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Abstract

In this paper we address the problem of scheduling jobs with cyclical unavailability

periods of machines where no operation can be performed. This problem is denoted

in the literature as scheduling with periodic maintenance, assuming that these regular

periods are employed to perform maintenance activities. Other application is the one

inspiring our research, i.e. the need of completing manufacturing operations within a

shift. We focus on the single machine scheduling problem with periodic maintenance

and makespan minimisation. This problem has been shown to be NP-hard, and most

of the research effort has concentrated on providing approximate procedures. However,

we are not aware of a computational evaluation of these methods, and to the best

of our knowledge, exact methods have not been developed to solve optimally small

size instances of the problem. Therefore, we aim at two objectives: On one hand, we

develop a mixed integer linear programming model to solve optimally the problem and

to study its relationship with the classical bin-packing problem. On the other hand,

we determine the state of the art of the procedures in the literature, and propose new

approximate fast methods. The computational experience shows that the proposed

heuristics outperform the existing ones regarding efficiency and effectiveness.
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1 Introduction

In many real-life manufacturing scenarios, scheduling of jobs must take into account the existence of

–usually cyclical– periods where no operation can be performed. These unavailability periods may

be seen as an special case of scheduling with deterministic machine availability constraints, in this

case due to periodic maintenance, non-working shifts, holidays, etc. Although the motivation of our

work is the natural interruption of operations in the factory between one shift and the next one,

the literature usually assumes that the unavailability periods are due to preventive maintenance

activities that must be carried out cyclically. Therefore, the problem is denoted as scheduling with

periodic maintenance (see e.g. Low et al., 2010; Yu et al., 2014). In our case, it is desirable that

the jobs are completed within a shift, so no job should be left unfinished for the next shift. This

is an usual practice in many manufacturing companies with relatively complex manual operations

(such as the assembly of wiring harness in the aerospace industry, from which our case is taken),

as shifts are formed by different teams of workers and having one worker to complete the tasks of

a previous worker is not desirable in terms of efficiency and quality of the operation.

More specifically, our problem deals with scheduling jobs for a single operation (machine) where

the jobs should start and be completed within a working shift. The goal is to minimise the maximum

completion time of the jobs, or makespan. Note that, although the classical single machine schedul-

ing problem with makespan objective is trivial if no availability constraints are considered, it turns

to be NP-hard in the strong sense if periodic maintenance is included (Lee, 1996). For this problem,

several approximate solution procedures, many of them based on bin packing methods, have been

presented in the literature, including both constructive heuristics (Ji et al., 2007; Hsu et al., 2010;

Yu et al., 2014) and metaheuristics (Low et al., 2010). However, it seems that these procedures

have been developed in an independent manner, and consequently no computational analysis has

been carried out to compare them. So, their practical suitability has not been established and the

state of the art remains unclear. Furthermore, the problem seems to be related to the well-known

bin packing problem, however, such relationship has not been analysed in the literature.

Our paper is aimed towards filling these gaps: First we try to study the differences between

the bin packing problem and our problem by building the corresponding Mixed Integer Linear
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Figure 1: Illustration of the problem Ji et al. (2007)

Programming (MILP) model and comparing the solutions. Second, we carry out an exhaustive

computational experimentation among the heuristics proposed in the literature for the problem

under consideration. In view of the excellent results obtained by two relatively fast constructive

heuristics, we embed them in a fast local search schema and propose two new heuristics which do

not only outperform the rest of the existing constructive heuristics, but also the best up-to-now

metaheuristic for the problem while consuming less CPU time.

The rest of the paper is organised as follows. Section 2 presents the notation for the problem

and the state-of-the-art. Section 3 presents the mathematical models. In Section 4 we present all

heuristics identified in the literature, and describe the heuristics proposed. In Section 6 we discuss

the test beds generated to carry out the computational experience, and present the results provided

by the MILP models and the heuristic methods. Finally, in Section 7 some conclusions are discussed

along with future research lines.

2 Problem statement and background

The decision problem consists on scheduling n jobs, J1, . . . , Jn in a single machine with processing

times pj , j = 1, . . . , n. The machine is not continuously available due to deterministic causes, and

the unavailability periods are fixed, with a common determined duration t which have to be carried

out after T units of availability time. In the literature, the availability periods are denoted batches,

bins or blocks (we will use this last term in the paper). Jobs have non-resumable operation, so it

has to be assumed that T ≥ pj ∀j = 1, . . . , n in order to guarantee the feasibility of the problem.

The objective is to minimize the makespan or maximum completion time of the jobs. The problem

is denoted 1|nr − pm|Cmax by Ji et al. (2007) according to the standard notation. 1 means that

we are considering a single machine layout, nr − pm indicates that periodical maintenance (pm)
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unavailability periods are considered as constraint, and jobs are non-resumable (nr), that means,

jobs must not be interrupted (or if it, it must be completely processed again. For a given schedule,

we denote the slack of a block to the difference between T and the sum of the processing times of

all jobs assigned to that block, i.e, the idle time of each block. Additionally, load of a block refers

to the processing time of all jobs assigned to that block.

To the best of our knowledge, Ji et al. (2007) is the first paper addressing the 1|nr − pm|Cmax

problem. They propose an algorithm –labelled LPT (Longest Processing Time first)– consisting in

first sorting the jobs in descending order of their processing times and then assigning them according

to the First Fit bin packing policy, i.e, to the first block with sufficient slack. They also show that

the worst-case ratio of the LPT algorithm is 2.

Low et al. (2010) propose a Particle Swarm Optimization (PSO) algorithm for the 1|nr −

pm|Cmax problem. They use different constructive heuristics (for descriptions see Section 4) to

generate an initial population with 10 individuals, and compare different versions of the PSO algo-

rithm. From their experiments, it turns out that one of these versions (described in Section 4.2)

yields the best results.

Finally, Yu et al. (2014) address the 1|nr − pm|Cmax problem, for which they provide three

constructive heuristics, called LS, LPT and MLPT. The first one, LS, is the List Scheduling algo-

rithm, which consists of generating a random order and apply the First Fit algorithm. LPT is the

same algorithm by Ji et al. (2007). Finally, MLPT is a method originally applied to the bin packing

problem by Yue and Zhang (1995) and adapted by Yu et al. (2014) for the 1|nr−pm|Cmax problem,

which is described in detail in Section 4.1. Yu et al. (2014) prove that the complexity of the three

algorithms is O(n2), show that the worst case bound in all cases is 2, and compare the performance

bounds, concluding that MLPT outperforms the other methods. However, they do not carry out

computational experiments to support their proposal.

Other related problems have been addressed in the literature. Hsu et al. (2010) study an

extended version of the problem where the machine should stop for maintenance after a periodic

interval T , or after processing K jobs. Clearly, this problem is equivalent to 1|nr − pm|Cmax for

K = n. For this problem, Hsu et al. (2010) provide a two-stage BIP (Binary Integer Programming)

model: The first-stage serves to determine the minimum number of batches L required for processing
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the n jobs while the second-stage minimizes the total slack within the first L − 1 batches, which

is equivalent to minimize the makespan. Moreover, they present some heuristic approaches: The

first one is called Decreasing order with Best Fit, where jobs are sorted according to LPT but the

assignment to the batches is done according to the so-called Best Fit bin packing policy, i.e. jobs

are assigned to the block with the current minimum slack. The second one is the so-called Butterfly

order with Best Fit, which arranges the jobs according to the so-called butterfly order, i.e. given

the jobs in LPT order, select first the largest one, then the smallest, the second largest, the second

smallest, and so on. In their experiments, they show that the butterfly order performs better than

the decreasing order when K ≤ dn2 e, and the opposite otherwise.

Another similar problem is considered by ?, where the periodic maintenance period are not

fixed, but they are flexible, being each maintenance done within a given time window. Additionally,

they include the same constraint considered by Hsu et al. (2010), regarding the maximum number

K of jobs assigned to an availability periodod. They solve the problem by six constructive heuristics

obtained by combining a sequencing priority list (random order, SPT order and LPT order) with

the First Fit or Best Fit policies. Additionally, they provide theoretical results about worst case

ratios of some proposed algorithms for different special cases.

The problem 1|nr − pm, sij |Cmax, with sij the setup-time of job j depending on the job i

processed just before j, is studied by Angel-Bello et al. (2011) and Pacheco et al. (2012). Angel-

Bello et al. (2011) develop a MILP (Mixed Integer Linear Programming) model, but they show

that it is not efficient. Therefore, they propose a GRASP with an improvement phase based on

Tabu Search. Pacheco et al. (2012) provide a MILP too, and an algorithm called Multi-Start Tabu

(MST). They compare their results to those provided by Angel-Bello et al. (2011), being the MST

better than the GRASP for their biggest instances. Finally, additional contributions on scheduling

with availability constraint can be consulted in Ma et al. (2009).

After reviewing the literature, the following conclusions can be stated: On the one hand, to the

best of our knowledge, there are not mathematical programming models available for this problem,

and its similarity to the bin packing problem can induce the idea that both problems are the same.

Ji et al. (2007), who formally state the problem 1|nr − pm|Cmax, identify such similarities as the

interval between two consecutive maintenance periods can be considered as a block with capacity
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T (see Figure 1). It is clear (see Property 1 in Ji et al., 2007) that the optimal schedule must

have the minimum number of blocks (i.e. it corresponds to an optimal solution for the bin packing

problem), denoted L. Note however that 1|nr − pm|Cmax is not the same problem than the bin

packing problem, since 1|nr − pm|Cmax tries to minimize the load of the last block. Since we are

not aware of contributions analysing the differences between both problems and the opposite, we

propose a MILP model for the problem, and compare the results provided by this model with the

results obtained by the mathematical model of the classical bin-packing problem. These models are

presented in Section 3, and the results are shown in Section 6.

On the other hand, regarding to approximate methods, to the best of our knowledge there are

no comparison assessing the performance of the different methods proposed. In addition, there has

been no exhaustive analysis on whether different choices of sorting criteria would yield better results

(for instance, the LS algorithm proposed by Yu et al., 2014 could be tested with the Best Fit bin

packing heuristic as suggested by Low et al., 2010 instead of the First-Fit). Furthermore, the same

method has been employed with different names, resulting in an unclear state of the art. Since most

of the proposed methods follow the same structure, we believe that a template can be developed

to classify existing methods. The template could also serve to identify unexplored combinations of

heuristics to be tested. In Section 4, we present and classify these methods in order to carry out a

computational evaluation in Section 6.

3 Mathematical model

This section presents the mixed integer linear programming (MILP) model proposed for the problem

1|nr − pm|Cmax. As mentioned before, in addition to provide a method to solve the problem

optimally, we try to analyse the differences between the bin packing problem and our problem.

More specifically, we first apply to the 1|nr − pm|Cmax problem an adaptation of the MILP

model for the classical bin packing problem. We compare the differences between this model and

a MILP model specifically proposed for our problem. Although these models are different and

consequently, the problems are not the same, it could be that both yield similar solutions for most

instances. Therefore, we solve a testbed of instances using both models and compare their results.
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Therefore, we first adapt to our problem the MILP model proposed by Martello, Silvano; Toth

(1990) for the bin packing problem. When applied to the 1|nr− pm|Cmax problem, the bin packing

problem consists on assigning the n jobs to the minimum number of blocks. The model presented

in this context, denoted BP-MILP, is the following:

• Data:

– n the number of jobs;

– pj the processing time of jobs, 1 ≤ j ≤ n;

– T the availability period (size of blocks).

• Variables:

– bi binary variables indicating if block i is occupied, 1 ≤ i ≤ n;

– xij binary variables indicating if job j is assigned to block i, 1 ≤ j ≤ n, 1 ≤ i ≤ n.

min
n∑

i=1

bi (1)

s.t.
n∑

j=1

pjxij ≤ Tbi, 1 ≤ i ≤ n (2)

n∑
i=1

xij = 1, 1 ≤ j ≤ n (3)

xij, bi ∈ {0, 1}, 1 ≤ i, j ≤ n (4)

Equation (1) is the objective function to be minimized, i.e, the number of blocks to be occupied.

Constraints (2) impose that the sum of the processing times of jobs assigned to the block i must

be lower or equal to T , for all blocks. Constraints (3) impose that each job must be assigned to

one and only one block, for all jobs. Finally, Constraints (4) define the binary variables used in the

model.

The solution obtained for this model is the assignment of jobs to blocks. The makespan can be

computed in the following way: Let k be the occupied block with lowest load, then the makespan is
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the number of occupied blocks minus one multiplied by T plus the load the block k as it is shown

in Equation (5).

Cmax = T ·

(
n∑

i=1

bi − 1

)
+

n∑
j=1

pjxkj (5)

Next, we present a MILP model for problem 1|nr − pm|Cmax, denoted PM-MILP. We have

not adapted the models provided in the literature for similar problems by different reasons: on the

one hand, Hsu et al. (2010) consider the problem with a maximum number of jobs K scheduled in

each block, proposing a formulation based on two stages (i.e. they solve two models). We do not

consider its adaptation since our proposal is easier to implement. On the other hand, the model

by Angel-Bello et al. (2011) and its improvement by Pacheco et al. (2012) are developed for the

problem considering setuptimes. This model cannot be adapted in a straightforward way since it is

based on a graph where an arc a(i, j) is related to the setup time setupi,j and the processing time

pj , loosing for our problem the mean of the arc since we do not consider setup times.

Hence, our model is based in the previous model, but taking into account the following new

information: M is a parameter with a high value (M ≥ T ), max slack is a continuous variable

which computes the maximum slack (empty space) of the blocks, and finally δi are binary variables

indicating if the maximum slack is given by the block i.

Equation (6) is the objective to be minimized, i.e, the makespan given by T multiplied by the

number of occupied blocks minus the maximum slack of the blocks. Constraints (7) and (8) are the

same constraints than Constraints (2) and (3) respectively. Constraints (9) sets the maximum slack

among the used blocks. For each block, Constraints (10) imply that, if a block is not occupied, then

no job is assigned to this block. Constraint (11) states that only one block provides the maximum

slack, and Constraints (12) imply that, if a block is not occupied, then this block does not provide

the maximum slack. Finally, Constraints (13) and (14) define the binary and continuous variables

used in the model, respectively.

Note that we do not consider the value of t (see Section 1) in both models since it does not

affect to the objective function, according to the aforementioned Property 1 by Ji et al. (2007).

As BP-MILP and PM-MILP models are different, the optimal solutions provided by both models
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minT ·
n∑

i=1

bi −max slack (6)

s.t.
n∑

j=1

pjxij ≤ Tbi, 1 ≤ i ≤ n (7)

n∑
i=1

xij = 1, 1 ≤ j ≤ n (8)

max slack ≤M(1−δi)+Tbi−
n∑

j=1

pjxij, 1 ≤ i ≤ n (9)

n∑
j=1

xij ≥ bi, 1 ≤ i ≤ n (10)

n∑
i=1

δi = 1 (11)

δi ≤ bi, 1 ≤ i ≤ n (12)

xij, bi, δi ∈ {0, 1}, 1 ≤ i, j ≤ n (13)

max slack ≥ 0 (14)

are expected to be different. However, in view of their similarities, it would be possible that, in

practice, the solutions provided by the two models are very similar, which would indicate that,

essentially, the 1|nr−pm|Cmax problem is a bin packing problem and solution procedures borrowed

from the latter could be used to solve the former. In contrast, if the solutions are different, specific

solution procedures would have to be developed. We experimentally analyse these differences in

Section 6.

4 Existing Heuristics: Analysis and Classification

In this section, we describe different heuristics found in the reviewed literature. First, we classify

the constructive heuristics (CH) from different authors into a common template. As a part of this

classification effort, new variants of these constructive heuristics are proposed to be subsequently

tested. Then, we describe the PSO (Particle Swarm Optimization) metaheuristic by Low et al.

(2010). Note that we have not included the methods presented by Angel-Bello et al. (2011); Pacheco
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et al. (2012) since it methods, GRASP and Tabu Search, respectively, consider some characteristics

that are not standard since include intelligence based on the structure of the problem related to the

setup times.

4.1 Constructive Heuristics

The constructive heuristics (CH) employed in the literature consist of two phases. In the first

phase, jobs are sorted by certain sorting criterion depending on the processing times of the jobs.

In the second phase, a specific bin packing policy is adopted. Therefore, a general template for the

constructive heuristics can be proposed to classify the existing heuristics for the problem.

Regarding the first phase, without loss of generality, let us assume that the processing times of

the jobs to be scheduled are given in non decreasing order, i.e. pi ≤ pi+1, i = 1, . . . , n−1. Therefore,

the so-indexed jobs can be sorted according to the following sorting criteria:

• Random (R), i.e. sorting the jobs randomly.

• Decreasing (D), i.e. sorting the jobs according to the LPT (Longest Processing Time first)

rule. More specifically: pn, . . . , p1

• Increasing (I), i.e. sorting the jobs according to the SPT (Shortest Processing Time first)

rule. More specifically: p1, . . . , pn

• V-Sharp (V), i.e. sorting the jobs with lowest processing times towards the middle of the

sequence. More specifically: pn, pn−2, . . . , p1, . . . , pn−3, pn−1

• A-Sharp (A), i.e. sorting the jobs with highest processing times towards the middle of the

sequence: p2, p4, . . . , pn−1, pn, pn−2, . . . , p3, p1

• Inserting High and Low processing times (HILO). More specifically:

pn, p1, pn−1, p2, pn−2, p3, . . . (following the notation by Framinan et al., 2003)

• Inserting Low and High processing times (LOHI). More specifically:

p1, pn, p2, pn−1, p3, pn−2, . . . (following the notation by Framinan et al., 2003)
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Note that the above criteria include all sorting orders proposed in the literature, including the

LPT rule by Ji et al. (2007) and Yu et al. (2014) (which is denoted D in the following), the List

Scheduling order by Yu et al. (2014) (denoted here as R), the A-Sharp, V-Sharp, and SPT rules

by Low et al. (2010) (denoted as A, V, and I, respectively), and the decreasing order and butterfly

order by Hsu et al. (2010) (denoted here as D and HILO, respectively).

In the second phase, jobs are assigned to the blocks applying a bin packing policy to the sequence

obtained from the first phase. Assuming that a sequence Π := (π1, . . . , πn) has been obtained from

the first phase, one of the following bin packing policies can be applied:

• First Fit (FF) bin packing policy, i.e. take jobs in Π one by one and try to assign them in

the first existing block where there is sufficient slack.

• Best Fit (BF) bin packing policy, i.e. take jobs in Π one by one and try to assign them in the

first existing block with the minimum slack where it fits.

• Modified First Fit (MFF) (Yu et al., 2014): The following sets are constructed: C1 = {j :

pj > T/2}, C2 = {j : T/3 < pj ≤ T/2}, C3 = {j : T−pn
5 < pj ≤ T/3} and C4 = {j : 0 < pj ≤

T−pn
5 }. Then perform the following steps:

Step 1. Assign the jobs in C1 (according to sequence Π) to the first |C1| blocks so that

the levels of the blocks form a non-increasing sequence (i.e., the level of a block is the total

processing times of the jobs in the block).

Step 2. From right to left (i.e., from block X|C1| to X1): if the two smallest unscheduled jobs

from C3 do not fit together in Xi , or if there is only one such job left, do nothing. Otherwise

assign the smallest unscheduled job Js from C3 in Xi, together with the largest remaining

unscheduled job Jl from C3 that will fit, and then take Js out of Xi and assign the largest

remaining unscheduled job from C3 that will fit together with Jl into Xi.

Step 3. Use BF to assign the remaining jobs (according to sequence Π) to blocks starting

from X1.

Note that MFF is FF for C1 = ∅.
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Phase 1 Phase 2 Notation Name Reference

Random FF FFR First Fit Random Yu et al. (2014)
?

LPT FF FFD First Fit Decreasing Ji et al. (2007)
Low et al. (2010)
Yu et al. (2014)
?

SPT FF FFI First Fit Increasing Low et al. (2010)
?

V-Sharp FF FFV First Fit V-Sharp Low et al. (2010)
A-Sharp FF FFA First Fit A-Sharp Low et al. (2010)
HILO FF FFHILO First Fit HILO Low et al. (2010)
LOHI FF FFLOHI First Fit LOHI Not considered
Random BF BFR Best Fit Random ?
LPT BF BFD Best Fit Decreasing Hsu et al. (2010)

Low et al. (2010)
?

SPT BF BFI Best Fit Increasing Low et al. (2010)
?

V-Sharp BF BFV Best Fit V-Sharp Low et al. (2010)
A-Sharp BF BFA Best Fit A-Sharp Low et al. (2010)
HILO BF BFHILO Best Fit HILO Hsu et al. (2010)

Low et al. (2010)
LOHI BF BFLOHI Best Fit LOHI Not considered
LPT MFF MFFD Modified FFD Yu et al. (2014)

Table 1: Constructive Heuristics considered in the experimental evaluation

Using the two phases described above, all constructive heuristics can be classified. Not all com-

binations of sorting rules and policies have been tested in the literature. Table 1 shows the CH

described previously, indicating whether it has been previously proposed and, if so, the correspond-

ing reference.

4.2 PSO

In this section we briefly describe the Particle Swarm Optimization (PSO) by Low et al.

(2010). In this metaheuristic, each sequence is coded as a particle in the following way: Xr
i =

(xri11, x
r
i12, . . . , x

r
inn), with xrijk = 1 if job j of particle i is in the position k in the iteration r, and 0

in other case. Each particle i in the iteration r has a velocity V r
i = (vri11, v

r
i12, . . . , v

r
inn). Let P r

i =

(pri11, p
r
i12, . . . , p

r
inn) be the best particle i obtained in r iterations. Let P r

g = (prg11, p
r
g12, . . . , p

r
gnn)

be the best particle of the population obtained in r iterations. The following parameters appear:
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K corresponding to the size of the initial population, itermax the maximal number of iterations,

wmax and wmin needed to compute the value of w, w = wmax − wmax−wmin
itermax

r, c1, c2 and rand1

and rand2 to update the velocities of the particles. The specific values used in the experiments for

each parameter are given in the Section 6. The specified PSO applied by Low et al. (2010) (for a

more detailed description of this metaheuristic we refer to the reader to the original paper) is the

following:

Step 1. r = 0: Initialize a population of K particles with random velocities V 0
i .

Step 2. For each particle i, evaluate Cmax(Xr
i ).

Step 3. For each particle i, if Cmax(Xr
i ) < Cmax(P r

i ) then P r
i = Xr

i .

Step 4. For each particle i, if Cmax(Xr
i ) < Cmax(P r

g ) then P r
g = Xr

i .

Step 5. Update the velocities as follows: vrijk = wvr−1ijk + c1rand1(p
r
ijk−xrijk) + c2rand2(p

r
gjk−xrijk).

Positions of particles are updates by the algorithm LPV (Largest Position Value) as follows:

1. For each particle i, π = ∅, and S = {s(vri11), s(vri12), . . . , s(vrinn)} with s(x) = 1
1+e−x .

2. Select the LPV of S, s(vrilm) and place the unscheduled job l in the position m in π.

Remove s(vrilm) ∀l,m from S. Repeat this step until S = ∅.

Step 6. If all particles are identical and e =
Cmax(P r

g )−Clow

Clow
≥ 0.01, with Clow a lower bound of Cmax

for the instance, then one of particles is kept and the rest k − 1 particles are randomly

generated.

Step 7. Go to step 2 until one of the following criteria is met:

1. Cmax(P r
g ) = Clow

2. All particles are identical and e < 0.01.

3. r = itermax.
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5 Proposed heuristic

As commented previously, the problem 1|nr − pm|Cmax is similar to the classical bin packing

problem. Therefore, as seen in the related literature discussed in Section 2, most methods use bin

packing policies (such as Best First or First Fit).

In order to take full advantage of the bin packing policies for designing a heuristic method for

the problem, we propose using a new solution encoding. More specifically, we will use a given bin

packing assignment policy as an operator to be applied to permutation sequences.

So, in our solution encoding, a given order of the jobs Π := (π1, . . . , πn) and a operator we

obtain only one feasible and semi-active schedule, unequivocally determined by the order of the

jobs obtained after apply the operator to Π, denoted S(Π). Additionally, it is possible not apply

any operator, and in this case, the feasible semi-active schedule is constructed assigning the jobs

directly in the blocks in the order given by the sequence Π. Note that the number of blocks used

is not known in advance, and it is unequivocally determined by the schedule, so it is not needed

to define a feasible solution. In this context, a feasible solution refers to the semi-active schedule

obtained in this way, and it is represented by a sequence.

Taking into account this consideration, we use the following operators:

• First Fit operator (FF): Starting from j = 1 and one block with slack T , take job πj and

try to assign it in the first existing block where there is sufficient slack (i.e. apply the FF

bin packing policy). If there is no block with enough slack, then use a new block and assign

the job to the newly created block. Then, repeat the procedure until all jobs in Π have been

assigned to the blocks. Let us denote SFF (Π) to the so-obtained assignment of the jobs, and

Cmax(SFF (Π)) the value of the makespan of solution SFF (Π). Clearly, SFF (Π) and Π are

not the same sequence, although they both represent feasible solutions of the problem.

• Best Fit operator (BF): Starting from j = 1 and one block with slack T , take job πj and try

to assign it in the first existing block with the minimum slack where it fits (i.e. apply the BF

bin packing policy). If there is no block with enough slack, then use a new block and assign

the job to the newly created block. Then, repeat the procedure until all jobs in Π have been

assigned to the blocks. Let us denote SBF (Π) to the so-obtained assignment of the jobs, and
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Cmax(SBF (Π)) the value of the makespan of solution SBF (Π). Clearly, SBF (Π) and Π are

not the same sequence, although they both represent feasible solutions of the problem.

We give an example in Figure 2, where we consider six jobs, and a given permutation Π =

(1, 2, 3, 4, 5, 6). We have the following options according to the operator applied:

a) If we do not apply any operator, jobs are scheduled following the given permutation and we

obtain the schedule represented in Figure 2 a).

b) If we apply the FF operator to Π, job 1 is assigned to the first block, job 2 to the first block

too, then, job 3 is assigned to the second block since it does not fit in the first block. Job 4 is

assigned to the first block since this is the first block where it fits. In the same way, job 5 is

assigned to the third block and job 6 is assigned to the second block. Therefore, SFF (Π) is the

solution obtained by the FF operator, which implies a different schedule than the previous one,

represented in Figure 2 b).

c) If we apply the BF operator to Π, job 1 is assigned to the first block, job 2 to the first block too,

then, job 3 is assigned to the second block since it does not fit in the first block. Now, job 4 is

assigned to the second block since this is the block with the minimum slack where it fits. In the

same way, job 5 is assigned to the third block and job 6 is assigned to the first block. Therefore,

SBF (Π) is the solution, which implies a different schedule than the previous cases, represented

in Figure 2 c).

Therefore, in our proposed method we explore the space of solutions by a simple local search.

The neighbourhood structure is based on insertion of a randomly selected job in all positions,

considering first improvement strategy, i.e. if the new solution obtained after insertion in a given

position improves the best solution so far, the current solution is changed and the rest of positions

are not checked. Note that, after insertion, the evaluation is not applied to the obtained sequences,

but to the solution obtained by applying one of the operators in order to provide a good assignation

to the blocks. Two different heuristics have been designed, NEW FF and NEW BF respectively,

according to the following scheme:

Step 1. Sort the jobs according to the LPT rule, obtaining sequence Π.
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Figure 2: Example for different operators

Step 2. Apply the FF (BF) operator to Π, thus obtaining a sequence SFF (Π) (SBF (Π)) and set the

corresponding makespan to be best, i.e. best := Cmax(SFF (Π)) (best := Cmax(SBF (Π))).

Step 3. Remove one job j from Π at random. Do i = 1.

Step 4. Insert j in the position i of Π. Let Π′ be the obtained solution.

Step 5. Apply the FF (BF) operator to Π′, and calculate the value of the makespan curr :=

Cmax(SFF (Π′)) (curr := Cmax(SBF (Π′))).

Step 6. If curr < best, then best := curr, Π := Π′ and go to Step 3. Else, i = i+ 1 and go to Step

4.

Note that, if all positions are checked without improvement the method stops.

Additionally, in order to test the advantages of introducing the FF and BF operators, we propose

a third version of our heuristic, denoted NEW, that can be seen as using the identity operator instead

of BF or FF (case a) in Figure 2).
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6 Computational Experiments

We perform several computational experiments with two objectives: First, to compare the MILP

models (bin packing model and problem model included in Section 3) in order to analyse the

differences between the two problems. Second, to determine the state of the art for the problem

comparing the existing methods found in the literature and the new methods proposed in this paper

described in Section 4 and Section 5. The experiments are carried out by the test beds presented

in the following subsections.

6.1 Test beds

To perform the experiments, we need a test bed for our problem. Among the references who

tackle the same problem only Low et al. (2010) do a computational experience providing a test-bed.

Other test beds proposed for similar problems cannot be adapted for our problem: Angel-Bello et al.

(2011) use two test beds, one of the took from the literature about the Asymmetrical Vehicle Routing

Problem due to the setup time consideration, and the second one is generated randomly different

matrix of the values of setup times and processing times in an aggregated way. Additionally, the

values of T depend on the setup times; Pacheco et al. (2012) use the randomly generated test bed

by Angel-Bello et al. (2011). Finally, ? uses a similar test bed than the used by Low et al. (2010)

with n ∈ {20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300}, pj ∼ U [1, 20] and T ∈ {20, 30, 40, 50},

but including more information since the problem implies more data. We think that Low et al.

(2010) is more suitable, since it is harder.

More specifically, the test bed by Low et al. (2010) consider n ∈

{10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300} and pj ∼ U [1, 50] with fifty instances

for each size (a total of 700 instances). In their paper, for each instance they generate a value of T ,

with T ∼ U [150, 200]. So Low Testbed refers to the instances with this values of T . Additionally,

we consider tightest values of T , specifically T ∼ U [50, 100] (note that the problem is feasible if

and only if pj ≤ T , ∀j = 1, . . . , n). Modified Testbed refers to the instances with this tightest

values of T .

Note that we do not include the parameter of the problem t (see the description of the problem
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in Section 1) since it does not have influence on the results.

For comparison, we consider the RPD (Relative Percentage Deviation) of each instance com-

puted as follows

RPD =
Cmax(METH)−MIN

MIN
· 100

where MIN is the optimal or best bound makespan value provided for the compared methods,

METH is the makespan value provided for each method. ARPD refers to Average RPD.

6.2 MILP comparison

In order to compare the BP-MILP and PM-MILP models presented in Section 3 we have solve the

Low Testbed as well as the Modified Testbed using the both models. The solutions found by the

solver Gurobi for the two models with a time limit of 900 seconds has been recorded. Note that

BP-MILP does not provide directly the makespan value for an instance, but the optimal number

of bins, so the makespan value can be computed using Equation (5) as explained in Section 3. So

ARPD values have been computed and CPU times (in seconds) have been recorded.

Table 2 and Table 3 show the results obtained grouped respect n for the 50 instances for each

test bed. The column MTR (Maximum Time Reached) provides the number of instances where the

maximum time limit of 900 seconds has been reached, i.e. we can not guarantee the optimality for

these instances, the column Equal indicates the number of instances where the makespan computed

from the BP-MILP is equal to the provided by PM-MILP, and Lower indicates the number of

instances where the approximate makespan computed from the BP-MILP is lower than the provide

by PM-MILP (since this model could not reach the optimal solution in 900 seconds). In general,

from the results regarding ARPD, it can be seen that both models do not provide the same makespan

values, as we it was expected.

For the Low Tesbed (Table 2), PM-MILP provides the optimal values for the instances up to

80 jobs (since MTR is 0 for all the cases). For these sizes, BP-MILP find the optimal number of

bins (MTR=0), but the assignation given by the model do not provide the optimal makespan value.

For the biggest sizes, PM-MILP is not able to provide the optimal values, and although BP-MILP

find the optimal number of bins (MTR=0), the ARPD values are higher than those provided by
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PM-MILP BP-MILP
n ARPD CPU Time MTR ARPD CPU Time MTR Equal Lower

10 0.000 0.064 0 3.333 0.003 0 18 0
20 0.000 0.327 0 1.189 0.007 0 26 0
30 0.000 18.739 1 2.290 0.015 0 12 0
40 0.000 0.698 0 1.443 0.023 0 10 0
50 0.000 6.634 0 1.041 0.043 0 15 0
60 0.000 7.987 0 1.535 0.044 0 8 0
70 0.000 41.710 0 0.870 0.084 0 13 0
80 0.000 48.328 0 0.894 0.086 0 7 0
90 0.001 151.300 2 0.876 0.112 0 9 1

100 0.003 209.599 4 0.885 0.140 0 8 2
150 0.004 369.508 13 0.497 0.401 0 6 1
200 0.000 704.783 30 0.489 0.924 0 4 0
250 0.012 887.438 44 0.391 2.123 0 3 3
300 0.008 901.835 50 0.308 3.193 0 3 3

Total 0.002 239.211 144 1.146 0.514 0 142 10

Table 2: Results for MILP models. Low Testbed.

PM-MILP. Note that PM-MILP does not give always the best bound (it can be seen in the ARPD

values and the column Lower). Regarding CPU times, it is clear that BP-MILP needs lower time

to reach the optimal number of bins, this was expected since the model has less variables and

constraints. Note that PM-MILP provides the optimal value in less of one minute on average for

instances up to 80 jobs, and BP-MILP provides close t optimal/good bounds values in few seconds

for all instances.

Modified Tesbed is proved to be harder than Low Tesbed taking into account the CPU Times and

the values of MTR. For this testbed (Table 3) it can bee seen that PM-MILP provides the optimal

values for the instances up to 90 jobs. Regarding ARPD, BP-MILP provides an total average similar

to these provided for the Low Testbed. Note that for this testbed, BP-MILP provides approximate

makespan values lower than the best bound found by PM-MILP for the biggest instances. Regarding

CPU times, the time required by BP-MILP is much higher than for the Low Testbed. In this case,

PM-MILP provides the optimal values for instances up to 90 in more than one hour for the bigger

sizes.
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PM-MILP BP-MILP
n ARPD CPU Time MTR ARPD CPU Time MTR Equal Lower

10 0.000 0.090 0 1.742 0.005 0 18 0
20 0.000 1.256 0 2.033 0.018 0 7 0
30 0.000 34.289 1 2.029 0.826 0 4 0
40 0.000 97.396 3 1.490 9.129 0 6 0
50 0.000 241.888 10 1.495 3.392 0 3 0
60 0.000 400.627 13 1.410 22.352 0 2 0
70 0.000 471.155 20 1.367 44.363 2 2 0
80 0.000 735.962 34 1.010 91.735 2 1 0
90 0.000 834.422 42 0.815 198.745 9 4 0

100 0.041 811.741 42 0.882 123.689 4 3 2
150 0.046 874.693 48 0.710 331.678 17 0 5
200 0.249 900.408 50 0.356 319.796 16 1 15
250 0.218 900.878 50 0.352 481.803 25 1 15
300 0.277 901.630 50 0.372 618.418 32 0 17

Total 0.059 514.745 363 1.147 160.425 107 52 54

Table 3: Results for MILP models. Modified Testbed.

6.3 Constructive heuristics comparison

In order to determine the state of the art for the problem 1|nr − pm|Cmax, we test in total 15

constructive heuristics (BFR, BFD, BFI, BFV, BFA, BFHILO, BFLOHI, FFR, FFD, FFI, FFV,

FFA, FFHILO, FFLOHI and MFFD), the PSO and the three versions of the new heuristic (NEW,

NEW BF and NEW FF).

We have solved all instances for all methods. The parameters used for the PSO are the same than

in Low et al. (2010): K = 20 with the initial population composed by the ten sequences generated by

FFD, FFI, FFHILO, FFV, FFA, BFD, BFI, BFHILO, BFV and BFA and ten sequences randomly

generated. Moreover, c1 = c2 = 2, wmax = 0.9, wmin = 0.4, rand1, rand2 uniformly generated in

(0,1), and itermax = 50.

Additionally, we solve all instances using the PM-MILP model for the problem by Gurobi. In

the same way than in the previous section, we stablish 900 seconds as stopping criteria, so we do

not obtain the optimal values for all the instances.

Table 4 shows the ARPD values obtained by each heuristic for the Low Testbed and Modified

Testbed. ARPD results are shown for the different cases of n and the Total. Figure 3 and Figure 4

show the ARPD results graphically using the 95% confidence intervals for each method.
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For both test beds, it can be observed that the best ARPD results are provided by the MILP,

although it does not provide the optimal values for all instances. In fact, in both test beds it does

not provide the minimum for all instances, mainly for the biggest instances of the Modified Testbed.

The best heuristics are NEW BF and NEW FF. NEW does not provide good results, so the Local

Search is not the key aspect of our new heuristic, but its combination with the operators BF or FF.

It is remarkable that the average of NEW BF are lower than rest of the heuristics (including PSO)

for all values of n.

Regarding the CHs, MFFD by Yu et al. (2014) provide the same results than FFD for Low

Testbed (ARPD are shown in the same row). The explanation is that both methods provide the

same makespan values unless ∃pj > T
2 . Modified Testbed shows different ARPD values for these

methods since this test bed provides tightest values of T . Results reveal that MFFD is not better

than FFD. Our results about BFD and BFHILO are the same than those provided by Hsu et al.

(2010) (since our problem is their case K = n), being BFD better than BFHILO for both test beds.

Note that BFD and FFD are the best CHs while the opposite rule to sort the jobs, SPT combined

with FF and BF, provide the worst results. PSO is the third best heuristic, but the results for BFD

and FFD are not much worst than it.

Regarding computation times, Table 5 shows the average for each value of n only for the best

methods with the lower ARPD values: BFD, FFD, MFFD, PSO, NEW BF, NEW FF and the

MILP, trying to identify the behaviour of the MILP compared to the rest of methods due to its

good ARPD results. It can be observed that the MILP is the slowest method, with higher times

for Modified Testbed than for Low Testbed. This last observation reveals that Modified Testbed

is harder to be solved optimally than Low Testbed. Although MILP is not a fast method, it

provides optimal solutions for the Low Testbed in less than one minute for sizes up to 80 jobs.

However, constructive heuristics are almost instantaneous, and although PSO and the three new

heuristics need higher computation times, these times are negligible in comparison to the times

needed by the MILP. For the Low Testbed, the average computation times for PSO, NEW BF and

NEW FF are similar (2.629, 2.183 and 2.112 respectively). In the case of Modified Testbed, the

average computation time for PSO increases more than for the rest of heuristics with respect to the

times for the Low Testbed (12.767, 2.892 and 2.364 on average for PSO, NEW BF and NEW FF
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respectively). For both testbeds NEW FF is the fastest among these methods.

In order to see the differences of ARPD among the best methods in a clearer way, we analyse

the seven with lower ARPD values detailed previously. Two ANOVA methods have been carried

out with significance α = 0.05 to determine the influence of the factor method (BFD, FFD, MFFD,

PSO, NEW BF, NEW FF and MILP) on the ARPD value (response variable). The factor method

has influence on the ARPD value for both testbeds.

In the case of Low Testbed, HDS Tukey results are provided graphically in Figure 5, which

shows the 95% confidence intervals of ARPD. It can be observed that FFD(MFFD) and BFD

do not present statistically significant differences. PSO provides results statistically different, but

the result is close to the constructive heuristics. It can be observed that NEW BF and NEW FF

are statistically different to the rest of heuristics, providing the best results among the heuristics,

revealing robustness due to the small deviation values. The best result is provided by the MILP,

but it implies the highest average computational time (see Table 4).

In the case of Modified Testbed, HDS Tukey results are provided graphically in Figure 6 which

shows the 95% confidence intervals of ARPD. It can be observed that MFFD provides the worst

results. In this case FFD, BFD and PSO do not present significant differences. In the same way,

NEW BF and NEW FF provide the best results among the heuristic methods, revealing robustness

in view to the small deviation values. In this case the best result is provided by the MILP, but

there are not significant differences among it, NEW BF and NEW FF, and it implies the highest

average computational time (see Table 4).
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Table 4: Average RPD depending on n for each method.
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Table 5: CPU Times in seconds depending on n for each method.
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Figure 3: 95% Confidence Interval for ARPD: All heuristics. Case Low Testbed

Figure 4: 95% Confidence Interval for ARPD: All heuristics. Case Modified Testbed
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Figure 5: 95% Confidence Interval for ARPD: FFD/MFFD, BFD, PSO, NEW BF, NEW FF and MILP.
Case Low Testbed

Figure 6: 95% Confidence Interval for ARPD: BFD, FFD, MFFD, PSO, NEW BF, NEW FF and MILP.
Case Modified Testbed
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7 Conclusions

In this paper we have addressed the single machine scheduling problem with periodic maintenance

and makespan minimisation. This NP-hard problem has been studied previously in the literature,

but it has not been modelled as a MILP. Additionally, although several approximate procedures

have been proposed, no computational evaluation has been carried out.

First, we model the problem to identify its differences with the classical bin packing problem,

and conclude that the solutions provided by both problems are different. Second, we conduct an

exhaustive computational evaluation of the state-of-the-art heuristics, including heuristics based on

the performance of two constructive heuristics denoted BFD and FFD. We propose two heuristics

that use bin packing assignment rules as operators to be embedded into a local search. These

heuristics are labelled NEW FF and NEW BF, and are tested together with the so-called NEW

heuristic, which is a base case to test the influence of the operators.

Experiments have been carried out on two different test beds, one proposed in the literature, and

a variation which is shown harder to be solved optimally according to the CPU time requirements of

the MILP solver. In total 15 constructive heuristics, a metaheuristic (PSO), and three versions of the

new heuristic, NEW, NEW FF and NEW BF are tested and compared including optimal solutions

or best bounds provided by the MILP solver. The results show that NEW FF and NEW BF

outperform the best existing metaheuristic for the problem (PSO) in terms of quality of solutions

and in CPU time requirements.

For future research lines, and due to the practical interest of scheduling problems with periodic

maintenance, it could be useful to study this problem in other layouts as flowshop or parallel

machines. Additionally, other objectives have not been considered in the literature, so it could be

an other interesting option for future research.
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