the sudden change of slope, linearly extrapolating
the pseudomeasurement is worse than just keeping the previ-
ous value, z2. As shown in Section VI, linear extrapolation
is helpful in a majority of cases to improve the estimation
provided otherwise by the vanilla stepwise evolution. This
happens when the time constants characterizing the load evo-
lution are large enough compared with the refreshing rate of
pseudomeasurements.

B. Pseudomeasurement Interpolations

Obtaining intermediate pseudomeasurements by extrapola-
tion is the only choice when future information about the
monitored quantity is missing. This is the case, for instance,
of some distributed generators, usually burning fossil fuels,
whose energy production is not forecasted but rather measured
and collected at a relatively slow rate compared to regular
SCADA measurements.

In practice, however, future pseudomeasurement values are
almost always available, usually with decreasing accuracy as

Fig. 6. 100-bus, 15-kV test network.

Fig. 7. Examples of 24-h load patterns.

time elapses. For instance, the production of a wind gen-
erator for the next hour can be predicted with reasonable
accuracy, and the same can be said of a PV farm. On the
other hand, loads provided by service transformers can also
be forecasted, usually within ±5% confidence intervals.

In those cases, intermediate values can be easily obtained
by linearly interpolating consecutive pseudomeasurements, as
shown in the lower diagram of Fig. 5. Mathematically

zp,k = zp,j + tk − tj
Tp

(zp,j+1 − zp,j) k = j, . . . , j + n − 1.

VI. TEST RESULTS

The proposed TSSE model and solution refinements have
been tested on a 15-kV, 100-bus distribution network (Fig. 6),
made up of two feeders (11.8 and 8.7 km long) and 38 sec-
ondary transformers. This real system delivers energy to a
mix of residential, industrial, and commercial loads, compris-
ing a heterogeneous set of load patterns, some of which are
shown for illustrative purposes in Fig. 7. Twenty-four-hour
active power consumptions are known at all nodes, while reac-
tive powers are obtained by applying typical power factors for
each customer type [15]. This leads to the branch power flow
profiles shown in decreasing order in Fig. 8. In addition, the
head voltage magnitude is assumed to be constant through-
out the 24-h period. This allows a load flow to be run, the
results of which are considered as exact values for simulation
purposes. The resulting voltage magnitudes for the simula-
tion time period are shown in Fig. 9. As expected, voltage
magnitudes drop when the power consumption increases.

In order to generate realistic sets of measurements (zm) and
pseudomeasurements (zp), random errors have been added to
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Fig. 8. Branch active power flows in decreasing order.

Fig. 9. Bus voltage magnitudes in decreasing order.

the exact 24-h quantities provided by the load flow solution
(except for the 38 zero-injection buses corresponding to the
15-kV side of secondary transformers). Each 24-h error pat-
tern is simulated by means of a sinusoidal wave of random
amplitude and phase angle, spanning the 24-h period, plus
a random DC component, yielding together maximum peak
errors of about 10% for zp and 1% for zm. Snapshots of sets
zp and zm are then obtained by sampling the 24-h noisy curves
at intervals Tp = 15 minutes and Tm = 1 minute, respectively
(n = 15). In future smart grids n can be significantly reduced,
particularly if smart meter information is processed in a dis-
tributed manner, while the number of measurements in zm will
steadily increase as distribution automation devices proliferate.

Pseudomeasurements in zp comprise active and reactive
power injections at all buses where loads are connected to
(zero-injection buses are handled as very accurate, constantly
available measurements). In addition to the voltage magni-
tude at the head bus, fast-rate measurements (zm) include sets
of Ampere measurements, more or less uniformly distributed
throughout the feeders. Three scenarios, labeled A, B, and C
have been considered, including 8, 16, and 32 current mea-
surements, respectively, placed as shown in Fig. 6. Scenario
A includes measurements numbered from 1 to 8 (4 of them in
each feeder), scenario B measurements 1 to 16, and scenario C
measurements 1 to 32, leading to really low redundancy levels
(1.04, 1.08, and 1.16, respectively), in accordance anyway to
what can be expected in future smart grids. The base-case sce-
nario, in which only zp and the head bus voltage magnitude are

available (i.e., without current measurements), has been also
analyzed. This is simply a load flow solution using a critical
set of erroneous data (no possibility of filtering errors), which
will be useful to quantify the improvements brought about by
the incorporation of zm in the different scenarios.

In real life, determining the accuracy of pseudomeasure-
ments is not a trivial task. For this reason, in absence of better
alternative criteria, weights adopted for the TSSE model have
been set in inverse proportion to the pseudomeasurement and
measurement values, and then those of zm are multiplied by 10
to reflect their higher accuracy compared with zp. Simulations
for the base case and the three barely redundant scenarios have
been performed and the results obtained are compared with
exact values. Solution enhancements described in Section V
(extrapolation and interpolation) have been also tested.

Fig. 10 shows the 24-h evolution of active power at a repre-
sentative load bus, for both the base case (zp only) and scenario
A (8 branch measurements). Exact values are also provided for
comparison. The diagrams on top show the results obtained
when zp is kept constant between slow-rate snapshots (step-
wise evolution assumed). In average, estimates obtained in
scenario A are better than those of the base case, particularly
at the central hours. The zoomed image on the right, corre-
sponding to the interval 13:45–16:15 h, shows the stepwise,
and sometimes sawtooth shape evolution of estimates, accord-
ing to the behavior theoretically predicted in Section IV for
very low redundancy levels and loads with opposite trends.

The central curves in Fig. 10 show the results obtained
when extrapolation is applied to update future zp values before
they are available. In this case, the evolution of estimates is
smoother than in the previous one. However, when there is a
sudden slope change, the estimator needs a time interval of
width Tp to get adapted to the new load trend.

The bottom diagrams show the results when interpolation
of zp is performed, which is possible only when future values
are forecasted or somehow computed in advance. Compared
to the two previous cases, this scheme clearly provides the
best performance.

Similar conclusions apply to the rest of nodes. At some
time instants, the counterintuitive behavior illustrated in Fig. 4,
namely poorer estimates of certain downstream powers orig-
inating by the incorporation of a current measurement, can
be clearly observed. As an example, let us consider the influ-
ence of current measurement #8, located at the branch between
nodes 131 and 132, in the estimates of bus injection P132 and
the power flow feeding the rest of loads downstream, P132−133
(Fig. 11 represents the area of the test network involved in this
example). The exact values for P132 and P132−133, as well
as the estimates with and without current measurements (sce-
nario A and base case) are shown in Fig. 12. It can be observed
how, for the first 2 h represented, when both power quantities
follow a decreasing trend, the incorporation of current mea-
surement #8 is beneficial for both magnitudes. However, after
hour 3, the power flow P132−133 starts increasing. From this
time on, particularly after hour 5 when the positive slope of
P132−133 becomes steeper, the estimate of P132 in scenario
A starts to deteriorate compared to the initial pseudomea-
surement (base case), whereas P132−133 continues benefiting
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Fig. 10. Evolution of active power estimates at a typical load bus in scenario A, when (top) zp is kept constant between snapshots, (middle) extrapolation
is used, and (bottom) interpolation is performed.

Fig. 11. Zoomed view of the test system around bus 132.

from the current measurement. It is worth noting that P132−133
is around five times larger than P132 and, therefore, even
though P132 estimates worsen, the average estimation errors
get reduced by the addition of measurement #8, as expected.

The accuracy of estimates in scenarios A–C has been numer-
ically compared with that of the base case. Average absolute
values of errors (estimated minus exact) of power flow, power
injection and voltage magnitude estimates (extended to all
branches or nodes, respectively, for every minute in 24 h), are
presented in Table I. As expected, the average absolute errors
decrease when the number of current measurements increases,
but the larger relative improvement with respect to the base
case is obtained with scenario A, comprising just eight
current measurements. The adoption of extrapolation and
interpolation strategies significantly improves the estimates
and can even compensate for the lack of measurements. For
instance, using interpolation in scenario A (eight measure-
ments) provides comparable or better results than the vanilla
stepwise strategy in scenario C (32 measurements).

In addition to absolute errors, Table I also shows, for power
injection pseudomeasurements (zp), the average error reduction

(in %) of the estimated values compared to the initial errors
associated to the noisy values (base case, stepwise evolu-
tion), rather than exact values. Error reductions for active
power injections ranging from 11.3% (scenario A, stepwise)
to 45.5% (scenario C with interpolation) have been obtained.
It is worth noting that for the base case (no current mea-
surements at all) simply extrapolating and interpolating the
pseudomeasurements reduces the original errors by 18.4%
and 22.8%, respectively. Similar conclusions apply to reactive
power injections.

Since adding more real-time measurements has a significant
associated cost, each user of the TSSE should determine at the
planning stage how many extra measurements are required
to achieve the desired accuracy, for given sampling rates,
pseudomeasurement quality and diversity of load evolution.
If all loads have very homogeneous trends, as happens for
instance when the feeders cover a purely residential area,
then perhaps one or two Ampere measurements (at the head
and middle of the feeder), might suffice to complement fore-
casted load values (in the limit this reduces to a simple load
allocation scheme). However, as happens in the distribution
system tested herein, if there is a mix of load types, some
of them raising when others are decreasing, then it is not so
obvious what is the optimal number and placement of real-
time measurements (this constitutes an interesting optimization
problem).

The improvement brought about by the addition of eight
current measurements (scenario A) is better visualized in
Fig. 13, representing the 24-h evolution of active power
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Fig. 12. Illustration of active power estimates at time intervals with homogeneous and opposite load trends (stepwise scheme).

TABLE I
AVERAGE ABSOLUTE ERRORS AND RELATIVE ERROR REDUCTIONS (%) COMPARED TO PSEUDOMEASURED VALUES

Fig. 13. Evolution of active power flow errors for the branch with largest load (scenario A).

flow errors corresponding to the branch section carrying
the largest apparent power (shown in boldface in Fig. 8).
Both positive and negative errors approaching 60 kW can
be seen for the stepwise and extrapolation approaches, the
number of peaks being significantly reduced in the latter
case. It is worth pointing out that, as theoretically pre-
dicted, error peaks take place when there are sudden slope
changes in the load evolution, which happens approximately at
around 7:30–8:30, 12:00–16:00, and 18:30–20:00 h (the reader
is referred to the quickly changing load patterns of Fig. 7). The
interpolation approach virtually gets rid of the oscillations,

keeping the maximum errors within ±10 kW for a branch
carrying an average load of 8000 kW.

Fig. 14 shows similar results for the evolution of volt-
age magnitude errors corresponding to the node with largest
voltage drop (shown in boldface in Fig. 9). Peak errors of
−0.0013 p.u. (about 20 V on a 15 kV basis) are reached
by stepwise and extrapolation approaches, while using inter-
polation the voltage errors do not exceed −0.0005 p.u.
(7.5 V).

Similar results are obtained for the rest of nodes and
branches. For the rest of scenarios, similar trends are observed,
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Fig. 14. Evolution of voltage magnitude errors for the node with largest voltage drop (scenario A).

but the average errors decrease with the incorporation of
current measurements.

VII. CONCLUSION

Based on an analysis (types, latencies, and accuracy) of
the information sources available at the distribution level, a
state estimator in two time scales is proposed in this paper.
It integrates a critical set of pseudomeasurements with very
few redundant measurements, more accurate and captured
n times faster. Limitations of the proposed model arising
in low-redundancy environments, particularly when heteroge-
nous load patterns coexist in the same feeder, are discussed,
and several enhancements to deal with pseudomeasurement
obsolescence are proposed.

Test results on a real distribution system, feeding a diver-
sity of load patterns, fully confirms the suitability of the TSSE
to both improve the accuracy and increase the latency of
the load flow solutions that could otherwise be computed if
only pseudomeasurements were used. In the mid term, fore-
casted pseudomeasurements will be gradually replaced by
smart meter readings and the number of measurements will
steadily increase, but the need to handle two time scales will
persist.

APPENDIX

In the simple networks of Fig. 2, the measurement model
comprises two pairs of power pseudomeasurements

Pm
1 = P1 + εP1

Pm
2 = P2 + εP2

Qm
1 = Q1 + εQ1

Qm
2 = Q2 + εQ2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

→ z1 = x + ε (8)

plus an Ampere measurement which, being much more accu-
rate than the set of power pseudomeasurements, can be
considered for our purposes as an equality constraint. Ignoring
branch losses, with Vi = 1, it can be approximately expressed
as follows:

I2
m = (P1 + P2)

2 + (Q1 + Q2)
2 → z2 = s(x). (9)

In compact form, the objective function associated with the
equality-constrained WLS SE can be written as

L = 1

2
(z1 − x)TW(z1 − x) − λT [z2 − s(x)] (10)

with x given by

x = [P1, P2, Q1, Q2]T . (11)

The estimate, x̂, is the one satisfying the first-order optimal-
ity conditions

W
(
z1 − x̂

) − STλ = 0 (12)

z2 − s
(
x̂
) = 0 (13)

where S is the Jacobian of s(x).
Assuming the weighting coefficients of P and Q are the

same, (12) can be rewritten as

P̂1 = Pm
1 − 2w−1

1 (P̂1 + P̂2)λ (14)

P̂2 = Pm
2 − 2w−1

2 (P̂1 + P̂2)λ (15)

Q̂1 = Qm
1 − 2w−1

1 (Q̂1 + Q̂2)λ (16)

Q̂2 = Qm
2 − 2w−1

2 (Q̂1 + Q̂2)λ. (17)

Adding (14) to (15) and (16) to (17) yields

P̂1 + P̂2 = (Pm
1 + Pm

2 )

1 + 2λ
(

w−1
1 + w−1

2

) (18)

Q̂1 + Q̂2 = (Qm
1 + Qm

2 )

1 + 2λ
(

w−1
1 + w−1

2

) . (19)

Substituting (18) and (19) into (9)

I2
m = (Pm

1 + Pm
2 )2 + (Qm

1 + Qm
2 )2

[
1 + 2λ

(
w−1

1 + w−1
2

)]2
. (20)

Let us define Km as

Km = 1

1 + 2λ
(

w−1
1 + w−1

2

) . (21)

Then

K2
m = I2

m

(Pm
1 + Pm

2 )2 + (Qm
1 + Qm

2 )2
(22)

which allows rewriting (18) and (19) as

P̂1 + P̂2 = Km(Pm
1 + Pm

2 ) (23)

Q̂1 + Q̂2 = Km(Qm
1 + Qm

2 ). (24)
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Going back (14) and (15), they can be written in matrix
form as (same for Q̂i and Qm

i )[
w1 + 2λ 2λ

2λ w2 + 2λ

] [
P̂1

P̂2

]
=

[
w1Pm

1
w2Pm

2

]
(25)

and, explicitly computing the inverse[
P̂1

P̂2

]
= 1

w1 + w2

[
w1 + w2Km (Km − 1)w2
(Km − 1)w1 w2 + w1Km

] [
Pm

1
Pm

2

]
. (26)

In incremental form, expressions (4) result.
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