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Abstract

Different objective functions have been discussed in static-deterministic flow shop scheduling,
being makespan (C,,45) and total completion time (3 C;) the most studied objectives. Many sci-
entific papers also dealt with idle time of machines and waiting time of jobs in constraints and
objective functions, because both indicators are of high practical relevance, e.g. in steel production
or considering expensive machines. The efficiency of a production system can also be evaluated
by minimizing idle time and waiting time within the production process (called core idle time,
>~ CIT;, and core waiting time, ) - CWT}), because they refer to a high machine utilization and a
continuous job flow. Moreover, both objectives can be used to relax the constraints of zero waiting
time (no-wait) or zero idle time (no-idle) in shop floors and hence, the alignment between )~ CIT;
and ) CWT; and classical objectives like C';,4, and ) C; has to be discussed. We start analyt-
ically with special cases where Y CWT; and > C;, as well as )" CIT; and C},q,, are identical
objectives. For the general case, an experimental study is executed by means of a set of instances
solved by complete enumeration, mixed integer linear programming (MILP) models for single
objective and multi-objective (lexicographical) approaches. It can bee seen that the objectives are
not identical but at least aligned with varying intensity, e.g. the alignment between >~ CWT; and
> Cj is stronger compared to the alignment between ) CIT; and C,,,,. The shown properties
and results open a new line of problems in permutation flow shop scheduling and shall be further

discussed by developing efficient heuristic approaches for increased problem sizes.
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1. Introduction

In flow shop scheduling many different objective functions have been considered so far. The
most studied objectives are the minimization of makespan (see e.g. the reviews of |Framinan et al.
(2004), Ruiz and Marotol| (2005), Reza Hejazi and Saghafian| (2005), Fernandez-Viagas et al.|(2017))
and total completion time (see e.g. the surveys of [Framinan et al.| (2005), Pan and Ruiz| (2013)).
Makespan (Cj,qz) is defined as the completion time of the last job on the last machine. While
Chmae can be solved optimally in a two-machine permutation flow shop by Johnson’s algorithm
(Johnson| (1954)), it was proved to be NP-complete for more than two machines by (Garey et al.
(1976). Total completion time (> C};) is the sum of completion times of all jobs on the last machine
and was proved to be NP-complete for two machines by |Garey et al.[(1976).

Besides Cyq, and ) C, there are also other time measures which are important in flow shop
scheduling, e.g. waiting time of jobs and idle time of machines are often considered because of
their impact on many manufacturing environments and applications. Waiting time has a large in-
fluence e.g. in steel-production, where it is not only a waste of time but also a waste of raw material
and resources because molten steel can only be processed within a certain range of temperature
until the material becomes unusable for production, see e.g. [Hall and Sriskandarajahl (1996). In
this context, the no-wait constraint is often applied which means that jobs are not allowed to wait
within the production process. Idle time is an important factor e.g. when expensive machines
are part of the considered production layout so that a high utilization is required to guarantee
profitability.

In shop layouts, waiting time and idle time can be used to evaluate the efficiency of a pro-
duction system. E.g. a continuous job flow through the system is an efficiency-oriented objective
which means actually that the waiting time of jobs should be minimized because any waiting
situation interrupts a continuous flow. This objective is often represented by minimizing > C;.
However, the minimization of waiting time within the system (called core waiting time, )~ CWTj)
is a measure of job flow. The utilization of machines is also one key factor referring to efficient

production systems. To achieve highly utilized machines, the minimization of C,,,4, is often used



but also the minimization of idle time within the system (called core idle time, Y CIT;) is a mea-
sure of machine utilization. In this context > CWT; and ) CIT; are defined for shop floors, and
in this work we focus on the permutation flow shop as the easiest shop layout.

In the literature, no-wait and no-idle constraints are considered for problems minimizing C,,q
mainly, see e.g. |Allahverdi| (2016)), Ruiz et al. (2009), being both assumptions strong constraints in
scheduling. An interesting approach might be relaxed them by considering > CWT)} or ) CIT;
respectively. As, in the most of the cases, decision makers are interested in the minimization of
Crmaz and ) Cj, the alignment among these objectives and the proposed objectives, >~ CWT); and
> CIT;, is a first step to relax the no-wait and no-idle constraints. To the best of our knowledge,
this alignment has not been considered in the literature, so this work focuses in the analysis of
the relationship among the four aforementioned objectives. First, for some special cases, we show
that either ) CWT; and > C; or ) CIT; and C,,,, are identical, e.g. > CWTj and ) C; are
equivalent if the processing times of all jobs on the first machine are the same. Additionally, the
general case is analyzed experimentally and reveals e.g. that the alignment between ) ; CWT); and
>~ C; is stronger compared to the alignment between ) CIT; and Cynqz.

Section [2] provides an overview about the different components of idle time and waiting time
in a permutation flow shop and explains their formal definitions and practical relevance. Cor-
responding literature is reviewed in Section 3| The theoretical equivalence of objectives in some
special cases are presented in Section{4] Section [5|deals with different methods to analyze exper-
imentally the relationship between objective functions. The paper finishes with conclusions and

suggestions for future research lines.

2. Notation and concepts of idle time and waiting time

The relevant notation, Table [1} and the static-deterministic permutation flow shop problem
(PFSP) are introduced to provide the basis for explaining the formal and practical relevance of dif-
ferent idle time and waiting time components. A PFSP with following assumptions is considered:
n jobs have to be scheduled on m machines which are arranged in series. All jobs and machines
are available at time zero. Preemption of jobs is not allowed. The processing times, p; ;, of each
job j on each machine 7 are known in advance (P = 1", >, pi ;). The sequence of jobs stays

the same on all machines and cannot be changed (permutation assumption, prmu). Moreover, the



a|B|y-notation provided by (Graham et al.[(1979) is used, where « defines the machine layout, 3

explains the process constraints and v shows the objective function.

Indexes:

i Index of machines, 1 < i <m

j Index of jobs,1 < j <n

(k] Index of job position, 1 < k < n

Parameter:

Pi,j /i, k) Processing times of job j on machine ¢ / Processing times of job in position k& on machine
;,1<i<m,1<k<n1<j<n

Variables:

B 1k Starting time of job in position k on machine?,1 <i<m,1 <k <n

BIT; Back idle time of machine 3 after processing job in positionn, 1 < i < m

BW T, Back waiting time of job in position & after being processed on machine m, 1 <k <n

CIT; 11 Core idle time of machine i before being processed of job in position k, 2 < ¢ < m,2 <
k<n

CWT; 11 Core waiting time of job in position k before being processed on machine 3, 2 < ¢ <
m,2<k<n

Ci (k) Completion time of job in position £ on machinei,1 <i<m,1 <k <n

FIT; Front idle time of machine ¢ before being processed of job in the first position 1 < i < m

FWTi, Front waiting time of job in position k before being processed on machine 1,1 < k <n

X, {1, %fjob J is assigned to position [k] l<k<nml<j<n

0, in all other cases

Table 1: Notation and definitions

2.1. Formal definition of waiting time and idle time

Framinan et al| (2003) and [Fernandez-Viagas and Framinan| (2014) stated that idle time has
been defined in different ways so far. According to this and also referring to waiting time, we first
focus on the different components of idle time and waiting time depending on where they could
occur in the production process which is the basis to discuss the practical relevance. Regarding

waiting times, it can be considered:

* Front Waiting Time of job in position k, FWTj;,2 < k < n: the time before the job is processed

on the first machine,

* Core Waiting Time of job in position k of machine i, CWT; ;1,2 < i < m,2 < k < n: the
time period between the start of job in position £ on machine ¢ and the completion time on the

previous one i — 1. If job j occupies position k then CWT; = Y7, CWT; 1.

* Back Waiting Time of job in position k, BWTj;,,1 < k < n — 1: is the time after the job has

finished its last operation but before the overall schedule is finished.



In the same way for the idle times, we have:
¢ Front Idle Time of machine i, FIT;,2 < i < m: idle time before a machine processes the first job,

¢ Core Idle Time of job in position k of machine i, CIT; ;),2 < i < m,2 < k < n: the time period
between the start of job in position k£ and the completion time of the previous job on machine s.

For a machine i, CIT; = Y, _, CIT; ).

¢ Back Idle Time of machine i, BIT;,1 < i < m — 1: time after the machine has finished its last

operation but before the overall schedule is finished.

In Figure [1|an example is given to visualize the afore mentioned components. The machine-
oriented Gantt-chart (left) shows the different forms of idle time, while the components of waiting
time are given in the job-oriented Gantt-chart (right). It can be seen that if B; ) = C;_1 ) no core
waiting time exists and the job is directly processed on the next machine (see e.g. job 2 in Figure

E[). CIT; 1) = 0if B i) = C; [1,—1) (see e.g job 3 in machine 2 in Figure E[)

J2 Ja BITy BWT,
j i I FWT, m my Mg BWT.
rir, I, e Ja BIT, P
FW Ty A cwT; BWT;
FITy CITyy  J2 Ja FWT, Tl CW T, W T, IS

Figure 1: left: Machine-oriented Gantt-chart; right: Job-oriented Gantt-chart

The formal definitions of all components related to waiting time and idle time and their sum-

form are described in Table as well as the formal definitions of Ciy,,, and ) C;.

2.2. Practical relevance of waiting time and idle time

After explaining idle time and waiting time formally, it is also essential to discuss their practical
importance. One of the main goals in production management is the elimination of all kinds of
waste to obtain an efficient system. Among other things, especially waste of time is interesting in
scheduling since most of the objectives are time-related. Referring to idle time, we assume that
the time before production starts, i.e. FIT;, and after production has finished, i.e. Y BIT;, can
be used for other necessary but non-value added tasks, like service processes, setups or cleaning
procedures. > FIT; only depends on the first scheduled job, see Table 2| " BIT; is influenced

by the completion times of the last scheduled job, but a lower bound can be obtained in terms of



Abbr. Objective

m m i—1
> FIT; Total front idle time > FIT; S5 P
i=1 i=24/=1
n n—1 j
Z FWT); Total front waiting time Z FW T, Z P1,[k]
k=1 j=1 k=1
m m
> BIT; Total back idle time > BIT; m - Cpy[n] — > Ci[n)
i=1 i=1
Z BWT} Total back waiting time Z BWTy, 1 Cryn] — Z Con k]
k=1 k=1
ZCITi Total core idle time Z Z CIT; (g Z Z B k] — Ci,e—1) (1)
i=2 k=2 i=2 k=2
>~ CWT; Total core waiting time >y CWT; g 5 B k] — Ci—1,x) (2)
i=2 k=2 i=2 k=2
> ¢y Total completion time > Co, i) (3)
k=1
Crman Makespan Cm,in] (4)

Table 2: Formal definitions of objective functions (bold: Objectives further discussed in Sec. @—EI)

the processing times of last scheduled job since X BIT; > Y™ ' S 41 Pir [n)- However, core
idle time cannot be estimated in the same manner since its occurrence and length hardly depends
on the schedule. Instead, it can be interpreted as an indicator of machine utilization because it
indicates that the machine is in a stand-by mode and waiting for work and the minimization leads
to an efficient production system (see also |Liu et al., 2016).

Considering waiting time, there are also components which could be used efficiently for other
tasks. E.g. when a production system consists of multiple sub-systems, front waiting time and
back waiting time can be used to transport jobs from one production step to the next one or directly
to the customer. So, > FWT}; and )  BWT); can be used for non-value added tasks in the same
way as »_ FIT; and ) BIT;. Here, >~ CWTj can be seen as an indicator of job flow because as
soon as jobs have to wait within the process the flow is interrupted, i.e. the highest flow can be
achieved when each job is moved through the system without any waiting time.

Related to waiting and idle time, it can be seen that in many practical applications, no-wait
schedules or no-idle schedules are required, e.g. in steel industry, food industry or when expensive
machines are required. These constraints are mostly combined with the minimization of C,4, or

>~ C;. However, in some practical applications a strict no-wait or no-idle constraint might be



relaxed by > CWT)} and ) CIT;, respectively. E.g. in food industries, cold chains have to be
maintained, i.e. waiting time of cooled and frozen food is not allowed and hence, it refers to a
no-wait assumption. Nevertheless, in determined conditions the cold chain can be maintained
allowing waiting times and so, the minimization of ) CWT; instead of the no-wait constraint

might be applicable.

2.3. Consequences of semi-active schedules

In this paper we focuses on the permutation flowshop scheduling problem considering semi-
active schedules, i.e. the jobs start as early as possible on each machine so that they seem to be
left-shifted (see e.g. [Pinedo} 2016). Hence, semi-active schedules ensure that the first machine
is never idle and the first job never has to wait. Applying the semi-active assumption leads to
a reduction of total number of feasible schedules from infinity to n! because each sequence only
provides one semi-active schedule for each problem instance. For this reason, scheduling literature
often considers only semi-active schedules, which is also assumed here.

Note that Fm|prmu| Y CIT; and Fm|prmu| ) CWT); are both trivial without this considera-
tion, since if right-shifting of operations is allowed, for each sequence an optimal schedule can
be found (as it can be seen in the Fig. [2). Additionally, literature about Fm|prmu|}_ C; and
Fm|prmu|Cy,q, considers semi-active schedules which leads to values of Y, CWT} and ) CIT;
greater than zero (see Figure|2|a)). Under this consideration, it can be shown that both problems,
Fm|prmu| Y CIT; and Fm|prmu| ) CWT)}, are NP-complete using a similar reduction to the 3-
partition-problem which was used for the proof of NP-completeness of Cy,q, and ) C; by Garey
et al. (1976). Therefore, the semi-active assumption changes the problem of minimizing > CIT;
and ) CWTj from trivial to NP-hard.

Summing up, idle time and waiting time can be divided in different components depending
on their occurrence in the production process. Assuming that front and back components could
be used for other tasks, the discussion leads to > CIT; and > CWT; as indicators for efficient
production systems and as relaxations of no-wait and no-idle constraints. While )~ CIT; refers to
the utilization of machines, )~ CWT) evaluates the job flow through the system. Assuming semi-
active schedules, the problems considering >~ CWT; and > CIT; are NP-hard, and to analyse the
relationship among these new objectives and the classical objectives is an open issue as it is shown

in the literature reviewed in the following section.
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Figure 2: Example of semi-active schedule and non semi-active schedules (under non aditional contraints)

3. Literature review

The discussion about waiting time and idle time is not new because these measures are not
only interesting in theoretical scheduling models but are also relevant in many manufacturing en-
vironments. These concepts can be found as objective functions (see Table[8), in heuristics methods
(see Table , and in constraint (see Table E[) In this section, we focus the discussion about waiting
time and idle time in objective functions, since this case is directly related to our research work.
An extensive review has been carried out including different machine layouts. We do not explain
all machine environments and constraints in detail and refer the interested reader to the cited
scientific paper. and summarize the reviewed literature.

Merten and Muller|(1972) discussed the relationship between completion time and front wait-
ing time by analyzing their mean and variance values in a single machine layout. They showed
that minimizing > C; or FWT leads to the same optimal sequence, while the minimization of
completion time variance, + " | (C; — C})?, and FWT-variance, = > (FWTy — FWT)?,
have the same objective value. [Eilon and Chowdhury| (1977) discussed the objective of minimiz-
ing F'WT-variance, too, and showed that an optimal schedule has to be V-shaped referring to the
processing times of jobs. V-shaped means that the job with the smallest processing time is set
in the middle of the schedule, while all jobs in front of this job are sorted in descending order
and all jobs after this job in ascending order. Bagchi| (1989) dealt with several objectives refer-
ring to the variation of front waiting time and completion time, e.g. an optimal algorithm for the

total absolute difference of front waiting times, Y, _, >, _; [FWTy,; — FWTy,|, was provided.



Among other things, a bi-objective problem of Y FWT; and > ,_, > |[FWTyy — FWTy|
has been discussed and similarities between completion time and waiting time have been iden-
tified. |Li et al| (2007) proposed a discussion about the influencing factors when focusing on
LS . (FWTy — FWT)? in a single machine environment, concluding that the statistical pa-
rameters mean and standard deviation of the used processing time distribution makes a strong
contribution to F'WT-variance. Xu| (2011) dealt with the single machine problem and the objec-
tive of minimizing the weighted waiting time variance, >-7_, w;(FWT; — FWT)?. The author
showed that the problem 111377, w;(FWT}; — FWT)? is optimally solved by sorting the jobs in
a V-shaped manner regarding the measure p, /w;, where w; refers to the weight of job j, if jobs are
agreeably weighted, i.e. p;; > p; = wj <w; Vj',j€{1,2,...,n}. Moreover, the dispatching
rule ‘Shortest Processing Times’ can be used for an optimal solution if p; and w; of a job are directly
proportional. [De Matta| (2019) discussed the problem of minimizing > CWT} in a two-machine
permutation flow shop. The author reduced this problem to a single machine environment and
added the requirements of batch-setups and deadlines d; of each job (1|setup, d;| Y- CWT}).

In most cases, papers considering idle time in the objective function refer to the total machine
completion time, }_." | C;. Ho and Gupta| (1995) discussed two different sets of dominated ma-
chines and among other objectives, provided simple and efficient solution methods for > C;. |Fon-
drevelle et al|(2008) discussed the minimization of weighted sum of machine completion times
with minimal and maximal time lags, Fm|prmu, wt]'#*, wtj/*| ¥ w;C;. They proved that the
problem is NP-hard and provided a branch-and-bound based exact algorithm. In their conclu-
sion, they suggested to discuss the minimization of > CIT;. Ruiz-Torres et al|(2011) consid-
ered the problem of minimizing C,,., and ) C; with assignment flexibility of tasks, i.e. there
are more tasks per job to be processed than machines, but each machine can process each task,
Fmlprmu, flex|Y " C; and Fm|prmu, flex|Cpqy. They concluded that there is no solution found
which simultaneously minimizes both objectives, i.e. a good solution for C,q, is also a good
sequence for ) C; but a good solution for > C; leads to a poor Cy,q,. Finally, [Liu et al|(2014)
considered specifically the objective > C'IT; proposing a NEH-based heuristic.

Additionally, some multi-criteria approaches have been considered in the literature regarding
idle time objective functions. The sum of ) FIT; and ) CIT; was considered by |Yagmahan and
Yenisey| (2008) and [Sha and Lin| (2009), while [Liao et al.| (2007) only referred to Y CIT;. [Hosseini
and Tavakkoli-Moghaddam| (2013)) proposed two meta-heuristics for the two-machine flow shop



with dynamic arrivals and including learning effects. The multi-objective function consists of the
minimization of mean deviation from a common due date and ) CIT;. In their paper, > CWT;
is calculated within the computational experiments but is not considered directly in the objective
function. Recently, Liu et al|(2016) modified the well known NEH-heuristic (see Nawaz et al.,
1983) for a bi-objective approach of minimizing C,,,, and > CIT;.

Summarizing, idle time and waiting time have been discussed in the scheduling literature, but
> CIT; and > CWT; have only been rarely discussed as objective functions, and, in particular,

the relationship to each other or to C,,4, and ) C; has not been considered.

4. Basic observations

As explained in Section([T} >~ CIT; and ) CWT} are efficiency-oriented objectives whose mini-
mization leads to improved utilization and job flow, and they may be used as relaxation of no-wait
and no-idle constraints. Therefore, we have observed the interest about to analyse the alignment
among > CIT; and ) CWT; and the classical objectives Cy,q, and Y C;. Therefore, from an
theoretical point of view, the relationship is analysed for some special cases regarding processing
times, showing that C,,,q, and Y CIT;, as well as > C; and ) CWT are equivalent. Moreover,
we show that the semi-active assumption is fulfilled as long as the no-idle constraint applies to the
first machine and the no-wait constraint applies to the first job. This result will be useful for the

experimental analysis carried out for the general case in Section 5|

4.1. Semi-active schedule assumption

As described in Section in the permutation flowshop context, the semi-active schedule
verifies that the first machine is never idle and the first job never has to wait within the process.
However, these two constraints do not guarantee semi-active schedules in the search space (i.e.
the optimal schedule can have some right-shifted operations). Observation [I| proves that in the
subspace of all schedules verifying that the first machine is no-idle and the first job is no-wait, the

optimal value of ) CIT; (and ) . CWTj}) is provided by the semi-active schedule.

Observation 1. Let S™ be the set of all schedules constructed for a given sequence w. Let ST C S™ be the
set of schedules verifying that the first machine is no-idle and the first job is no-wait. Let S, € ST be the
semi-active schedule for 7. Then,

S CITi(S,) < S CIT,(S) VS € ST, S # Sy and 3" CWT;(S,) < S CWT;(S) VS € ST, S # S,

10
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0% Heuristic Observation Author
Z Cj Constructive Definition of CWT and CIT; part of the |Rajendran and Chaudhuri|
heuristic approach
Cj Constructive CIT and CWT part of decision coefficients
Cj Constructive Evaluation of Nodes and Sub-solutions
with weighted CIT Fernandez-Viagas and)|
Framinan|
Crmaz Constructive FIT+CIT on the last machine are discussed |Dudek and Teuton Jr|
Crmaz Constructive FIT+CIT on the last machine are discussed
Cmaz Local search algorithm  Idle times as part of the decision process
Cimaz or Tie-breaking rule Idle time consideration
C.
g:’ma; Tie-breaking rule Idle time on bottleneck is considered
Cmaz Tie-breaking rule CIT; is part of the rule
Cmaz Tie-breaking rule CIT; is part of the rule
Craz Tie-breaking rule FIT+CIT as part of the rule ernandez-Viagas and|
Framinan| (2014
Chmaz Tie-breaking rule FIT+CIT as part of the rule iu et al.| (2017

Table 4: Summary of waiting and idle times in algorithms of the PFSP

Description Graham et al.{(1979)-notation Reference
No-wait alno-wait|y detailed survey see|Allahverdi (2016)
No-idle alno-idle|y surveys of [Ruiz et al] (2009) and

Limited waiting time

max
alwtid [~

charov and Sevastyanov] (2009)

Brief overview see Kim and Lee|(2019)

Overlapping waiting time

F3|prmu, wt*%y

s

3 wt{”fgfj |Cmaac

Linear dependence of p; ; on wait-
ing times

F2|prmu, X X| XX

Yang and Chern|(1999)

No-wait and no-idle

F2|prmu, no-wait, no-idle| Crmax

Billaut et al.

No-wait and no-idle

F2|prmu, no-wait, no-idle| Z Cj

Della Croce et al.|(2018)

Duality relations of no-wait and no-  Fm/|prmu, no-wait|Cmaz and |Ka1czynski and Kamburowski| (12007)
idle Fm|prmu, no-idle|Cmaz

Relationship between no-wait and  Fm/|prmu|Cmaz, Makuchowski| (2015)

no-idle Fm|prmu, no-wait|Crmaqe and

Fm|prmu, no-idle|Crmax

Table 5: Summary of waiting time and idle time as constraints

Proof. Let S be the semi-active schedule for 7. Then,

=1

m m n
Y CITi(S9) =Y By~ Ciful = Y _Piy
i=1 j=1

As B; ) is fixed for all schedules S € S7, it can be seen that ) CIT; depends only on C; ).

12



Therefore, right-shifting any job different to the one in the last position [n] implies the same
> CIT;. Right-shifting the job in the last position leads to an increase of ) CIT;. Therefore,
Y CITi(Ss) < Y CIT;(S)VS € ST, S # S.

Analogously,

n n m
STOWT(Sa) = Y. Coner = B — D pig
=1 k=1 =1

Here, B p is fixed for all schedules S € S7. So, ) CWT) depends only on C,, ). Hence, right-
shifting any job on a machine different to the last one leads to the same ) CWT)}, while right-
shifting any job in the last machine implies an increase of > CWTj. Therefore, Y~ CWT;(S;) <
Y CWT;(S)VS € 8T, S # Ss. O

Observation(T]is illustrated by Figure[3] It can be seen that any right-shifting operation provides

worse values at least for one of the objective functions.

M,y
Mo
M3 s j - J4 %
| T RN I I
10 20 30 40 50 60 70

Figure 3: Possible movements maintaining the first machine no-idle and the first job no-wait

4.2. Cases with special processing times

In this section some basic theorems are proved regarding special cases of processing times,
where the problems of minimizing ~ CWT; and ) C; or )" CIT; and C,q, are equivalent. Fi-
nally, two cases implying > CWT; = 0 and ) CIT; = 0 for all schedules are shown. First, a
relationship between > CWT) and ) C; is presented (see also Benkel et al., 2015 and Rajendran

and Chaudhuril, [1992|for a similar formulation).

Lemma 1. Total core waiting time can be expressed in terms of total completion time minus total front

waiting time and minus the constant P = 371" | 377 pij, ie.

Zn:CWTj = Zn:cj —zn:FWTj -P )
j=1 j=1

j=1

13



Proof. The definition of ) CWT;, given in Eq. (Table , is recalled: 377, CWT; =

m n

Z > Biw — Ci—1,k). Taking into account that the job in the first position never has to wait

within the process, it is possible to add position k£ = 1 to the previous formula obtaining
ZCWT >3 By~ G
=2 k=1

Disassembling the sum of machines leads to
ZCWTj = ZBQ - C] kT Bg CQ +.+ B,, k] — Cm—l,[k]

Taking into account that B; 1) = C; k) — P, k] = Pijk] = Cik] — Bij), 2o CWT} can be expressed

in the following way:

n n m—1
D CWT; = (B — Crpg — Y piw)
j=1 i=2

k=1

Additionally, Bm,[k] = Cm,[k] — Dm,[k] and Cl,[k] = Bl,[k] =+ D1,[k) ie.

m—1
ZCWT Z k] — Prft] — Bue = L — Y Pifu)
=2

which can be simplified to

S OWT; =3 (Coojiy — Bigy — sz )

where 370 Cj = 31 Cou, P =201 2y piw and X0 FWTy = 370 | By ) (see Table
and Table[2). O

Using Lemma (I} the following theorem shows that the problems minimizing > C; and

>~ CWTj are equivalent in a special case of the processing times.

Theorem 1. In an m-machine permutation flow shop where the processing times on machine i = 1 are
identical for all jobs, i.e. p11 = pi12 = ... = D15, the minimization of Y, CWT} is equivalent to the

minimization of Y, C.

Proof. This result can be proved with the Gaussian triangular number. If the processing times

14



are equal on the first machine, py, the calculation of >~ FWT); can be reduced to }_;_| FW Ty =
% - p1 for all sequences, i.e. Y FWT) is constant. Then, > CWT} only depends on ) C; (Eq.
B). So, the minimization of > CWT} is equivalent to the minimization of }_ C;. O

In the following Lemma it can be seen that ) CIT; is related to the completion time of ma-

chines (see also [Benkel et al.,[2015).

Lemma 2. Total core idle time can be expressed in terms of total machine completion time minus total front

m n

idle time and minus the constant P =3 .7, >0 pij, i.e.

zm:CITi:iCi—iFlTi—P (6)
i=1 i=1 =1

Proof. Considering the definition of ) | C'IT; given in Eq. |1|in Tablezyil CIT; = > Bip —
i=2 k=2

C; [k—1) and keeping the first machine no-idle within the process leads to

m m n

ZCITi = Z Z Biw — Ci e

i=1 i=1 [k]=2

Similar to the previous proof, disassembling the sum of jobs and considering thatp; ) = C; jx)—

B; i) leads to

m m m n—1
ZCITZ- = Z Bi’[g] - Ci,[1] + Bi,[3] - Ci,[2] + ..+ Bi,[n] - Cz‘.,[nfl] = Z(Bi,[n] - Ci»[l] - Zp@[k])
=1 =1 =1 k=2
Moreover, Bi,[n] = Ci,[n] — Di[n] and Cz’,[l] = Bi,[l] =+ Di 1], ie.

m m n—1 m m n
Z CIT; = Z(Oi,[n] — Pijn) — Bi,n) — pi) — Zpi,[k]) = Z(Oi,[n] - Z By — Zpi,[k])
1=1 =1 k=2 =1 1=1 k=1

where Y270 Gy = Y21 Gy, oimy FIT, = Y07 By (see TableR) and P = 370 > pi jag-
O

Using Lemma [2} the following theorem proves a two-machines special case, in which mini-

mization of ) CIT; is equivalent to minimize makespan.

15



Theorem 2. In a two-machine permutation flow shop where the processing times on machine i = 1 are
identical for all jobs, i.e. p11 = p12 = -+ = p1,, the minimization of > CIT; is equivalent to the

minimization of Cqz.

Proof. As it is shown in Table [2} > FIT; only depends on the processing time of the first job on
the first machine. As long as the processing times are equal on the first machine, Y FIT; is also
equal for each possible schedule and ) CIT; can be reduced to the minimization of }_ C; (Eq. [6).

Because C [,,] is constant, the minimization only refers to Cs |,,) which equals Cy4;- O

In the following theorems, two trivial cases implying > CWT; = 0 and ) CIT; = 0 for all

schedules are shown.

Theorem 3. In an m-machine permutation flow shop where the machines are arranged in a decreasing
dominance order, i.e. min{p; ;} > max{pit1,;} VYV j,Vi=1,...,m —1,then, Y CWTj is zero for every

schedule.
Proof. Under the conditions of this result, [Ho and Gupta(1995) shows that:

n

DC=33"mm+ Y. Y piy )

=1 j=1k=1 j=1i=2

j=1k=

It can be observed from Tablethat Y FWT; = Z Z P1,[k], SO

n

7 n m n n m n
> i, k]+2p1[k +D ) P =Y FWT ) Y pig=) FWT;j+ P
Jj=1 j=1 k=1 k=1 Jj=1 =2 Jj=1 Jj=11i=1 Jj=1

From Eq. [fwe conclude that in this case Y CWT} = 0. O

Theorem 4. In an m-machine permutation flow shop where the machines are arranged in an increasing
dominance order, i.e. max{p;;} < min{piy1,;} VjVi=1,...,m —1,then, > CIT; is zero for every

schedule.

Proof. Similarly to the previous result, and based on the expression of ) C; given by Ho and

Guptal (1995) under the conditions of this result given in Eq. |8} the result can be derived using the
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definition of Y FIT; given in Table

m m—1 m n
Zci = Zpi,[l] '(m—i)+22pi,j (8)
i=1 i=1 i—1 j—

=1 j=1

5. Computational analysis

After analyzing Cyqz, > Cj, > CIT; and Y CWT)} theoretically on the basis of some special
cases, we now focus on the general cases of processing times in order to gain further insights into
the alignment of the considered objectives. Different analytical methods are going to be applied in
the analysis (Section[5.1). The relationships between the four objectives are analyzed by interpret-
ing the result (Section 5.2).

5.1. Analytical methods

Based on the observation that one instance can have more than one optimal sequence for a
given objective function, and taking into account that, in the set of the optimal solutions for a
given objective, the variability of the efficiency of these solutions for a different objective may be

high, we propose different analytical methods to compare the objective functions:

o Complete Enumeration: This method evaluates all n! schedules. Here, the optimum of an ob-
jective can be obtained and, in addition, the number of optimal schedules can be computed.
This is the most expensive of the proposed methods from the computational time point of view.

Therefore, it is restricted to very small sizes (up to n = 10).

¢ Classical MILP Model: In this context, the classical MILP is referred to a single-objective model
providing one random optimal sequence among all possible optimums for a given objective
function. The disadvantage is that neither the number of optimal schedules nor the relation-
ship to other objective functions is considered, , but computational effort is lower than for the
complete enumeration. The MILP formulation of PFSP and C,,,q, given by [Wilson| (1989) (see
Wilson, 1989 or [Stafford Jr et al., 2005 for the description of the model and its evaluation) is
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adapted changing the objective function. The formulations of the objective functions are:

n
Crnaz = Bp,[n) + me,j - X mn] ©)

j=1

n

>.¢; =2 | B + D P Xj {0
= k=1 Jj=1

S o, = " Bip — Bipy — 3. > pi X1y (11)
=1

=2 k=2 j—1
Z CWT; = B k) — B1k) — Z ZPFLJ‘ - X, [k] (12)
j=1 k=2 =2 j=1

¢ Lexicographical Approach: This multi-objective MILP model is used to identify, among the opti-
mal sequences of a primary objective OF}, the best one of a secondary objective OF5 (see e.g.
1’kindt and Billaut, 2006). This method consists on the same optimization model than the clas-
sical MILP used for a given objective, adding a (hard) constraint where the optimal value for a
different objective is imposed. Note that the information provided by the MILP is used, since the
optimal value of the secondary objective is needed. This approach provides more information

than the classical MILP, but again the computation effort is higher.

The classical MILP as well as the lexicographical MILP models imposes that the first machine
and the first jobs are no idle. Observation [I| guarantees that the objective function values for

> CWTjand Y CIT; are the same that the given by the semi-active schedule.

5.2. Relationship between objectives

The analytical methods previously presented are applied to a set of instances, with n =
[5,10, 15, 20] jobs, m = [2,5,10] machines and uniformly distributed processing times (U[1, 99]).
30 instances for each problem size have been generated, i.e. in total 360 instances. Each method

use different instances due to the computational times needed.

5.2.1. Comparison of results by Complete Enumeration
The complete enumeration is applied to instances with n = 5 and n = 10 jobs of the set pre-

viously described (180 instances in total) to evaluate all solutions of the problem depending on
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the objective function, OF € {Cpaz, > Cj,> . CWT}, > CIT;}. Usually in scheduling, results
are compared with Relative Percentage Deviation (RPD) which is defined as RPD = %F_*OF*
where OF(S) is the objective function value of a sequence S and OF* refers to the optimum.
However, an optimal value of >~ CIT; and ), CWT; might be zero, i.e. RPD is not a suitable per-
formance measure for this analysis. Instead, we refer to the Relative Deviation Index (RDI, see
e.g. [Kim) |1993} [Fernandez-Viagas and Framinan| (2015) and Perez-Gonzalez et al.|(2019)). For the
complete enumeration, we define RDI{ ;. of a sequence S for a given objective function OF as

OF(S) — OF*

RDIOF == W VS (13)

where OF(S) is the evaluation of S for objective OF, OF* is the optimal value and OF™** =
max{OF(S)VS of instance I}.

To characterize the distributions in detail, the RDI%-values of each objective are computed
and summarized as the frequency of RDI* within a range of [0, 1] for each problem size. Sim-
ilar studies have been carried out by [Taillard| (1990), Perez-Gonzalez and Framinan| (2009) and
Fernandez-Viagas and Framinan| (2015). In Figure {4 represents the empirical distribution for the
instances with m = 2 (left) and m = 10 (right), both cases for n = 10. In the figure it can be seen
as the empirical distribution for m = 2 reveals a problem with more solutions close to the optimal
than the case with m = 10, for all objective functions except > C;. Y CIT; is the objective with

more solutions close to the optimal, regardless the number of machines.

0.25 n=10m=2 0.25 n=10,m =10
! - Cmaf —Crnaw

0.20 ! -G 0.20 -G
= \ -3 CIT, &, -t
@ ' eSS OWT; DQ: ..... S CWT;
2015 D015
5] \ °c A
z Ve, e B '
§ 0.10 § 0.10

]

g ' g
= Vo =

0.05 0.05

0.00 -- _. R

— 0.00
< 0.05 < 0.20 < 0.35 < 0.50 < 0.65 < 0.80 < 0.95

< 0.05 < 0.20 < 0.35 < 0.50 < 0.65 < 0.80 < 0.95
RDI%Interval

RDI%Interval

Figure 4: Empirical distribution for each objective function; left: Case n = 10 and m = 2 ; right: Case n = 10
and m = 10
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n=10,m=2 n=10,m=10
mean STD skewness kurtosis | mean STD skewness kurtosis
Cmaz 0,375 0,214 0,364 -0,391 0,481 0,132 0,053 -0,216
Cj 0,466 0,158 0,073 -0,386 | 0,506 0,147 -0,075 -0,334
CIT; 0,283 0,195 0,674 0,205 | 0425 0,155 0,224 -0,184
CWT; 0,315 0,154 0,709 0,348 | 0448 0,139 0,207 -0,229

Table 6: Statistics indicators for Ciaz, Y Cj, > CIT; and >, CWT;

To go deeper in the behaviour of the empirical distributions the mean, standard deviation
(STD), kurtosis and skewness as shown in Table[6] Considering m = 2, all distributions are right-
skewed (skewness > 0), significantly for C,q., Y CIT; and ) CWT; but slightly for Y C;. More-
over, Cyqe and ) C; are platykurtic (kurtosis < 0), while >~ CIT; and ) CW} are the opposite.
Figure [ (left) shows that there are many solutions of ) CIT; which are optimal or near-optimal.
Because of its strong right-skewness, also many solutions of > CWT; have a RDI* smaller than
0.5. Considering m = 10, the mean-values are all close to 0.5 and the standard deviations are
nearly similar for all objectives. While ()., and > C; are only slightly skewed, > CIT; and
> CIT; are again significantly right-skewed. Moreover, all distributions are platykurtic. Com-
paring both diagrams, it can be seen that the distribution of ) C; is only slightly affected by an
increase of machines, while all other objectives provide different distributions depending on the
number of machines and are more aligned to a normal distribution when the number of machines
increases.

Additionally, Table [7| presents the average of optimal solutions given per size for each case.
Note that the problem with n = 5 has 120 possible sequences and n = 10 has 3,628,800. It can be
seen that Cy,45, y CIT; and ) CWTj provide many optimal solutions for m = 2, >~ CIT; is the
objective providing the highest value in both cases, representing the optimal solutions approxi-
mately at 23% and 18% of the overall possible solutions for n = 5 and n = 10, respectively. This
behaviour decreases when the number of machines increases. However, » C; on average only

provides approximately one optimal sequence per instance, independently of the problem size.

n 5 10
m 2 5 10 2 5 10
Crae 101 21 15 | 1021957 1856 44
>.Cr 13 1.0 10 14 11 10
CITy | 276 18 10 | 6573379 643 12
CWT; | 98 11 10| 172762 1.0 1.0

Table 7: Average number of optimal sequences per instance provided by complete enumeration
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Once we know how many optimal sequences are obtained for each objective function, we focus
on evaluate them for the rest of the objectives. Therefore, considering only optimal sequences, for
each objective OF € {Cpaz, . Cj, > CWT;, > CIT;} we compute RDI&, VS € {S§p : OF #
OF}. The results on average when n = 10 and m = 10 are shown in Figure | evaluating the opti-
mal sequences provided by > CIT; for the rest of the objectives (left) and evaluating the optimal
sequences provided by > CWT; for the rest of the objectives (right). The graphs represent the fre-
quency of RDI}  in intervals [0, 0.25], [0.25,0.5], [0.5,0.75], [0.75, 1] for each pair of objectives. In
Figure[5|(left), it can be observed that more than the 75% of optimal sequences of Y C'IT; are good
solutions for C,,, with an RDI® lower than 0.25, but )" C; and >~ CWT; do not provide good re-
sults in this case. In Figure[p|(right) it can be observed that all optimal solutions (100%) of > CW T}
are good solutions for ) | C; with an RDI® lower than 0.25. Therefore, it can be concluded that the

alignment between ) C; and > CWT} is stronger than between C,,q, and ) CIT;.

Minimization of Y CIT; R o
1.00 i .CWG.T(S*Z(’]T]) 1.00 Minimization of Y~ CWT; Coas(S: )
= ’EC}(Si(riﬁ) g, ZC/'(S*Z('H'T>
X 075 abons 3 o7 .
EO % * 2 CWI(S5orr) il; =2 CIT(SS- cwyr,)
% 0.50 % g 0.50
3 » 5
g 0.25 % é g 025
=
il ] I
0.00 _ o ) 0.00 | &
<0.25 < 0.50 <0.75 < 1.00 . <0.25 < 0.50 <0.75 < 1.00
RDIInterval

-RDI”—Illt(‘,ITVEL-]

Figure 5: RDI“ for optimal solution problem size n = 10, m = 10: Left Z CIT;; Right Z CWTj

5.2.2. Comparison of results by classical MILP

Due to the computational effort needed to solve the instances by complete enumeration, in
this section we use the MILP model in order to obtain, at least, one optimal solution for each
of the 360 instances with different sizes. The solver Gurobi (Gurobi Optimization} 2018) with a
computational time limit of 900 seconds was used providing optimal solution (or best found in
some cases of the biggest sizes) for each instance.

To compare the objectives, we define RDI} . for each instance I, given a primary objective
function OF; which is going to be compared to a secondary objective function OF,. OF; (S5 ) is

defined as the value of OF} referring to the optimal sequence of OF;, OFY is the optimal value for
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OF; and OF"°"s" = maxop 20m {OF1 (S5}

_ OF\(Shp,) — OFf

b
RDIOFl - OFlworst _ OFl* vI (14)

The difference between RDI® and RDI® is that OF™® in RDI“ is the worst value among all
the possible sequences for a given instance I, and OF{°"*! in RDI" is the worst value given by
OF; among the optimal sequences provided for the rest of the objectives for the given instance I.

Table |8 shows the average RDI?, denoted as ARDI®, and variability of RDI? in terms of coef-
ficient of variation, denoted as C'V' (computed by dividing the standard deviation by the average),
considering all instances. If C'V is lower than 0.75, between 0.75 and 1.33 or greater than 1.33, the
variability is low, medium or high, respectively (see Hopp and Spearman, 2008, p. 269). If ARDI®
is zero or close to zero, this is interpreted as a strong alignment between two considered objectives.
On the opposite, if ARDI b is one or close to one, it shows a strong conflict between two objectives.

Considering the results presented in Table (8, >~ C; and )  CWTj are the most aligned objec-
tive functions regarding ARDI®. The optimal sequence of > C; provides an ARDI® = 0.14 for
S>> CWT;, while the optimal sequence of Y CWTj leads to ARDI® = 0.28 for Y C;, both cases
with medium variability. Additionally, it can be seen that the optimal sequence of )~ CIT; is more
aligned to C,,,5; (0.54 and low variability) than to Y C; or > CWT)}, and the optimal sequence
of Cynqz provides better Y CIT; values (0.34 and low variability). Finally, it can be observed that
> CWTjand ) CIT; are very conflicting objective functions with high average and low variabil-

ity.

OF

Crmaz > S CIT; > CWT;
ARDI® CV  ARDI® CV ARDI® (CV  ARDI® CV
Crmaz (S ) - - 0.58 0.59 0.54 0.69 0.85 0.32
STCi(Sh ) 0.40 0.61 - - 0.96 0.13 0.28 0.99
ST CIT(Sh ) 0.34 0.70 0.71 0.37 - - 0.97 0.15

STCWT;(S% ) 055 048 014 101 097 012 - -

Table 8: Average and coefficient of variation for RDI® for each pair of objective functions

As the most promising objective-pairs referring to their alignment are C,,q, with ) CIT; and

> C; with - CWT}, they have been analysed deeply. Figure. [f|shows the 95%-confidence interval
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of machine-grouped ARDI’-values referring to these pairs. The results show that the relationship
between Y C; and Y CWT; is stronger than between C,q, and > CIT;. A job-grouped point of

view is shown in Figure[7land the results reveal that there is no influence of the number of jobs on

ARDI’ for cases C’max(S*Z o) 2 CITi(SE, ) and 3- CT/VTJ-(S"‘Z ), while }° C’j(S*Z owr.) 18
affected significantly.
Tm =2 m=>5 Im =10
0.8
0.6 I
=~ ’
s L)
204
< A
02 s ¥ .
-
Cmaz(sz CITi) > Cj(SE CWT]-) 2 CITy(5¢,,.) ) CWTj(SZ c]-)

Figure 6: Classic MILP results: ARDI® grouped by machines

n=>5 n=10 In=15 n =20

0.8
0.6 4 !
N
0.4 i =
S * 0 :
< o d £ )
0.2 3 R
0.0
Comaz (% 17, > Ci(S5 owr,) Y CITi(Se,,,) | XCWT;(S%¢,)

Figure 7: Classic MILP results: ARDI® grouped by machines

The observation made with complete enumeration, namely that the alignment between ) C;
and ) CWT); is stronger than between C,,,q, and > CIT;, can also be confirmed for larger prob-
lem sizes solved with MILP. However, the classical MILP only provides one random optimal se-
quence. It might be interesting to analyse a sequence which is optimal for the primary objective

and sub-optimal for the secondary objective. For this reason, the lexicographical approach is ap-

plied additionally.

23



5.2.3. Lexicographical Approach

In order to analyse all optimal solutions for a given objective with respect to the rest of the
objectives, in this section, the model of [Wilson| (1989) is extended for a lexicographical approach.
This method needs a computational effort higher than the classical MILP, but it is more reasonable
than the time needed by complete enumeration, so it is applied to all the instances. In total 12
optimization models (for each pair of objectives) are solved by Gurobi solver, in this case with a
stopping criteria of 1800 seconds (due to the difficulty when the additional constraint is added).

A new RDI’-value, denoted as RDI?, is given for each instance, since the lexicographical ap-
proach provides the best sequence for a given objective among the optimal sequences of a different
objective. Results are shown in Table[9} Due to the difficulty of the approach, all the instances have
not been solved optimally (see the row denoted 'Instances’, where the number of instances solved
optimally are given). The average RDI?-values, denoted as ARDI?, and the improvement with
respect to the MILP model (expressed by the difference: RDI® — RDI?) are given for each pair of
objectives. To maintain clarity, only improvements > 0.01 are shown and shaded gray if > 0.1.
ARDI? close to one implies high goal conflict between the involved objectives, revealing that
optimal schedules for the primary objective imply very bad values for the secondary objective.
Additionally, small improvements mean poor performance of the lexicographical approach, being
in these cases the solution of the MILP similar to the provided by this (computationally expensive)
method. From Table@ it can be seen as example that, in case m = 2 and n = 5, Cyay with Y CIT
is 29.4% better than the MILP by the lexicographical approach. For the majority of problem sizes,
S CIT, with C

max

leads to significantly better results compared to Cy,q, with Y CIT}. Addition-
ally, >~ C; and Y~ CWTj are strongly aligned too in the two ways with small ARDI? values for all
sizes. When m > 2, a goal conflict can be seen for ) C; with ) CIT}, and between ) CIT; with
> CWTj in the two ways.

In general, there are two interesting observations: First, we could not gain any significant
improvement when ) C} is considered, i.e. in cases where ) C; is considered as objective the
lexicographical approach is not suitable to gain better results for the other objectives. Secondly,
the improvement is small for all the cases when m = 10. These results may be related to the
observations done in Section for problems with ) C; as objective, and in general for all
objectives when m = 10, the number of optimal solutions are small. So, in these cases, it is difficult

to find another optimal sequence with better results for a secondary objective function and hence,
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the lexicographical approach is not a good option.

Detailed conclusions about this section, as well as about all the paper are explained in the next

section.

Problem Size n/m
OF/OF* Indicator | 5/2 5/5 5/10 10/2 10/5  10/10  15/2 15/5  15/10  20/2  20/5  20/10
Crmax Instances 30 30 30 30 30 30 29 22 11 16 0 0
Se ARDI?, 0594 0493 0540 0277  0.628 0744 0386 0652 0793  0.390 - -
J Improve. | 0035 0031 <001 0071 <001 <00l <001 0020 <001 <001 - -
S eorr: ARDI? 0104 0721 0624 0030 0619 059 0011 0559 0815  0.011 - -
Improve. | 0294 <001 <001 0456 <001 <001 0448 0014 <001 | 0306 - -
S ewrs ARDIY | 0581 0660 0808 0587 0907 0846 0597 0896 0889 0560 - -
Improve. | 0288 <001 <001 0211 <001 0010 = 0166 <00l <001 | 0309 - -
Se; Instances 30 30 30 30 30 30 30 30 28 20 5 3
o ARDI? 0249 0259 0333 0118 0307 0288 0058 0256 0284 0072 0160  0.361
e Improve. | 0329 0011 0022 049 008 0032 = 0528 0270 0015 | 0508 0263 0.020
S err: ARDI? 0574 0987 0991 0260 0913 0998 0218 0729 0976 0207  0.664 0905
' Improve. | 0393  0.013 0705  0.081 0767 0262 0024 0756 0336  0.095
S ewrs ARDI?, 0111 0069 0092 0189 0202 0135 0202 0269 0148 0178 0140  0.046
Improve. | 0111 <001 <001 0207 <001 <00l 0194 <00l <001 | 0382 008 0080
Serrn Instances 30 30 30 30 30 30 30 16 4 13 0 0
o ARDI? 0066 0486 0414 0018 0332 0472 0012 0210 0505  0.002 - -
e Improve. 0109 0045 <0.01 0069 0027 <0.01 0143 0107 0019 = 0272 - -
Se ARDIY | 0750 0859 0812 0508 0693 0810 0655 0758 0800 0596 - -
J Improve. | 0021 <001 <001 005 0014 <001 <001 <001 <001 <001 - -
S ewrs ARDI? 0675 0959 0998 0736 0984 0993 0743 0991 1000  0.648 - -
I Improve. | 0212 <001 <001 = 0207 <001 <001 0159 <001 <001 0275 - -
S owTy Instances 30 30 30 30 30 30 30 30 23 30 10 0
. ARDI? 0233 0393 0425 0064 0407 038 003 0298 038 0016  0.184 -
Tmar Improve. 0370  0.021 0019 = 0597 0117 0033 | 0642 0296 0028 = 0646 0293 -
Se ARDI?, 0079 0113 0078 0143 0151 0116 0136 0182 0122 0121  0.130 -
J Improve. | <001 <001 <001 <001 <001 <00l <001 <00l <001 <001 <001 -
S err: ARDI? 0397 0980  1.000 0096 0867 0997 0068 0620 0970 0033 0427 -
Improve. | 0560 <001 <001 0782 0183 <001 085 0369 0030 0889 0573 -

Table 9: ARDI? and Improvement of all objectives

6. Conclusions

Besides the often discussed objectives of minimizing makespan, Cj,q,, and total completion
time, ) C}, there are also other important objectives in static-deterministic scheduling, e.g. idle
time of machines and waiting time of jobs whose definitions vary in the literature. We provided

a clear structure dividing both measures in front, back and core components. We discussed that
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especially the front and back components could be used for other (non-value-added) tasks and
focused on the core components, namely ) CIT; and > CWT;. We explained that ) CIT; can
be seen as a capacity buffer which is directly related to the core utilization of a permutation flow
shop. >~ CWT, is interpreted as an inventory buffer which can also be seen as an indicator for job
flow in a permutation flow shop.

To introduce these new performance measures as objective functions may have interest, for
example, to relax no-wait and no-idle constraints. As these constrains use to be considered for
Crmaz or Y C; minimization, it is relevant to analyse the alignment among the proposed objectives
and these classical objectives functions.

Therefore, some basic results show the equivalence between C,,,q, and ) CIT;, and between
>.C; and > CWTj but only for some special cases related to the processing times. The relation-
ship among the objective functions for the general case (processing times do not follow any rule)
has been analyzed. Due to the computational effort needed for the different exact methods, an
extensive computational study has been carried out using complete enumeration, MILP models
and lexicographical models.

By complete enumeration, for small sizes (up to n = 10), the empirical distribution of each
objective are plotted, and the number of optimal solutions are provided for each instance. This
method reveal the lower number of optimal and close to the optimal solutions for > | C; and also
for the other objectives when m = 10. Additionally, the quality of the optimal solutions for a given
objective has been analysed for the rest of the objective functions. Results show that a 75% of the
optimal solutions when ) CIT; is minimized, are high quality solutions for C,q., but not for the
others objectives. In a similar way, almost all the optimal solutions when > CWT) is minimized,
are high quality solutions for ) C}, and they are not so bad for Cy,q4.

By MILP models, bigger instances are analysed (up to n = 20), but only the optimal solu-
tion for a given objective can be evaluated for the rest of them. The results show that there is a
good /moderate alignment between C,,, and > CIT; (as shown by Liu et al., 2016) and a strong
alignment between > C; and ) - CWT;, while a goal conflict exists between Y - CIT; and ) CW1Tj.

By lexicographical models, higher computational effort is needed than for MILP, but more in-
sights are obtained since, for the optimal value of a given objective, the best sequence for a second
objective is provided. From the results it can be conclude that this approach is not worthwhile for

>~ C;, but an interesting improvement is obtained when C,,,q, and > CIT; are considered, being
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better first to minimize Cy,q, and consider ) CIT; in a second step.

This research is focused on instances generated by a uniform distribution but it might be inter-
esting for future research to deal with the influence of processing times on ) S CIT; and >, CWTj.
Moreover, the computational study used a set of instances with a maximum of n = 20 jobs, so it
is interesting to increase the number of jobs and machines and use heuristic approaches to solve
the problems and analyze the behaviour of the objective functions. Additionally, several modifica-
tions of ) CIT; and )  CWTj could be discussed, e.g. by weighting them with costs which leads

to machine-idle-costs and inventory carrying cost.
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