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Abstract

Different objective functions have been discussed in static-deterministic flow shop scheduling,

being makespan (Cmax) and total completion time (
∑
Cj) the most studied objectives. Many sci-

entific papers also dealt with idle time of machines and waiting time of jobs in constraints and

objective functions, because both indicators are of high practical relevance, e.g. in steel production

or considering expensive machines. The efficiency of a production system can also be evaluated

by minimizing idle time and waiting time within the production process (called core idle time,∑
CITi, and core waiting time,

∑
CWTj), because they refer to a high machine utilization and a

continuous job flow. Moreover, both objectives can be used to relax the constraints of zero waiting

time (no-wait) or zero idle time (no-idle) in shop floors and hence, the alignment between
∑
CITi

and
∑
CWTj and classical objectives like Cmax and

∑
Cj has to be discussed. We start analyt-

ically with special cases where
∑
CWTj and

∑
Cj , as well as

∑
CITi and Cmax, are identical

objectives. For the general case, an experimental study is executed by means of a set of instances

solved by complete enumeration, mixed integer linear programming (MILP) models for single

objective and multi-objective (lexicographical) approaches. It can bee seen that the objectives are

not identical but at least aligned with varying intensity, e.g. the alignment between
∑
CWTj and∑

Cj is stronger compared to the alignment between
∑
CITi and Cmax. The shown properties

and results open a new line of problems in permutation flow shop scheduling and shall be further

discussed by developing efficient heuristic approaches for increased problem sizes.
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1. Introduction

In flow shop scheduling many different objective functions have been considered so far. The

most studied objectives are the minimization of makespan (see e.g. the reviews of Framinan et al.

(2004), Ruiz and Maroto (2005), Reza Hejazi and Saghafian (2005), Fernandez-Viagas et al. (2017))

and total completion time (see e.g. the surveys of Framinan et al. (2005), Pan and Ruiz (2013)).

Makespan (Cmax) is defined as the completion time of the last job on the last machine. While

Cmax can be solved optimally in a two-machine permutation flow shop by Johnson’s algorithm

(Johnson (1954)), it was proved to be NP-complete for more than two machines by Garey et al.

(1976). Total completion time (
∑
Cj) is the sum of completion times of all jobs on the last machine

and was proved to be NP-complete for two machines by Garey et al. (1976).

Besides Cmax and
∑
Cj , there are also other time measures which are important in flow shop

scheduling, e.g. waiting time of jobs and idle time of machines are often considered because of

their impact on many manufacturing environments and applications. Waiting time has a large in-

fluence e.g. in steel-production, where it is not only a waste of time but also a waste of raw material

and resources because molten steel can only be processed within a certain range of temperature

until the material becomes unusable for production, see e.g. Hall and Sriskandarajah (1996). In

this context, the no-wait constraint is often applied which means that jobs are not allowed to wait

within the production process. Idle time is an important factor e.g. when expensive machines

are part of the considered production layout so that a high utilization is required to guarantee

profitability.

In shop layouts, waiting time and idle time can be used to evaluate the efficiency of a pro-

duction system. E.g. a continuous job flow through the system is an efficiency-oriented objective

which means actually that the waiting time of jobs should be minimized because any waiting

situation interrupts a continuous flow. This objective is often represented by minimizing
∑
Cj .

However, the minimization of waiting time within the system (called core waiting time,
∑
CWTj)

is a measure of job flow. The utilization of machines is also one key factor referring to efficient

production systems. To achieve highly utilized machines, the minimization of Cmax is often used
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but also the minimization of idle time within the system (called core idle time,
∑
CITi) is a mea-

sure of machine utilization. In this context
∑
CWTj and

∑
CITi are defined for shop floors, and

in this work we focus on the permutation flow shop as the easiest shop layout.

In the literature, no-wait and no-idle constraints are considered for problems minimizing Cmax

mainly, see e.g. Allahverdi (2016), Ruiz et al. (2009), being both assumptions strong constraints in

scheduling. An interesting approach might be relaxed them by considering
∑
CWTj or

∑
CITi

respectively. As, in the most of the cases, decision makers are interested in the minimization of

Cmax and
∑
Cj , the alignment among these objectives and the proposed objectives,

∑
CWTj and∑

CITi, is a first step to relax the no-wait and no-idle constraints. To the best of our knowledge,

this alignment has not been considered in the literature, so this work focuses in the analysis of

the relationship among the four aforementioned objectives. First, for some special cases, we show

that either
∑
CWTj and

∑
Cj or

∑
CITi and Cmax are identical, e.g.

∑
CWTj and

∑
Cj are

equivalent if the processing times of all jobs on the first machine are the same. Additionally, the

general case is analyzed experimentally and reveals e.g. that the alignment between
∑
CWTj and∑

Cj is stronger compared to the alignment between
∑
CITi and Cmax.

Section 2 provides an overview about the different components of idle time and waiting time

in a permutation flow shop and explains their formal definitions and practical relevance. Cor-

responding literature is reviewed in Section 3. The theoretical equivalence of objectives in some

special cases are presented in Section 4. Section 5 deals with different methods to analyze exper-

imentally the relationship between objective functions. The paper finishes with conclusions and

suggestions for future research lines.

2. Notation and concepts of idle time and waiting time

The relevant notation, Table 1, and the static-deterministic permutation flow shop problem

(PFSP) are introduced to provide the basis for explaining the formal and practical relevance of dif-

ferent idle time and waiting time components. A PFSP with following assumptions is considered:

n jobs have to be scheduled on m machines which are arranged in series. All jobs and machines

are available at time zero. Preemption of jobs is not allowed. The processing times, pi,j , of each

job j on each machine i are known in advance (P =
∑m
i=1
∑n
j=1 pi,j). The sequence of jobs stays

the same on all machines and cannot be changed (permutation assumption, prmu). Moreover, the
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α|β|γ-notation provided by Graham et al. (1979) is used, where α defines the machine layout, β

explains the process constraints and γ shows the objective function.

Indexes:
i Index of machines, 1 ≤ i ≤ m
j Index of jobs, 1 ≤ j ≤ n
[k] Index of job position, 1 ≤ k ≤ n

Parameter:
pi,j/pi,[k] Processing times of job j on machine i / Processing times of job in position k on machine

i, 1 ≤ i ≤ m, 1 ≤ k ≤ n, 1 ≤ j ≤ n

Variables:
Bi,[k] Starting time of job in position k on machine i, 1 ≤ i ≤ m, 1 ≤ k ≤ n
BITi Back idle time of machine i after processing job in position n, 1 ≤ i ≤ m
BWT[k] Back waiting time of job in position k after being processed on machine m, 1 ≤ k ≤ n
CITi,[k] Core idle time of machine i before being processed of job in position k, 2 ≤ i ≤ m, 2 ≤

k ≤ n
CWTi,[k] Core waiting time of job in position k before being processed on machine i, 2 ≤ i ≤

m, 2 ≤ k ≤ n
Ci,[k] Completion time of job in position k on machine i, 1 ≤ i ≤ m, 1 ≤ k ≤ n
FITi Front idle time of machine i before being processed of job in the first position 1 ≤ i ≤ m
FWT[k] Front waiting time of job in position k before being processed on machine 1, 1 ≤ k ≤ n

Xj,[k]

{
1, if job j is assigned to position [k]
0, in all other cases

1 ≤ k ≤ n, 1 ≤ j ≤ n

Table 1: Notation and definitions

2.1. Formal definition of waiting time and idle time

Framinan et al. (2003) and Fernandez-Viagas and Framinan (2014) stated that idle time has

been defined in different ways so far. According to this and also referring to waiting time, we first

focus on the different components of idle time and waiting time depending on where they could

occur in the production process which is the basis to discuss the practical relevance. Regarding

waiting times, it can be considered:

• Front Waiting Time of job in position k, FWT[k], 2 ≤ k ≤ n: the time before the job is processed

on the first machine,

• Core Waiting Time of job in position k of machine i, CWTi,[k], 2 ≤ i ≤ m, 2 ≤ k ≤ n: the

time period between the start of job in position k on machine i and the completion time on the

previous one i− 1. If job j occupies position k then CWTj =
∑m
i=2 CWTi,[k].

• Back Waiting Time of job in position k, BWT[k], 1 ≤ k ≤ n − 1: is the time after the job has

finished its last operation but before the overall schedule is finished.
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In the same way for the idle times, we have:

• Front Idle Time of machine i, FITi, 2 ≤ i ≤ m: idle time before a machine processes the first job,

• Core Idle Time of job in position k of machine i, CITi,[k], 2 ≤ i ≤ m, 2 ≤ k ≤ n: the time period

between the start of job in position k and the completion time of the previous job on machine i.

For a machine i, CITi =
∑n
k=1 CITi,[k].

• Back Idle Time of machine i, BITi, 1 ≤ i ≤ m − 1: time after the machine has finished its last

operation but before the overall schedule is finished.

In Figure 1 an example is given to visualize the afore mentioned components. The machine-

oriented Gantt-chart (left) shows the different forms of idle time, while the components of waiting

time are given in the job-oriented Gantt-chart (right). It can be seen that if Bi,[k] = Ci−1,[k] no core

waiting time exists and the job is directly processed on the next machine (see e.g. job 2 in Figure

1). CITi,[k] = 0 if Bi,[k] = Ci,[k−1] (see e.g job 3 in machine 2 in Figure 1).

Figure 1: left: Machine-oriented Gantt-chart; right: Job-oriented Gantt-chart

The formal definitions of all components related to waiting time and idle time and their sum-

form are described in Table 2, as well as the formal definitions of Cmax and
∑
Cj .

2.2. Practical relevance of waiting time and idle time

After explaining idle time and waiting time formally, it is also essential to discuss their practical

importance. One of the main goals in production management is the elimination of all kinds of

waste to obtain an efficient system. Among other things, especially waste of time is interesting in

scheduling since most of the objectives are time-related. Referring to idle time, we assume that

the time before production starts, i.e. FITi, and after production has finished, i.e.
∑
BITi, can

be used for other necessary but non-value added tasks, like service processes, setups or cleaning

procedures.
∑
FITi only depends on the first scheduled job, see Table 2.

∑
BITi is influenced

by the completion times of the last scheduled job, but a lower bound can be obtained in terms of
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Abbr. Objective∑
FITi Total front idle time

m∑
i=1

FITi

m∑
i=2

i−1∑
i′=1

pi′,[1]

∑
FWTj Total front waiting time

n∑
k=1

FWT[k]

n−1∑
j=1

j∑
k=1

p1,[k]

∑
BITi Total back idle time

m∑
i=1

BITi m · Cm,[n] −
m∑

i=1
Ci,[n]

∑
BWTj Total back waiting time

n∑
k=1

BWT[k] n · Cm,[n] −
n∑

k=1
Cm,[k]

∑
CITi Total core idle time

m∑
i=2

n∑
k=2

CITi,[k]

m∑
i=2

n∑
k=2

Bi,[k] − Ci,[k−1] (1)

∑
CW Tj Total core waiting time

m∑
i=2

n∑
k=2

CW Ti,[k]

m∑
i=2

n∑
k=2

Bi,[k] − Ci−1,[k] (2)

∑
Cj Total completion time

n∑
k=1

Cm,[k] (3)

Cmax Makespan Cm,[n] (4)

Table 2: Formal definitions of objective functions (bold: Objectives further discussed in Sec. 4 - 5)

the processing times of last scheduled job since
∑
BITi ≥

∑m−1
i=1

∑m
i′=i+1 pi′,[n]. However, core

idle time cannot be estimated in the same manner since its occurrence and length hardly depends

on the schedule. Instead, it can be interpreted as an indicator of machine utilization because it

indicates that the machine is in a stand-by mode and waiting for work and the minimization leads

to an efficient production system (see also Liu et al., 2016).

Considering waiting time, there are also components which could be used efficiently for other

tasks. E.g. when a production system consists of multiple sub-systems, front waiting time and

back waiting time can be used to transport jobs from one production step to the next one or directly

to the customer. So,
∑
FWTj and

∑
BWTj can be used for non-value added tasks in the same

way as
∑
FITi and

∑
BITi. Here,

∑
CWTj can be seen as an indicator of job flow because as

soon as jobs have to wait within the process the flow is interrupted, i.e. the highest flow can be

achieved when each job is moved through the system without any waiting time.

Related to waiting and idle time, it can be seen that in many practical applications, no-wait

schedules or no-idle schedules are required, e.g. in steel industry, food industry or when expensive

machines are required. These constraints are mostly combined with the minimization of Cmax or∑
Cj . However, in some practical applications a strict no-wait or no-idle constraint might be
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relaxed by
∑
CWTj and

∑
CITi, respectively. E.g. in food industries, cold chains have to be

maintained, i.e. waiting time of cooled and frozen food is not allowed and hence, it refers to a

no-wait assumption. Nevertheless, in determined conditions the cold chain can be maintained

allowing waiting times and so, the minimization of
∑
CWTj instead of the no-wait constraint

might be applicable.

2.3. Consequences of semi-active schedules

In this paper we focuses on the permutation flowshop scheduling problem considering semi-

active schedules, i.e. the jobs start as early as possible on each machine so that they seem to be

left-shifted (see e.g. Pinedo, 2016). Hence, semi-active schedules ensure that the first machine

is never idle and the first job never has to wait. Applying the semi-active assumption leads to

a reduction of total number of feasible schedules from infinity to n! because each sequence only

provides one semi-active schedule for each problem instance. For this reason, scheduling literature

often considers only semi-active schedules, which is also assumed here.

Note that Fm|prmu|
∑
CITi and Fm|prmu|

∑
CWTj are both trivial without this considera-

tion, since if right-shifting of operations is allowed, for each sequence an optimal schedule can

be found (as it can be seen in the Fig. 2). Additionally, literature about Fm|prmu|
∑
Cj and

Fm|prmu|Cmax considers semi-active schedules which leads to values of
∑
CWTj and

∑
CITi

greater than zero (see Figure 2 a)). Under this consideration, it can be shown that both problems,

Fm|prmu|
∑
CITi and Fm|prmu|

∑
CWTj , are NP-complete using a similar reduction to the 3-

partition-problem which was used for the proof of NP-completeness of Cmax and
∑
Cj by Garey

et al. (1976). Therefore, the semi-active assumption changes the problem of minimizing
∑
CITi

and
∑
CWTj from trivial to NP-hard.

Summing up, idle time and waiting time can be divided in different components depending

on their occurrence in the production process. Assuming that front and back components could

be used for other tasks, the discussion leads to
∑
CITi and

∑
CWTj as indicators for efficient

production systems and as relaxations of no-wait and no-idle constraints. While
∑
CITi refers to

the utilization of machines,
∑
CWTj evaluates the job flow through the system. Assuming semi-

active schedules, the problems considering
∑
CWTJ and

∑
CITI are NP-hard, and to analyse the

relationship among these new objectives and the classical objectives is an open issue as it is shown

in the literature reviewed in the following section.
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Figure 2: Example of semi-active schedule and non semi-active schedules (under non aditional contraints)

3. Literature review

The discussion about waiting time and idle time is not new because these measures are not

only interesting in theoretical scheduling models but are also relevant in many manufacturing en-

vironments. These concepts can be found as objective functions (see Table 3), in heuristics methods

(see Table 4), and in constraint (see Table 5). In this section, we focus the discussion about waiting

time and idle time in objective functions, since this case is directly related to our research work.

An extensive review has been carried out including different machine layouts. We do not explain

all machine environments and constraints in detail and refer the interested reader to the cited

scientific paper. and summarize the reviewed literature.

Merten and Muller (1972) discussed the relationship between completion time and front wait-

ing time by analyzing their mean and variance values in a single machine layout. They showed

that minimizing
∑
Cj or FWT leads to the same optimal sequence, while the minimization of

completion time variance, 1
n

∑n
j=1(Cj − Cj)2, and FWT -variance, 1

n

∑n
k=1(FWT[k] − FWT )2,

have the same objective value. Eilon and Chowdhury (1977) discussed the objective of minimiz-

ing FWT -variance, too, and showed that an optimal schedule has to be V-shaped referring to the

processing times of jobs. V-shaped means that the job with the smallest processing time is set

in the middle of the schedule, while all jobs in front of this job are sorted in descending order

and all jobs after this job in ascending order. Bagchi (1989) dealt with several objectives refer-

ring to the variation of front waiting time and completion time, e.g. an optimal algorithm for the

total absolute difference of front waiting times,
∑n
k=1

∑n
k′=1 |FWT[k′] − FWT[k]|, was provided.
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Among other things, a bi-objective problem of
∑
FWTj and

∑n
k=1

∑n
k′=1 |FWT[k′] − FWT[k]|

has been discussed and similarities between completion time and waiting time have been iden-

tified. Li et al. (2007) proposed a discussion about the influencing factors when focusing on
1
n

∑n
k=1(FWT[k] − FWT )2 in a single machine environment, concluding that the statistical pa-

rameters mean and standard deviation of the used processing time distribution makes a strong

contribution to FWT -variance. Xu (2011) dealt with the single machine problem and the objec-

tive of minimizing the weighted waiting time variance,
∑n
j=1 wj(FWTj − FWT )2. The author

showed that the problem 1||
∑n
j=1 wj(FWTj − FWT )2 is optimally solved by sorting the jobs in

a V-shaped manner regarding the measure pj/wj , where wj refers to the weight of job j, if jobs are

agreeably weighted, i.e. pj′ > pj =⇒ wj′ < wj ∀ j′, j ∈ {1, 2, ..., n}. Moreover, the dispatching

rule ’Shortest Processing Times’ can be used for an optimal solution if pj andwj of a job are directly

proportional. De Matta (2019) discussed the problem of minimizing
∑
CWTj in a two-machine

permutation flow shop. The author reduced this problem to a single machine environment and

added the requirements of batch-setups and deadlines dj of each job (1|setup, dj |
∑
CWTj).

In most cases, papers considering idle time in the objective function refer to the total machine

completion time,
∑m
i=1 Ci. Ho and Gupta (1995) discussed two different sets of dominated ma-

chines and among other objectives, provided simple and efficient solution methods for
∑
Ci. Fon-

drevelle et al. (2008) discussed the minimization of weighted sum of machine completion times

with minimal and maximal time lags, Fm|prmu,wtmaxi,j , wtmini,j |
∑
wiCi. They proved that the

problem is NP-hard and provided a branch-and-bound based exact algorithm. In their conclu-

sion, they suggested to discuss the minimization of
∑
CITi. Ruiz-Torres et al. (2011) consid-

ered the problem of minimizing Cmax and
∑
Ci with assignment flexibility of tasks, i.e. there

are more tasks per job to be processed than machines, but each machine can process each task,

Fm|prmu, flex|
∑
Ci and Fm|prmu, flex|Cmax. They concluded that there is no solution found

which simultaneously minimizes both objectives, i.e. a good solution for Cmax is also a good

sequence for
∑
Ci but a good solution for

∑
Ci leads to a poor Cmax. Finally, Liu et al. (2014)

considered specifically the objective
∑
CITi proposing a NEH-based heuristic.

Additionally, some multi-criteria approaches have been considered in the literature regarding

idle time objective functions. The sum of
∑
FITi and

∑
CITi was considered by Yagmahan and

Yenisey (2008) and Sha and Lin (2009), while Liao et al. (2007) only referred to
∑
CITi. Hosseini

and Tavakkoli-Moghaddam (2013) proposed two meta-heuristics for the two-machine flow shop
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with dynamic arrivals and including learning effects. The multi-objective function consists of the

minimization of mean deviation from a common due date and
∑
CITi. In their paper,

∑
CWTj

is calculated within the computational experiments but is not considered directly in the objective

function. Recently, Liu et al. (2016) modified the well known NEH-heuristic (see Nawaz et al.,

1983) for a bi-objective approach of minimizing Cmax and
∑
CITi.

Summarizing, idle time and waiting time have been discussed in the scheduling literature, but∑
CITi and

∑
CWTj have only been rarely discussed as objective functions, and, in particular,

the relationship to each other or to Cmax and
∑
Cj has not been considered.

4. Basic observations

As explained in Section 1,
∑
CITi and

∑
CWTj are efficiency-oriented objectives whose mini-

mization leads to improved utilization and job flow, and they may be used as relaxation of no-wait

and no-idle constraints. Therefore, we have observed the interest about to analyse the alignment

among
∑
CITi and

∑
CWTj and the classical objectives Cmax and

∑
Cj . Therefore, from an

theoretical point of view, the relationship is analysed for some special cases regarding processing

times, showing that Cmax and
∑
CITi, as well as

∑
Cj and

∑
CWTj are equivalent. Moreover,

we show that the semi-active assumption is fulfilled as long as the no-idle constraint applies to the

first machine and the no-wait constraint applies to the first job. This result will be useful for the

experimental analysis carried out for the general case in Section 5

4.1. Semi-active schedule assumption

As described in Section 2.3, in the permutation flowshop context, the semi-active schedule

verifies that the first machine is never idle and the first job never has to wait within the process.

However, these two constraints do not guarantee semi-active schedules in the search space (i.e.

the optimal schedule can have some right-shifted operations). Observation 1 proves that in the

subspace of all schedules verifying that the first machine is no-idle and the first job is no-wait, the

optimal value of
∑
CITi (and

∑
CWTj) is provided by the semi-active schedule.

Observation 1. Let Sπ be the set of all schedules constructed for a given sequence π. Let Sπc ⊆ Sπ be the

set of schedules verifying that the first machine is no-idle and the first job is no-wait. Let Ss ∈ Sπc be the

semi-active schedule for π. Then,∑
CITi(Ss) ≤

∑
CITi(S) ∀S ∈ Sπc , S 6= Ss and

∑
CWTj(Ss) ≤

∑
CWTj(S) ∀S ∈ Sπc , S 6= Ss.
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γ Heuristic Observation Author∑
Cj Constructive Definition of CWT and CIT; part of the

heuristic approach
Rajendran and Chaudhuri
(1992)∑

Cj Constructive CIT and CWT part of decision coefficients Wang et al. (1997)∑
Cj Constructive Evaluation of Nodes and Sub-solutions

with weighted CIT
Liu and Reeves (2001),
Fernandez-Viagas and
Framinan (2017)

Cmax Constructive FIT+CIT on the last machine are discussed Dudek and Teuton Jr
(1964)

Cmax Constructive FIT+CIT on the last machine are discussed Sarin and Lefoka (1993)
Cmax Local search algorithm Idle times as part of the decision process Liu et al. (2011)
Cmax or∑

Cj

Tie-breaking rule Idle time consideration Gupta (1972)

Cmax Tie-breaking rule Idle time on bottleneck is considered Low et al. (2004)
Cmax Tie-breaking rule

∑
CITi is part of the rule Companys et al. (2009)

Cmax Tie-breaking rule
∑

CITi is part of the rule Ying and Lin (2013)
Cmax Tie-breaking rule FIT+CIT as part of the rule Fernandez-Viagas and

Framinan (2014)
Cmax Tie-breaking rule FIT+CIT as part of the rule Liu et al. (2017)

Table 4: Summary of waiting and idle times in algorithms of the PFSP

Description Graham et al. (1979)-notation Reference

No-wait α|no-wait|γ detailed survey see Allahverdi (2016)
No-idle α|no-idle|γ surveys of Ruiz et al. (2009) and Gon-

charov and Sevastyanov (2009)
Limited waiting time α|wtmax

i,j |γ Brief overview see Kim and Lee (2019)

Overlapping waiting time F3|prmu,wtmax
1−2,j , wt

max
1−3,j |Cmax Kim and Lee (2019)

Linear dependence of pi,j on wait-
ing times

F2|prmu,XX|XX Yang and Chern (1999)

No-wait and no-idle F2|prmu, no-wait, no-idle|Cmax Billaut et al. (2019)

No-wait and no-idle F2|prmu, no-wait, no-idle|
∑

Cj Della Croce et al. (2018)

Duality relations of no-wait and no-
idle

Fm|prmu, no-wait|Cmax and
Fm|prmu, no-idle|Cmax

Kalczynski and Kamburowski (2007)

Relationship between no-wait and
no-idle

Fm|prmu|Cmax,
Fm|prmu, no-wait|Cmax and
Fm|prmu, no-idle|Cmax

Makuchowski (2015)

Table 5: Summary of waiting time and idle time as constraints

Proof. Let Ss be the semi-active schedule for π. Then,

m∑
i=1

CITi(Ss) =
m∑
i=1

Bi,[1] − Ci,[n] −
n∑
j=1

pi,j

As Bi,[1] is fixed for all schedules S ∈ Sπc , it can be seen that
∑
CITi depends only on Ci,[n].
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Therefore, right-shifting any job different to the one in the last position [n] implies the same∑
CITi. Right-shifting the job in the last position leads to an increase of

∑
CITi. Therefore,∑

CITi(Ss) ≤
∑
CITi(S) ∀S ∈ Sπc , S 6= Ss.

Analogously,
n∑
j=1

CWTj(Sa) =
n∑
k=1

Cm,[k] −B1,[k] −
m∑
i=1

pi,[k]

Here, B1,[k] is fixed for all schedules S ∈ Sπc . So,
∑
CWTj depends only on Cm,[k]. Hence, right-

shifting any job on a machine different to the last one leads to the same
∑
CWTj , while right-

shifting any job in the last machine implies an increase of
∑
CWTj . Therefore,

∑
CWTj(Ss) ≤∑

CWTj(S) ∀S ∈ Sπc , S 6= Ss.

Observation 1 is illustrated by Figure 3. It can be seen that any right-shifting operation provides

worse values at least for one of the objective functions.

Figure 3: Possible movements maintaining the first machine no-idle and the first job no-wait

4.2. Cases with special processing times

In this section some basic theorems are proved regarding special cases of processing times,

where the problems of minimizing
∑
CWTj and

∑
Cj or

∑
CITi and Cmax are equivalent. Fi-

nally, two cases implying
∑
CWTj = 0 and

∑
CITi = 0 for all schedules are shown. First, a

relationship between
∑
CWTj and

∑
Cj is presented (see also Benkel et al., 2015 and Rajendran

and Chaudhuri, 1992 for a similar formulation).

Lemma 1. Total core waiting time can be expressed in terms of total completion time minus total front

waiting time and minus the constant P =
∑m
i=1
∑n
j=1 pij , i.e.

n∑
j=1

CWTj =
n∑
j=1

Cj −
n∑
j=1

FWTj − P (5)
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Proof. The definition of
∑
CWTj , given in Eq. 2 (Table 2), is recalled:

∑n
j=1 CWTj =

m∑
i=2

n∑
k=2

Bi,[k] − Ci−1,[k]. Taking into account that the job in the first position never has to wait

within the process, it is possible to add position k = 1 to the previous formula obtaining

n∑
j=1

CWTj =
m∑
i=2

n∑
k=1

Bi,[k] − Ci−1,[k]

Disassembling the sum of machines leads to

n∑
j=1

CWTj =
n∑
k=1

B2,[k] − C1,[k] +B3,[k] − C2,[k] + ...+Bm,[k] − Cm−1,[k]

Taking into account that Bi,[k] = Ci,[k] − pi,[k] ⇒ pi,[k] = Ci,[k] − Bi,[k],
∑
CWTj can be expressed

in the following way:
n∑
j=1

CWTj =
n∑
k=1

(Bm,[k] − C1,[k] −
m−1∑
i=2

pi,[k])

Additionally, Bm,[k] = Cm,[k] − pm,[k] and C1,[k] = B1,[k] + p1,[k], i.e.

n∑
j=1

CWTj =
n∑
k=1

(Cm,[k] − pm,[k] −B1,[k] − p1,[k] −
m−1∑
i=2

pi,[k])

which can be simplified to

n∑
j=1

CWTj =
n∑
k=1

(Cm,[k] −B1,[k] −
m∑
i=1

pi,[k])

where
∑n
j=1 Cj =

∑n
k=1 Cm,[k], P =

∑n
k=1

∑m
i=1 pi,[k] and

∑n
j=1 FWTj =

∑n
k=1 B1,[k] (see Table 1

and Table 2).

Using Lemma 1, the following theorem shows that the problems minimizing
∑
Cj and∑

CWTj are equivalent in a special case of the processing times.

Theorem 1. In an m-machine permutation flow shop where the processing times on machine i = 1 are

identical for all jobs, i.e. p1,1 = p1,2 = ... = p1,n, the minimization of
∑
CWTj is equivalent to the

minimization of
∑
Cj .

Proof. This result can be proved with the Gaussian triangular number. If the processing times
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are equal on the first machine, p1, the calculation of
∑
FWTj can be reduced to

∑n
k=1 FWT[k] =

n(n+1)
2 · p1 for all sequences, i.e.

∑
FWTj is constant. Then,

∑
CWTj only depends on

∑
Cj (Eq.

5). So, the minimization of
∑
CWTj is equivalent to the minimization of

∑
Cj .

In the following Lemma it can be seen that
∑
CITi is related to the completion time of ma-

chines (see also Benkel et al., 2015).

Lemma 2. Total core idle time can be expressed in terms of total machine completion time minus total front

idle time and minus the constant P =
∑m
i=1
∑n
j=1 pij , i.e.

m∑
i=1

CITi =
m∑
i=1

Ci −
m∑
i=1

FITi − P (6)

Proof. Considering the definition of
∑
CITi given in Eq. 1 in Table 2

∑m
i=1 CITi =

m∑
i=2

n∑
k=2

Bi,[k] −

Ci,[k−1] and keeping the first machine no-idle within the process leads to

m∑
i=1

CITi =
m∑
i=1

n∑
[k]=2

Bi,[k] − Ci,[k−1]

Similar to the previous proof, disassembling the sum of jobs and considering thatpi,[k] = Ci,[k]−

Bi,[k] leads to

m∑
i=1

CITi =
m∑
i=1

Bi,[2] −Ci,[1] +Bi,[3] −Ci,[2] + ...+Bi,[n] −Ci,[n−1] =
m∑
i=1

(Bi,[n] −Ci,[1] −
n−1∑
k=2

pi,[k])

Moreover, Bi,[n] = Ci,[n] − pi,[n] and Ci,[1] = Bi,[1] + pi,[1], i.e.

m∑
i=1

CITi =
m∑
i=1

(Ci,[n] − pi,[n] −Bi,[1] − pi,[1] −
n−1∑
k=2

pi,[k]) =
m∑
i=1

(Ci,[n] −
m∑
i=1

Bi,[1] −
n∑
k=1

pi,[k])

where
∑m
i=1 Ci =

∑m
i=1 Ci,[n],

∑m
i=1 FITi =

∑m
i=1 Bi,[1] (see Table 2) and P =

∑n
k=1

∑m
i=1 pi,[k].

Using Lemma 2, the following theorem proves a two-machines special case, in which mini-

mization of
∑
CITi is equivalent to minimize makespan.
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Theorem 2. In a two-machine permutation flow shop where the processing times on machine i = 1 are

identical for all jobs, i.e. p1,1 = p1,2 = · · · = p1,n, the minimization of
∑
CITi is equivalent to the

minimization of Cmax.

Proof. As it is shown in Table 2,
∑
FITi only depends on the processing time of the first job on

the first machine. As long as the processing times are equal on the first machine,
∑
FITi is also

equal for each possible schedule and
∑
CITi can be reduced to the minimization of

∑
Ci (Eq. 6).

Because C1,[n] is constant, the minimization only refers to C2,[n] which equals Cmax.

In the following theorems, two trivial cases implying
∑
CWTj = 0 and

∑
CITi = 0 for all

schedules are shown.

Theorem 3. In an m-machine permutation flow shop where the machines are arranged in a decreasing

dominance order, i.e. min{pi,j} ≥ max{pi+1,j} ∀ j,∀i = 1, ...,m− 1, then,
∑
CWTj is zero for every

schedule.

Proof. Under the conditions of this result, Ho and Gupta (1995) shows that:

n∑
j=1

Cj =
n∑
j=1

j∑
k=1

p1,[k] +
n∑
j=1

m∑
i=2

pi,j (7)

It can be observed from Table 2 that
∑n
j=1 FWTj =

n−1∑
j=1

j∑
k=1

p1,[k], so

n∑
j=1

Cj =
n−1∑
j=1

j∑
k=1

p1,[k] +
n∑
k=1

p1,[k] +
n∑
j=1

m∑
i=2

pi,j =
n∑
j=1

FWTj +
n∑
j=1

m∑
i=1

pi,j =
n∑
j=1

FWTj + P

From Eq. 5 we conclude that in this case
∑
CWTj = 0.

Theorem 4. In an m-machine permutation flow shop where the machines are arranged in an increasing

dominance order, i.e. max{pi,j} ≤ min{pi+1,j} ∀ j,∀i = 1, ...,m − 1, then,
∑
CITi is zero for every

schedule.

Proof. Similarly to the previous result, and based on the expression of
∑
Ci given by Ho and

Gupta (1995) under the conditions of this result given in Eq. 8, the result can be derived using the
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definition of
∑
FITi given in Table 2.

m∑
i=1

Ci =
m−1∑
i=1

pi,[1] · (m− i) +
m∑
i=1

n∑
j=1

pi,j (8)

5. Computational analysis

After analyzing Cmax,
∑
Cj ,

∑
CITi and

∑
CWTj theoretically on the basis of some special

cases, we now focus on the general cases of processing times in order to gain further insights into

the alignment of the considered objectives. Different analytical methods are going to be applied in

the analysis (Section 5.1). The relationships between the four objectives are analyzed by interpret-

ing the result (Section 5.2).

5.1. Analytical methods

Based on the observation that one instance can have more than one optimal sequence for a

given objective function, and taking into account that, in the set of the optimal solutions for a

given objective, the variability of the efficiency of these solutions for a different objective may be

high, we propose different analytical methods to compare the objective functions:

• Complete Enumeration: This method evaluates all n! schedules. Here, the optimum of an ob-

jective can be obtained and, in addition, the number of optimal schedules can be computed.

This is the most expensive of the proposed methods from the computational time point of view.

Therefore, it is restricted to very small sizes (up to n = 10).

• Classical MILP Model: In this context, the classical MILP is referred to a single-objective model

providing one random optimal sequence among all possible optimums for a given objective

function. The disadvantage is that neither the number of optimal schedules nor the relation-

ship to other objective functions is considered, , but computational effort is lower than for the

complete enumeration. The MILP formulation of PFSP and Cmax given by Wilson (1989) (see

Wilson, 1989 or Stafford Jr et al., 2005 for the description of the model and its evaluation) is
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adapted changing the objective function. The formulations of the objective functions are:

Cmax = Bm,[n] +
n∑
j=1

pm,j ·Xj,[n] (9)

n∑
j=1

Cj =
n∑
k=1

Bm,[k] +
n∑
j=1

pm,j ·Xj,[k]

 (10)

m∑
i=1

CITi =
m∑
i=2

Bi,[n] −Bi,[1] −
n∑
k=2

n∑
j=1

pi,j ·Xj,[k−1]

 (11)

n∑
j=1

CWTj =
n∑
k=2

Bm,[k] −B1,[k] −
m∑
i=2

n∑
j=1

pi−1,j ·Xj,[k]

 (12)

• Lexicographical Approach: This multi-objective MILP model is used to identify, among the opti-

mal sequences of a primary objective OF1, the best one of a secondary objective OF2 (see e.g.

T’kindt and Billaut, 2006). This method consists on the same optimization model than the clas-

sical MILP used for a given objective, adding a (hard) constraint where the optimal value for a

different objective is imposed. Note that the information provided by the MILP is used, since the

optimal value of the secondary objective is needed. This approach provides more information

than the classical MILP, but again the computation effort is higher.

The classical MILP as well as the lexicographical MILP models imposes that the first machine

and the first jobs are no idle. Observation 1 guarantees that the objective function values for∑
CWTj and

∑
CITi are the same that the given by the semi-active schedule.

5.2. Relationship between objectives

The analytical methods previously presented are applied to a set of instances, with n =

[5, 10, 15, 20] jobs, m = [2, 5, 10] machines and uniformly distributed processing times (U [1, 99]).

30 instances for each problem size have been generated, i.e. in total 360 instances. Each method

use different instances due to the computational times needed.

5.2.1. Comparison of results by Complete Enumeration

The complete enumeration is applied to instances with n = 5 and n = 10 jobs of the set pre-

viously described (180 instances in total) to evaluate all solutions of the problem depending on
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the objective function, OF ∈ {Cmax,
∑
Cj ,
∑
CWTj ,

∑
CITi}. Usually in scheduling, results

are compared with Relative Percentage Deviation (RPD) which is defined as RPD = OF (S)−OF∗
OF∗

where OF (S) is the objective function value of a sequence S and OF ∗ refers to the optimum.

However, an optimal value of
∑
CITi and

∑
CWTj might be zero, i.e. RPD is not a suitable per-

formance measure for this analysis. Instead, we refer to the Relative Deviation Index (RDI, see

e.g. Kim, 1993, Fernandez-Viagas and Framinan (2015) and Perez-Gonzalez et al. (2019)). For the

complete enumeration, we define RDIaOF of a sequence S for a given objective function OF as

RDIaOF = OF (S)−OF ∗

OFmax −OF ∗
∀S (13)

where OF (S) is the evaluation of S for objective OF , OF ∗ is the optimal value and OFmax =

max{OF (S)∀S of instance I}.

To characterize the distributions in detail, the RDIa-values of each objective are computed

and summarized as the frequency of RDIa within a range of [0, 1] for each problem size. Sim-

ilar studies have been carried out by Taillard (1990), Perez-Gonzalez and Framinan (2009) and

Fernandez-Viagas and Framinan (2015). In Figure 4 represents the empirical distribution for the

instances with m = 2 (left) and m = 10 (right), both cases for n = 10. In the figure it can be seen

as the empirical distribution for m = 2 reveals a problem with more solutions close to the optimal

than the case with m = 10, for all objective functions except
∑
Cj .

∑
CITi is the objective with

more solutions close to the optimal, regardless the number of machines.

Figure 4: Empirical distribution for each objective function; left: Case n = 10 and m = 2 ; right: Case n = 10
and m = 10
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n = 10, m = 2 n = 10, m = 10
mean STD skewness kurtosis mean STD skewness kurtosis

Cmax 0,375 0,214 0,364 -0,391 0,481 0,132 0,053 -0,216∑
Cj 0,466 0,158 0,073 -0,386 0,506 0,147 -0,075 -0,334∑
CITi 0,283 0,195 0,674 0,205 0,425 0,155 0,224 -0,184∑
CWTj 0,315 0,154 0,709 0,348 0,448 0,139 0,207 -0,229

Table 6: Statistics indicators for Cmax,
∑

Cj ,
∑

CITi and
∑

CW Tj

To go deeper in the behaviour of the empirical distributions the mean, standard deviation

(STD), kurtosis and skewness as shown in Table 6. Considering m = 2, all distributions are right-

skewed (skewness > 0), significantly for Cmax,
∑
CITi and

∑
CWTj but slightly for

∑
Cj . More-

over, Cmax and
∑
Cj are platykurtic (kurtosis < 0), while

∑
CITi and

∑
CWTj are the opposite.

Figure 4 (left) shows that there are many solutions of
∑
CITi which are optimal or near-optimal.

Because of its strong right-skewness, also many solutions of
∑
CWTj have a RDIa smaller than

0.5. Considering m = 10, the mean-values are all close to 0.5 and the standard deviations are

nearly similar for all objectives. While Cmax and
∑
Cj are only slightly skewed,

∑
CITi and∑

CITi are again significantly right-skewed. Moreover, all distributions are platykurtic. Com-

paring both diagrams, it can be seen that the distribution of
∑
Cj is only slightly affected by an

increase of machines, while all other objectives provide different distributions depending on the

number of machines and are more aligned to a normal distribution when the number of machines

increases.

Additionally, Table 7 presents the average of optimal solutions given per size for each case.

Note that the problem with n = 5 has 120 possible sequences and n = 10 has 3,628,800. It can be

seen that Cmax,
∑
CITi and

∑
CWTj provide many optimal solutions for m = 2,

∑
CITi is the

objective providing the highest value in both cases, representing the optimal solutions approxi-

mately at 23% and 18% of the overall possible solutions for n = 5 and n = 10, respectively. This

behaviour decreases when the number of machines increases. However,
∑
Cj on average only

provides approximately one optimal sequence per instance, independently of the problem size.

n 5 10
m 2 5 10 2 5 10
C∗

max 10.1 2.1 1.5 102,195.7 185.6 4.4∑
C∗

j 1.3 1.0 1.0 1.4 1.1 1.0∑
CIT ∗

i 27.6 1.8 1.0 657,337.9 64.3 1.2∑
CWT ∗

j 9.8 1.1 1.0 17,276.2 1.0 1.0

Table 7: Average number of optimal sequences per instance provided by complete enumeration

20



Once we know how many optimal sequences are obtained for each objective function, we focus

on evaluate them for the rest of the objectives. Therefore, considering only optimal sequences, for

each objective OF ∈ {Cmax,
∑
Cj ,
∑
CWTj ,

∑
CITi} we compute RDIaOF ∀S ∈ {S∗OF ′ : OF ′ 6=

OF}. The results on average when n = 10 and m = 10 are shown in Figure 5, evaluating the opti-

mal sequences provided by
∑
CITi for the rest of the objectives (left) and evaluating the optimal

sequences provided by
∑
CWTj for the rest of the objectives (right). The graphs represent the fre-

quency of RDIaOF in intervals [0, 0.25], [0.25, 0.5], [0.5, 0.75], [0.75, 1] for each pair of objectives. In

Figure 5 (left), it can be observed that more than the 75% of optimal sequences of
∑
CITi are good

solutions for Cmax with an RDIa lower than 0.25, but
∑
Cj and

∑
CWTj do not provide good re-

sults in this case. In Figure 5 (right) it can be observed that all optimal solutions (100%) of
∑
CWTj

are good solutions for
∑
Cj with an RDIa lower than 0.25. Therefore, it can be concluded that the

alignment between
∑
Cj and

∑
CWTj is stronger than between Cmax and

∑
CITi.

Figure 5: RDIa for optimal solution problem size n = 10, m = 10: Left
∑

CITi; Right
∑

CW Tj

5.2.2. Comparison of results by classical MILP

Due to the computational effort needed to solve the instances by complete enumeration, in

this section we use the MILP model in order to obtain, at least, one optimal solution for each

of the 360 instances with different sizes. The solver Gurobi (Gurobi Optimization, 2018) with a

computational time limit of 900 seconds was used providing optimal solution (or best found in

some cases of the biggest sizes) for each instance.

To compare the objectives, we define RDIbOF1
for each instance I , given a primary objective

function OF1 which is going to be compared to a secondary objective function OF2. OF1(S∗OF2
) is

defined as the value of OF1 referring to the optimal sequence of OF2, OF ∗1 is the optimal value for

21



OF1 and OFworst1 = maxOF ′ 6=OF1{OF1(S∗OF ′)}.

RDIbOF1
=
OF1(S∗OF2

)−OF ∗1
OFworst1 −OF ∗1

∀I (14)

The difference between RDIa and RDIb is that OFmax in RDIa is the worst value among all

the possible sequences for a given instance I , and OFworst1 in RDIb is the worst value given by

OF1 among the optimal sequences provided for the rest of the objectives for the given instance I .

Table 8 shows the average RDIb, denoted as ARDIb, and variability of RDIb in terms of coef-

ficient of variation, denoted as CV (computed by dividing the standard deviation by the average),

considering all instances. If CV is lower than 0.75, between 0.75 and 1.33 or greater than 1.33, the

variability is low, medium or high, respectively (see Hopp and Spearman, 2008, p. 269). If ARDIb

is zero or close to zero, this is interpreted as a strong alignment between two considered objectives.

On the opposite, if ARDIb is one or close to one, it shows a strong conflict between two objectives.

Considering the results presented in Table 8,
∑
Cj and

∑
CWTj are the most aligned objec-

tive functions regarding ARDIb. The optimal sequence of
∑
Cj provides an ARDIb = 0.14 for∑

CWTj , while the optimal sequence of
∑
CWTj leads to ARDIb = 0.28 for

∑
Cj , both cases

with medium variability. Additionally, it can be seen that the optimal sequence of
∑
CITi is more

aligned to Cmax (0.54 and low variability) than to
∑
Cj or

∑
CWTj , and the optimal sequence

of Cmax provides better
∑
CITi values (0.34 and low variability). Finally, it can be observed that∑

CWTj and
∑
CITi are very conflicting objective functions with high average and low variabil-

ity.

OF

Cmax

∑
Cj

∑
CITi

∑
CWTj

ARDIb CV ARDIb CV ARDIb CV ARDIb CV

Cmax(S∗
OF ) - - 0.58 0.59 0.54 0.69 0.85 0.32∑

Cj(S∗
OF ) 0.40 0.61 - - 0.96 0.13 0.28 0.99∑

CITi(S∗
OF ) 0.34 0.70 0.71 0.37 - - 0.97 0.15∑

CWTj(S∗
OF ) 0.55 0.48 0.14 1.01 0.97 0.12 - -

Table 8: Average and coefficient of variation for RDIb for each pair of objective functions

As the most promising objective-pairs referring to their alignment are Cmax with
∑
CITi and∑

Cj with
∑
CWTj , they have been analysed deeply. Figure. 6 shows the 95%-confidence interval
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of machine-grouped ARDIb-values referring to these pairs. The results show that the relationship

between
∑
Cj and

∑
CWTj is stronger than between Cmax and

∑
CITi. A job-grouped point of

view is shown in Figure 7 and the results reveal that there is no influence of the number of jobs on

ARDIb for cases Cmax(S∗∑
CITi

),
∑
CITi(S∗Cmax

) and
∑
CWTj(S∗∑Cj

), while
∑
Cj(S∗∑CWTj

) is

affected significantly.

Figure 6: Classic MILP results: ARDIb grouped by machines

Figure 7: Classic MILP results: ARDIb grouped by machines

The observation made with complete enumeration, namely that the alignment between
∑
Cj

and
∑
CWTj is stronger than between Cmax and

∑
CITi, can also be confirmed for larger prob-

lem sizes solved with MILP. However, the classical MILP only provides one random optimal se-

quence. It might be interesting to analyse a sequence which is optimal for the primary objective

and sub-optimal for the secondary objective. For this reason, the lexicographical approach is ap-

plied additionally.
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5.2.3. Lexicographical Approach

In order to analyse all optimal solutions for a given objective with respect to the rest of the

objectives, in this section, the model of Wilson (1989) is extended for a lexicographical approach.

This method needs a computational effort higher than the classical MILP, but it is more reasonable

than the time needed by complete enumeration, so it is applied to all the instances. In total 12

optimization models (for each pair of objectives) are solved by Gurobi solver, in this case with a

stopping criteria of 1800 seconds (due to the difficulty when the additional constraint is added).

A new RDIb-value, denoted as RDIbn, is given for each instance, since the lexicographical ap-

proach provides the best sequence for a given objective among the optimal sequences of a different

objective. Results are shown in Table 9. Due to the difficulty of the approach, all the instances have

not been solved optimally (see the row denoted ’Instances’, where the number of instances solved

optimally are given). The average RDIbn-values, denoted as ARDIbn, and the improvement with

respect to the MILP model (expressed by the difference: RDIb − RDIbn) are given for each pair of

objectives. To maintain clarity, only improvements > 0.01 are shown and shaded gray if > 0.1.

ARDIbn close to one implies high goal conflict between the involved objectives, revealing that

optimal schedules for the primary objective imply very bad values for the secondary objective.

Additionally, small improvements mean poor performance of the lexicographical approach, being

in these cases the solution of the MILP similar to the provided by this (computationally expensive)

method. From Table 9, it can be seen as example that, in case m = 2 and n = 5, Cmax with
∑
CIT ∗i

is 29.4% better than the MILP by the lexicographical approach. For the majority of problem sizes,∑
CITi with C∗max leads to significantly better results compared to Cmax with

∑
CIT ∗i . Addition-

ally,
∑
Cj and

∑
CWTj are strongly aligned too in the two ways with small ARDIbn values for all

sizes. When m > 2, a goal conflict can be seen for
∑
Cj with

∑
CIT ∗i , and between

∑
CITi with∑

CWTj in the two ways.

In general, there are two interesting observations: First, we could not gain any significant

improvement when
∑
C∗j is considered, i.e. in cases where

∑
Cj is considered as objective the

lexicographical approach is not suitable to gain better results for the other objectives. Secondly,

the improvement is small for all the cases when m = 10. These results may be related to the

observations done in Section 5.2.1: for problems with
∑
Cj as objective, and in general for all

objectives whenm = 10, the number of optimal solutions are small. So, in these cases, it is difficult

to find another optimal sequence with better results for a secondary objective function and hence,
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the lexicographical approach is not a good option.

Detailed conclusions about this section, as well as about all the paper are explained in the next

section.

Problem Size n/m

OF/OF∗ Indicator 5/2 5/5 5/10 10/2 10/5 10/10 15/2 15/5 15/10 20/2 20/5 20/10

Cmax Instances 30 30 30 30 30 30 29 22 11 16 0 0∑
C∗j

ARDIb
n 0.594 0.493 0.540 0.277 0.628 0.744 0.386 0.652 0.793 0.390 - -

Improve. 0.035 0.031 ≤ 0.01 0.071 ≤ 0.01 ≤ 0.01 ≤ 0.01 0.020 ≤ 0.01 ≤ 0.01 - -∑
CIT∗i

ARDIb
n 0.104 0.721 0.624 0.030 0.619 0.596 0.011 0.559 0.815 0.011 - -

Improve. 0.294 ≤ 0.01 ≤ 0.01 0.456 ≤ 0.01 ≤ 0.01 0.448 0.014 ≤ 0.01 0.306 - -∑
CWT∗j

ARDIb
n 0.581 0.660 0.808 0.587 0.907 0.846 0.597 0.896 0.889 0.560 - -

Improve. 0.288 ≤ 0.01 ≤ 0.01 0.211 ≤ 0.01 0.010 0.166 ≤ 0.01 ≤ 0.01 0.309 - -∑
Cj Instances 30 30 30 30 30 30 30 30 28 20 5 3

C∗max

ARDIb
n 0.249 0.259 0.333 0.118 0.307 0.288 0.058 0.256 0.284 0.072 0.160 0.361

Improve. 0.329 0.011 0.022 0.496 0.086 0.032 0.528 0.270 0.015 0.503 0.263 0.020∑
CIT∗i

ARDIb
n 0.574 0.987 0.991 0.260 0.913 0.998 0.218 0.729 0.976 0.207 0.664 0.905

Improve. 0.393 0.013 0.705 0.081 0.767 0.262 0.024 0.756 0.336 0.095∑
CWT∗j

ARDIb
n 0.111 0.069 0.092 0.189 0.202 0.135 0.202 0.269 0.148 0.178 0.140 0.046

Improve. 0.111 ≤ 0.01 ≤ 0.01 0.207 ≤ 0.01 ≤ 0.01 0.194 ≤ 0.01 ≤ 0.01 0.382 0.083 0.080∑
CITi Instances 30 30 30 30 30 30 30 16 4 13 0 0

C∗max

ARDIb
n 0.066 0.486 0.414 0.018 0.332 0.472 0.012 0.210 0.505 0.002 - -

Improve. 0.109 0.045 ≤ 0.01 0.069 0.027 ≤ 0.01 0.143 0.107 0.019 0.272 - -∑
C∗j

ARDIb
n 0.750 0.859 0.812 0.508 0.693 0.810 0.655 0.758 0.800 0.596 - -

Improve. 0.021 ≤ 0.01 ≤ 0.01 0.055 0.014 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 - -∑
CWT∗j

ARDIb
n 0.675 0.959 0.998 0.736 0.984 0.993 0.743 0.991 1.000 0.648 - -

Improve. 0.212 ≤ 0.01 ≤ 0.01 0.207 ≤ 0.01 ≤ 0.01 0.159 ≤ 0.01 ≤ 0.01 0.275 - -∑
CWTj Instances 30 30 30 30 30 30 30 30 23 30 10 0

C∗max

ARDIb
n 0.233 0.393 0.425 0.064 0.407 0.388 0.036 0.298 0.386 0.016 0.184 -

Improve. 0.370 0.021 0.019 0.597 0.117 0.033 0.642 0.296 0.028 0.646 0.293 -∑
C∗j

ARDIb
n 0.079 0.113 0.078 0.143 0.151 0.116 0.136 0.182 0.122 0.121 0.130 -

Improve. ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 -∑
CIT∗i

ARDIb
n 0.397 0.980 1.000 0.096 0.867 0.997 0.068 0.620 0.970 0.033 0.427 -

Improve. 0.560 ≤ 0.01 ≤ 0.01 0.782 0.133 ≤ 0.01 0.854 0.369 0.030 0.889 0.573 -

Table 9: ARDIb
n and Improvement of all objectives

6. Conclusions

Besides the often discussed objectives of minimizing makespan, Cmax, and total completion

time,
∑
Cj , there are also other important objectives in static-deterministic scheduling, e.g. idle

time of machines and waiting time of jobs whose definitions vary in the literature. We provided

a clear structure dividing both measures in front, back and core components. We discussed that
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especially the front and back components could be used for other (non-value-added) tasks and

focused on the core components, namely
∑
CITi and

∑
CWTj . We explained that

∑
CITi can

be seen as a capacity buffer which is directly related to the core utilization of a permutation flow

shop.
∑
CWTj is interpreted as an inventory buffer which can also be seen as an indicator for job

flow in a permutation flow shop.

To introduce these new performance measures as objective functions may have interest, for

example, to relax no-wait and no-idle constraints. As these constrains use to be considered for

Cmax or
∑
Cj minimization, it is relevant to analyse the alignment among the proposed objectives

and these classical objectives functions.

Therefore, some basic results show the equivalence between Cmax and
∑
CITi, and between∑

Cj and
∑
CWTj but only for some special cases related to the processing times. The relation-

ship among the objective functions for the general case (processing times do not follow any rule)

has been analyzed. Due to the computational effort needed for the different exact methods, an

extensive computational study has been carried out using complete enumeration, MILP models

and lexicographical models.

By complete enumeration, for small sizes (up to n = 10), the empirical distribution of each

objective are plotted, and the number of optimal solutions are provided for each instance. This

method reveal the lower number of optimal and close to the optimal solutions for
∑
Cj and also

for the other objectives whenm = 10. Additionally, the quality of the optimal solutions for a given

objective has been analysed for the rest of the objective functions. Results show that a 75% of the

optimal solutions when
∑
CITi is minimized, are high quality solutions for Cmax, but not for the

others objectives. In a similar way, almost all the optimal solutions when
∑
CWTj is minimized,

are high quality solutions for
∑
Cj , and they are not so bad for Cmax.

By MILP models, bigger instances are analysed (up to n = 20), but only the optimal solu-

tion for a given objective can be evaluated for the rest of them. The results show that there is a

good/moderate alignment between Cmax and
∑
CITi (as shown by Liu et al., 2016) and a strong

alignment between
∑
Cj and

∑
CWTj , while a goal conflict exists between

∑
CITi and

∑
CWTj .

By lexicographical models, higher computational effort is needed than for MILP, but more in-

sights are obtained since, for the optimal value of a given objective, the best sequence for a second

objective is provided. From the results it can be conclude that this approach is not worthwhile for∑
Cj , but an interesting improvement is obtained when Cmax and

∑
CITi are considered, being
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better first to minimize Cmax and consider
∑
CITi in a second step.

This research is focused on instances generated by a uniform distribution but it might be inter-

esting for future research to deal with the influence of processing times on
∑
CITi and

∑
CWTj .

Moreover, the computational study used a set of instances with a maximum of n = 20 jobs, so it

is interesting to increase the number of jobs and machines and use heuristic approaches to solve

the problems and analyze the behaviour of the objective functions. Additionally, several modifica-

tions of
∑
CITi and

∑
CWTj could be discussed, e.g. by weighting them with costs which leads

to machine-idle-costs and inventory carrying cost.

Acknowledgment

The authors would like to thank Jose Framinan for his helpful advice and comments. In ad-

dition, the authors would like to commemorate the deceased Rainer Leisten whose idea was to

discuss idle time and waiting time in detail for the PFSP. Paz Perez-Gonzalez is supported by the

Spanish Ministry of Science and Innovation, under grant “PROMISE” with reference DPI2016-

80750-P.

References

A. Allahverdi. A survey of scheduling problems with no-wait in process. European Journal of

Operational Research, 255(3):665–686, 2016.

U. Bagchi. Simultaneous minimization of mean and variation of flow time and waiting time in

single machine systems. Operations Research, 37(1):118–125, 1989.

K. Benkel, K. Jørnsten, and R. Leisten. Variability aspects in flowshop scheduling systems. In 2015

International Conference on Industrial Engineering and Systems Management (IESM), pages 118–127.

IEEE, 2015.

J.-C. Billaut, F. Della Croce, F. Salassa, and V. T’kindt. No-idle, no-wait: when shop scheduling

meets dominoes, Eulerian paths and Hamiltonian paths. Journal of Scheduling, 22(1):59–68, 2019.

T. E. Cheng, B. M. Lin, and Y. Tian. Scheduling of a two-stage differentiation flowshop to minimize

weighted sum of machine completion times. Computers & Operations Research, 36(11):3031–3040,

2009.

27



C. Chu and M.-C. Portmann. Job-shop scheduling to minimize total waiting time. Applied Stochastic

Models and Data Analysis, 9(2):177–185, 1993.

R. Companys, I. Ribas, and M. Mateo. Improvement tools for NEH based heuristics on permuta-

tion and blocking flow shop scheduling problems. In IFIP International Conference on Advances in

Production Management Systems, pages 33–40. Springer, 2009.

R. De Matta. Minimizing the total waiting time of intermediate products in a manufacturing

process. International Transactions in Operational Research, 26(3):1096–1117, 2019.

F. Della Croce, A. Grosso, and F. Salassa. Minimizing total completion time in the two-machine

no-idle no-wait flow shop problem. In 7th International Workshop Matheuristics, Tours, 2018.

R. A. Dudek and O. F. Teuton Jr. Development of m-stage decision rule for scheduling n jobs

through m machines. Operations Research, 12(3):471–497, 1964.

S. Eilon and I. Chowdhury. Minimising waiting time variance in the single machine problem.

Management Science, 23(6):567–575, 1977.

V. Fernandez-Viagas and J. M. Framinan. On insertion tie-breaking rules in heuristics for the

permutation flowshop scheduling problem. Computers & Operations Research, 45:60–67, 2014.

V. Fernandez-Viagas and J. M. Framinan. NEH-based heuristics for the permutation flowshop

scheduling problem to minimise total tardiness. Computers & Operations Research, 60:27–36, 2015.

V. Fernandez-Viagas and J. M. Framinan. A beam-search-based constructive heuristic for the PFSP

to minimise total flowtime. Computers & Operations Research, 81:167–177, 2017.

V. Fernandez-Viagas, R. Ruiz, and J. M. Framinan. A new vision of approximate methods for the

permutation flowshop to minimise makespan: State-of-the-art and computational evaluation.

European Journal of Operational Research, 257(3):707–721, 2017.

S. Fiszman and G. Mosheiov. Minimizing total load on a proportionate flowshop with position-

dependent processing times and job-rejection. Information Processing Letters, 132:39–43, 2018.

J. Fondrevelle, A. Oulamara, and M.-C. Portmann. Permutation flowshop scheduling problems

with time lags to minimize the weighted sum of machine completion times. International Journal

of Production Economics, 112(1):168–176, 2008.

28



J. Framinan, R. Leisten, and C. Rajendran. Different initial sequences for the heuristic of Nawaz,

Enscore and Ham to minimize makespan, idletime or flowtime in the static permutation flow-

shop sequencing problem. International Journal of Production Research, 41(1):121–148, 2003.

J. M. Framinan, J. N. Gupta, and R. Leisten. A review and classification of heuristics for permu-

tation flow-shop scheduling with makespan objective. Journal of the Operational Research Society,

55(12):1243–1255, 2004.

J. M. Framinan, R. Leisten, and R. Ruiz-Usano. Comparison of heuristics for flowtime minimisa-

tion in permutation flowshops. Computers & Operations Research, 32(5):1237–1254, 2005.

M. R. Garey, D. S. Johnson, and R. Sethi. The complexity of flowshop and jobshop scheduling.

Mathematics of Operations Research, 1(2):117–129, 1976.

Y. Goncharov and S. Sevastyanov. The flow shop problem with no-idle constraints: A review and

approximation. European Journal of Operational Research, 196(2):450–456, 2009.

R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. R. Kan. Optimization and approximation in

deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics, 5:287–326,

1979.

J. N. Gupta. Heuristic algorithms for multistage flowshop scheduling problem. AIIE Transactions,

4(1):11–18, 1972.

L. Gurobi Optimization. Gurobi optimizer reference manual, 2018. URL http://www.gurobi.

com.

N. G. Hall and C. Sriskandarajah. A survey of machine scheduling problems with blocking and

no-wait in process. Operations research, 44(3):510–525, 1996.

J. C. Ho and J. N. Gupta. Flowshop scheduling with dominant machines. Computers & Operations

Research, 22(2):237–246, 1995.

W. J. Hopp and M. Spearman. Factory Physics. McGraw-Hill, 2008.

N. Hosseini and R. Tavakkoli-Moghaddam. Two meta-heuristics for solving a new two-machine

flowshop scheduling problem with the learning effect and dynamic arrivals. The International

Journal of Advanced Manufacturing Technology, 65(5-8):771–786, 2013.

29

http://www.gurobi.com
http://www.gurobi.com


A. A.-K. Jeng and B. M. Lin. A note on parallel-machine scheduling with deteriorating jobs. Journal

of the Operational Research Society, 58(6):824–826, 2007.

S. M. Johnson. Optimal two-and three-stage production schedules with setup times included.

Naval Research Logistics (NRL), 1(1):61–68, 1954.

P. J. Kalczynski and J. Kamburowski. On no-wait and no-idle flow shops with makespan criterion.

European Journal of Operational Research, 178(3):677–685, 2007.

H.-J. Kim and J.-H. Lee. Three-machine flow shop scheduling with overlapping waiting time

constraints. Computers & Operations Research, 101:93–102, 2019.

Y.-D. Kim. Heuristics for flowshop scheduling problems minimizing mean tardiness. Journal of the

Operational Research Society, 44(1):19–28, 1993.

X. Li, N. Ye, X. Xu, and R. Sawhey. Influencing factors of job waiting time variance on a single

machine. European Journal of Industrial Engineering, 1(1):56–73, 2007.

C.-J. Liao, C.-T. Tseng, and P. Luarn. A discrete version of particle swarm optimization for flow-

shop scheduling problems. Computers & Operations Research, 34(10):3099–3111, 2007.

H. Liu, L. Gao, and Q. Pan. A hybrid particle swarm optimization with estimation of distribution

algorithm for solving permutation flowshop scheduling problem. Expert Systems with Applica-

tions, 38(4):4348–4360, 2011.

J. Liu and C. R. Reeves. Constructive and composite heuristic solutions to the P//
∑
Ci scheduling

problem. European Journal of Operational Research, 132(2):439–452, 2001.

W. Liu, Y. Jin, and M. Price. A new heuristic to minimize system idle time for flowshop scheduling.

In Poster Presented at the 3rd Annual EPSRC Manufacturing the Future Conference, Glassgow, 2014.

W. Liu, Y. Jin, and M. Price. A new Nawaz-Enscore-Ham-based heuristic for permutation flow-

shop problems with bicriteria of makespan and machine idle time. Engineering Optimization, 48

(10):1808–1822, 2016.

W. Liu, Y. Jin, and M. Price. A new improved NEH heuristic for permutation flowshop scheduling

problems. International Journal of Production Economics, 193:21–30, 2017.

30



C. Low, J.-Y. Yeh, and K.-I. Huang. A robust simulated annealing heuristic for flow shop schedul-

ing problems. The International Journal of Advanced Manufacturing Technology, 23(9-10):762–767,

2004.

M. Makuchowski. Permutation, no-wait, no-idle flow shop problems. Archives of Control Sciences,

25(2):189–199, 2015.

A. G. Merten and M. E. Muller. Variance minimization in single machine sequencing problems.

Management Science, 18(9):518–528, 1972.

M. S. S. Mir and J. Rezaeian. A robust hybrid approach based on particle swarm optimization and

genetic algorithm to minimize the total machine load on unrelated parallel machines. Applied

Soft Computing, 41:488–504, 2016.

G. Mosheiov. Multi-machine scheduling with linear deterioration. INFOR: Information Systems and

Operational Research, 36(4):205–214, 1998.

G. Mosheiov. A note: Multi-machine scheduling with general position-based deterioration to

minimize total load. International Journal of Production Economics, 135(1):523–525, 2012.

M. Nawaz, E. E. Enscore Jr, and I. Ham. A heuristic algorithm for the m-machine, n-job flow-shop

sequencing problem. Omega, 11(1):91–95, 1983.

Q.-K. Pan and R. Ruiz. A comprehensive review and evaluation of permutation flowshop heuris-

tics to minimize flowtime. Computers & Operations Research, 40(1):117–128, 2013.

P. Perez-Gonzalez and J. M. Framinan. Scheduling permutation flowshops with initial availability

constraint: Analysis of solutions and constructive heuristics. Computers & Operations Research,

36(10):2866–2876, oct 2009. ISSN 03050548. doi: 10.1016/j.cor.2008.12.018.

P. Perez-Gonzalez, V. Fernandez-Viagas, M. Z. García, and J. M. Framinan. Constructive heuris-

tics for the unrelated parallel machines scheduling problem with machine eligibility and setup

times. Computers & Industrial Engineering, 131:131–145, 2019.

M. L. Pinedo. Scheduling: theory, algorithms, and systems. Springer, 2016.

C. Rajendran and D. Chaudhuri. An efficient heuristic approach to the scheduling of jobs in a

flowshop. European Journal of Operational Research, 61(3):318–325, 1992.

31



S. Reza Hejazi and S. Saghafian. Flowshop-scheduling problems with makespan criterion: a re-

view. International Journal of Production Research, 43(14):2895–2929, 2005.

R. Ruiz and C. Maroto. A comprehensive review and evaluation of permutation flowshop heuris-

tics. European Journal of Operational Research, 165(2):479–494, 2005.

R. Ruiz, E. Vallada, and C. Fernández-Martínez. Scheduling in flowshops with no-idle machines.

In Computational Intelligence in Flow Shop and Job Shop Scheduling, pages 21–51. Springer, 2009.

A. J. Ruiz-Torres, J. C. Ho, and J. H. Ablanedo-Rosas. Makespan and workstation utilization min-

imization in a flowshop with operations flexibility. Omega, 39(3):273–282, 2011.

S. Sarin and M. Lefoka. Scheduling heuristic for the n-job m-machine flow shop. Omega, 21(2):

229–234, 1993.

D. Sha and H. H. Lin. A particle swarm optimization for multi-objective flowshop scheduling. The

International Journal of Advanced Manufacturing Technology, 45(7-8):749–758, 2009.

E. F. Stafford Jr, F. T. Tseng, and J. N. Gupta. Comparative evaluation of MILP flowshop models.

Journal of the Operational Research Society, 56(1):88–101, 2005.

L. Sun, L. Sun, and J.-B. Wang. Single-machine scheduling to minimize total absolute differences

in waiting times with deteriorating jobs. Journal of the Operational Research Society, 62(4):768–775,

2011.

W. Szwarc and S. K. Mukhopadhyay. Minimizing a quadratic cost function of waiting times in

single-machine scheduling. Journal of the Operational Research Society, 46(6):753–761, 1995.

E. Taillard. Some efficient heuristic methods for the flow shop sequencing problem. European

Journal of Operational Research, 47(1):65–74, 1990.

V. T’kindt and J.-C. Billaut. Multicriteria scheduling: theory, models and algorithms. Springer Science

& Business Media, 2006.

C. Wang, C. Chu, and J.-M. Proth. Heuristic approaches for n/m/F/
∑
Ci scheduling problems.

European Journal of Operational Research, 96(3):636–644, 1997.

32



J. Wilson. Alternative formulations of a flow-shop scheduling problem. Journal of the Operational

Research Society, 40(4):395–399, 1989.

X. Xu. Minimizing weighted waiting time variance on a single processor. Computers & Industrial

Engineering, 61(4):1233–1239, 2011.

X. Xu and N. Ye. Minimization of job waiting time variance on identical parallel machines. IEEE

Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 37(5):917–927,

2007.

B. Yagmahan and M. M. Yenisey. Ant colony optimization for multi-objective flow shop scheduling

problem. Computers & Industrial Engineering, 54(3):411–420, 2008.

D.-L. Yang and M.-S. Chern. A generalized two-machine flowshop scheduling problem with pro-

cessing time linearly dependent on job waiting-time. Computers & Industrial Engineering, 36(2):

365–378, 1999.

N. Ye, X. Li, T. Farley, and X. Xu. Job scheduling methods for reducing waiting time variance.

Computers & Operations Research, 34(10):3069–3083, 2007.

K.-C. Ying and S.-W. Lin. A high-performing constructive heuristic for minimizing makespan in

permutation flowshops. Journal of Industrial and Production Engineering, 30(6):355–362, 2013.

T.-S. Yu, H.-J. Kim, and T.-E. Lee. Minimization of waiting time variation in a generalized two-

machine flowshop with waiting time constraints and skipping jobs. IEEE Transactions on Semi-

conductor Manufacturing, 30(2):155–165, 2017.

X. Yu, Y. Zhang, and K. Huang. Multi-machine scheduling with general position-based deteriora-

tion to minimize total load revisited. Information Processing Letters, 114(8):399–404, 2014.

S. Zhou and X. Cai. Variance minimization–relationship between completion-time variance and

waiting-time variance. The ANZIAM Journal, 38(1):126–139, 1996.

33


	Introduction
	Notation and concepts of idle time and waiting time
	Formal definition of waiting time and idle time
	Practical relevance of waiting time and idle time
	Consequences of semi-active schedules

	Literature review
	Basic observations
	Semi-active schedule assumption
	Cases with special processing times

	Computational analysis
	Analytical methods
	Relationship between objectives
	Comparison of results by Complete Enumeration
	Comparison of results by classical MILP
	Lexicographical Approach


	Conclusions

