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Nonlinear driven diffusive systems with dissipation: Fluctuating hydrodynamics
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We consider a general class of nonlinear diffusive models with bulk dissipation and boundary driving and
derive its hydrodynamic description in the large size limit. Both the average macroscopic behavior and the
fluctuating properties of the hydrodynamic fields are obtained from the microscopic dynamics. This analysis
yields a fluctuating balance equation for the local energy density at the mesoscopic level, characterized by two
terms: (i) a diffusive term, with a current that fluctuates around its average behavior given by nonlinear Fourier’s
law, and (ii) a dissipation term which is a general function of the local energy density. The quasielasticity of
microscopic dynamics, required in order to have a nontrivial competition between diffusion and dissipation in
the macroscopic limit, implies a noiseless dissipation term in the balance equation, so dissipation fluctuations
are enslaved to those of the density field. The microscopic complexity is thus condensed in just three transport
coefficients—the diffusivity, the mobility, and a new dissipation coefficient—which are explicitly calculated
within a local equilibrium approximation. Interestingly, the diffusivity and mobility coefficients obey an Einstein
relation despite the fully nonequilibrium character of the problem. The general theory here presented is applied
to a particular albeit broad family of systems, the simplest nonlinear dissipative variant of the so-called KMP
model for heat transport. The theoretical predictions are compared to extensive numerical simulations, and an

excellent agreement is found.

DOI: 10.1103/PhysRevE.86.031134

I. INTRODUCTION

In many different contexts like biological physics, active
matter, electronics, combustion, granular media, population
dynamics, or chemical reactions, to name just a few, the
dynamics of the system of interest is characterized at the
mesoscopic level by reaction-diffusion equations [1-10]. This
type of equation often arises from the competition between
diffusion and dissipation mechanisms, which typically drives
the system out of equilibrium. The dissipative character
of the dynamics implies a continuous loss of energy to
the environment, so a steady energy input is needed in
order to maintain the system in a stationary state, which
is usually attained by a boundary injection mechanism. In
addition, most systems in this class are strongly nonlinear,
with transport coefficients which depend on the local energy
density.

The physics of nonlinear driven dissipative systems is
poorly understood as a result of several factors. On one hand,
this family of systems is intrinsically out of equilibrium: There
is no equivalent to the Gibbs distribution of equilibrium sys-
tems to describe the statistics of microscopic configurations.
Furthermore, there are currents of mass or energy induced by
local gradients, which in turn are controlled by the dissipation
and not by boundary conditions, as in standard, conservative
nonequilibrium systems. In addition, microscopic dynamics in
driven dissipative media is typically irreversible, which leads
to complications in their statistical description.
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Despite these difficulties, there have been recent advances
in nonequilibrium physics which are opening new avenues
of research [11,12], offering tools to understand the macro-
scopic behavior of driven dissipative media starting from
their microscopic dynamics [13,14]. The key idea which has
triggered these developments has been the realization of the
essential role played by macroscopic fluctuations, both in
equilibrium and away from it. In fact, the study of fluctuation
statistics of macroscopic observables provides an alternative
way to obtain thermodynamic potentials, complementary to
the usual ensemble description. This observation, valid in
both equilibrium [15] and nonequilibrium [11,12], is, however,
most relevant in the latter case, where no general bottom-up
approach connecting microscopic dynamics to macroscopic
properties has been found yet. The large deviation function
(LDF) controlling the statistics of these fluctuations plays
in nonequilibrium statistical mechanics a role similar to the
equilibrium free energy [16,17], and the computation of LDFs
in different nonequilibrium systems has thus become one of the
main objectives of nonequilibrium statistical physics in recent
years, provoking an enormous research effort which has led
to some remarkable results [11,12,16-22]. The calculation of
LDFs from first principles (i.e., from microscopic dynamics)
is typically a daunting task, which has been accomplished only
for a handful of models, in most cases simple interacting lattice
gases [11,12]. There is, however, an alternative theoretical
framework, the macroscopic fluctuation theory (MFT) of
Bertini et al. [11], which studies dynamic fluctuations in
diffusive media at a mesoscopic level and offers explicit
predictions for LDFs arbitrarily far from equilibrium. The
starting point for this theoretical scheme is the fluctuat-
ing hydrodynamic equations describing at the mesoscopic
level the evolution of the system of interest. From these
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equations, using a path integral formulation, one may obtain
the probability of paths in mesoscopic phase space associated
to a given fluctuation of a macroscopic observable, and from
those probabilities a variational problem for the optimal path
responsible of a given fluctuation and the associated LDF is
derived [11,12,17,20-22].

The above advances have been mostly restricted to conser-
vative nonequilibrium systems, where dissipation is absent and
nonequilibrium conditions are solely induced via boundary
gradients or external fields (see, however, Refs. [13,14]). In
order to extend the ideas of MFT to nonlinear driven dissipative
systems, it is of utmost importance to develop minimal
models for this broad class of systems which, while capturing
their essential ingredients (namely nonlinear diffusion, bulk
dissipation and boundary driving), are simple enough to be
amenable to both analytical calculations and extensive com-
puter simulations. In particular, as the starting point of MFT
is the mesoscopic hydrodynamic description of the system at
hand, it is essential to obtain the fluctuating hydrodynamic
equations and the associated transport coefficients.

In this work, we analyze the hydrodynamic behavior
of a general class of systems whose main ingredients are
diffusion, dissipation, and boundary driving, which together
with nonlinear behavior are the fingerprints of many realistic
driven dissipative media. In our family of models there is one
particle at each site of a d-dimensional lattice, and the state of
each particle is completely characterized by its “energy.” The
dynamics is stochastic and proceeds via collisions between
nearest-neighbor particles, at a rate which is a general function
of the pair energy. In a collision, a certain fraction of the pair
energy is dissipated, and the remaining energy is randomly
distributed between the two particles. In addition, the system
may be coupled to boundary thermal baths.

In the large system size limit, both continuous space and
time variables can be introduced, as well as the “hydro-
dynamic” fields: energy density p(x,?), current j(x,t), and
dissipation d(x,?). The time evolution of the energy density
follows a fluctuating balance equation of the form

0;0(x,t) = —0,j(x,t) + d(x,1).

Interestingly, the microscopic dynamics must be quasielastic
in order to ensure that both diffusion and dissipation take place
over the same time scale in the continuum limit. Using a local
equilibrium approximation, the current and dissipation fields
can be expressed as functions of the local energy density.
In particular, the fluctuating current can be written as j =
—D(p)d,p + &, where the first term is nothing but Fourier’s
law with a diffusivity D(p), and the second term £ is a noise
perturbation, white and Gaussian. The current noise amplitude
is 0(p)/L (i.e., the noise strength scales as L~!/%), where L
is the system size and o (p) is often referred to as the mobility
in the literature. These Gaussian fluctuations are expected to
emerge for most situations in the appropriate mesoscopic limit
as a result of a central limit theorem. Microscopic interactions
can be highly complicated, but the ensuing fluctuations of the
slow hydrodynamic fields result from the sum of an enormous
amount of random events at the microscale which give rise to
Gaussian statistics at the mesoscale. In the present case, a proof
of the Gaussian character of the noise can be given, due to the
simplicity of the class of models considered. On the other hand,
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the dissipation field can be written as d = —vR(p), where v is
a macroscopic dissipation coefficient which can be related to
the inelasticity of the underlying microscopic dynamics, and
R(p) is a new transport coefficient. The dissipation field has
no intrinsic noise, so its observed fluctuations are enslaved
to those of the density. This stems from the subdominant
role of the noise affecting the dissipative term: Its strength
scales as L™%/? as a consequence of the quasielasticity of the
microscopic dynamics, so it is negligible against the current
noise in the mesoscopic limit.

The class of models introduced in this paper represents
at a coarse-grained level the physics of many dissipative
systems of technological as well as theoretical interest. In
particular, when the collision rate is constant (i.e., independent
of the pair energy), the Kipnis-Marchioro-Presutti (KMP)
model [23] for heat conduction is recovered in the conservative
limit. The KMP model plays a main role in nonequilibrium
statistical physics as a benchmark to test theoretical advances
[18-23]. For the dissipative case, different generalizations of
the KMP model have been recently proposed [14,24]. Our
general class of models contains the essential ingredients
characterizing most dissipative media, namely: (i) nonlinear
diffusive dynamics, (ii) bulk dissipation, and (iii) boundary
injection. Moreover, it can be regarded as a foy model for
dense granular media: Particles cannot freely move but may
collide with their nearest neighbors, losing a fraction of the
pair energy and exchanging the rest thereof randomly. The
inelasticity parameter can be thus considered as the analog
to the restitution coefficient in granular systems [6]. The
fluctuating hydrodynamics of granular media has received
considerable attention in recent years (see, e.g., [25,26]).

In a forthcoming paper [27] we will use the fluctuating
hydrodynamic picture that emerges from this work as starting
point to analyze the LDF of the dissipated energy for this
general class of nonlinear driven dissipative systems. In order
to do so, we extend the tools of MFT to this broad class
of systems, and test our results in advanced Monte Carlo
simulations capable of probing the rare events associated to
the tails of the LDFs of interest.

The remainder of paper is organized as follows. In Sec. II
we define the general class of nonlinear driven dissipative
models mentioned above and discuss some limits of interest.
Section III is devoted to the derivation of the hydrodynamic
evolution equation for this general family of models, which is
of reaction-diffusion type. In Sec. IV we study the fluctuating
corrections to the hydrodynamic equation, deriving in this way
the fluctuating hydrodynamics for our family of models, from
which a full characterization of their large deviations statistics
can be obtained via MFT [11,27]. It is shown that both the
current and the dissipation noises are white and Gaussian, but
the dissipation noise is subdominant against the current noise
in the large system size limit. In Sec. V we study in detail
a particular family of models for which the collision rate is
a power of the local energy. We solve the full hydrodynamic
problem and compare our results with extensive numerical
simulations, finding excellent agreement. Furthermore, this
agreement extends also to the transport coefficients and the
fluctuations of the hydrodynamic fields. A summary of the
main results of the paper, together with a physical discussion
thereof, is given in Sec. VI. The Appendixes deal with some
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technical details that, for the sake of clarity, we have preferred
to omit in the main text.

II. A GENERAL CLASS OF NONLINEAR DRIVEN
DISSIPATIVE MODELS

Let us consider a general class of models whose main
ingredients are diffusion, dissipation, and boundary driv-
ing. For the sake of simplicity, we present them for the
one-dimensional (1D) case, but the extension to arbitrary
dimension is straightforward. The system is thus defined in
a 1D lattice with N sites. A configuration at a given time
step p is given by p = {0}, [ =1,...,N, where p; , > 0
is the energy of the [th site at time p. Thus, the total energy
of the system at this time is £, = Y1, p1.,. The dynamics is
stochastic and proceeds as follows. In an elementary step,
a nearest neighbor pair of sites (/,/ 4+ 1) “collides” with
probability,

f(zl,p)
S (S

where f is a given function of the pair energy X, and
L is the number of possible pairs. Clearly, L ~ N, but the
particular relation depends on the boundary conditions (e.g.,
L = N + 1 for open boundary conditions, while L = N for
the periodic case). Once a pair is chosen, a certain fraction of its
energy, namely (1 — )% ,, is dissipated to the environment.
The remaining energy aY; , is then randomly redistributed
between both sites,

P p(p) = Xip = p1p + p141,p, (2.1)

Pip+1 = Z2p0 Xy p, P11 p+1 = (1 —zp)aXy . (2.2)

with z, an homogeneously distributed random number in
the interval [0,1]. This dynamics defines the evolution of
all bulk pairs, = 1,...,N — 1. In addition, and depending
on the boundary conditions imposed, boundary sites might
interact with thermal baths at both ends, possibly at different
temperatures 7y (left) and Tk (right). In this case the dynamics
is

lol,p+1 = Zpa(el,p +gL)v pN,p+1 = Zpa(eN,p +gR)v (23)

when the first (last) site interacts with its neighboring thermal
reservoir. Here ¢,, v = L,R, is an energy randomly drawn
at each step from the canonical distribution at temperature
T,, that is, with probability prob(¢,) = T, ' exp(—2,/T,) (our
unit of temperature is fixed by making kg = 1) (see Fig. 1).
We may consider instead an isolated system with periodic
boundary conditions, such that L = N and Egs. (2.1) and (2.2)

M—ﬂ—ﬂ—p_%t... ..'P_N'—T_Rl

FIG. 1. (Color online) The model is defined on lattice sites, each
one characterized by an energy p;. The dynamics is stochastic and
proceeds via random collisions between nearest neighbors where
part of the pair energy is dissipated to the environment and the rest
is randomly redistributed within the pair. Such dynamics mimics
at the mesoscopic level the evolution of a wide class of systems
characterized by a nontrivial competition between diffusion and
dissipation.
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remain valid for [ = 0 (/ = N) with the substitutions pg , =
ON.p (ON+1,p = P1,p)-

The simplest dynamics corresponds to f(%;,) =1 in
Eq. (2.1). In this case all (nearest neighbor) pairs collide
with equal probability P, = L™', independently of their
energy. This choice (together with « = 1 above) corresponds
to the KMP model of heat conduction [23], which can be
considered as a coarse-grained description of a large class
of 1D diffusive systems of technological and theoretical
interest. It also plays a main role in nonequilibrium statistical
mechanics as a benchmark to prove rigorous results and test
theoretical advances. For instance, it is one of the very few
instances where Fourier’s law can be rigorously proved [23].
In addition, the KMP model has been used to investigate the
validity of the additivity principle for current fluctuations [20]
and the Gallavotti-Cohen fluctuation theorem [18] and its
generalization in Refs. [21,22]. Another simple, but physically
relevant, choice is f(%;,) = %, ,, sothat P, , ~ %; ,/(2E))
for a large system. A variant of this model has been recently
used to study compact wave propagation in microscopic
nonlinear diffusion [28]. In general, as the total exit rate from
configuration p—the denominator of Eq. (2.1)—is a sum of L
terms, we expect that P, , o L~ so it is convenient to write

f(El,p)

P p(p) = o (L)’
p

1 L
with Q,(L)= =3 f(Z1,), 24)
=1

so ,(L) remains finite as L — oo. Throughout this section,
we analyze the stochastic process generated by the dynam-
ics (2.1) and (2.2) supplemented with the appropriate boundary
conditions.

Note that energy is conserved in the dynamics only for
o = 1, while it is continuously dissipated for any 0 < o < 1.
In this way, the parameter « can be considered as the equivalent
of a restitution coefficient, using the language of granular
materials. Thus, in an isolated system (without boundary
driving) the energy would decrease monotonically in time.
However, if energy is injected, for instance via coupling
to boundary thermal baths as described above, a steady
state will be eventually reached where energy injection and
dissipation balance each other. In the conservative case o« = 1,
the transition rates introduced above verify detailed balance
with the “microcanonical” distribution, that is, the distribution
giving equal probabilities to all the microstates compatible
with the total energy of the system E. This implies that a
closed system would eventually approach the microcanonical
equilibrium distribution for any choice of the function f
appearing in the transition rates. Therefore, a large subsystem,
comprising a large number of sites, would be described by the
canonical distribution with its temperature imposed by the rest
of the system, which acts as a thermal reservoir. Thus, if we
take a part of the system containing a large number of sites, it
is expected on a physical basis that this region would approach
the “local equilibrium” state compatible with the average
values of the relevant macroscopic quantities if the latter follow
a very slow dynamics as compared to the relaxation of the
system to the local equilibrium state. Afterwards, over the
much slower “hydrodynamic” scale, the relevant macroscopic
quantities evolve according to the macroscopic equations and
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reach a steady state compatible with the boundary conditions
imposed on the system.

III. HYDRODYNAMIC DESCRIPTION

The dynamics defined in Eq. (2.2) can be rewritten as

Ky ()
Prpr1 = pl,p(l - 3yj;>,z - 3)@”’,1—1)
(k) () ()
+2 (o) + P11 p)8y0,
(k) () (k)
+(1- z, )O‘[pl—l,p + Iol,p]Syﬁ,"),lfl

for each realization « (trajectory) of the stochastic process.
Here §; ; is Kronecker’s 4, Z(pK) is a random number homoge-
neously distributed in [0,1] which controls the local energy
exchange, and y},") € [1,L] is an independent random integer
which selects the colliding pair. The (conditional) probability
for y, being equal to /, provided that the system is in a certain
configuration p, is given by P; ,(p) [see Egs. (2.1) and (2.4)],

< > _ f(zl,p)
e = LQ (L)

3.1

(3.2)

The energy current involved in a collision of a pair (/,/ + 1),
denoted here by ji p, is just the net energy traveling to the right
in an unit time once dissipation takes place. Mathematically,
again for each trajectory « of the system,

(k) () ()
]I,p (a'ol,p - lol,erl)Sy(pK),l

(1) ()
= O{[(l ol Z%())pl,’(p — Zg()p[j—l,[’]ay;rk)’l’
where we used Eq. (2.2) in the second equality. Equivalently,
we define the dissipated energy at site [ at time p over each
trajectory as

) === a)p/ (8,0, + 8,0, ,)-

(3.3)

(3.4)

when the colliding pair is either (/,/ + 1) or (! — 1,/). Notice
that, as opposed to the current term, the dissipation is defined
for each site / instead that for each pair (/,/ 4 1). This definition
simplifies the analysis below. Making use of the current and
dissipation definitions, the evolution equation (3.1) can be
rewritten in the following way,

() (1) (1) i) g0

Prpr1 = Prp = JiZt,p —Jip T A ps (3.5)

which is a discrete reaction-diffusion equation, with a diffusive
contribution j;_1 , — ji,, and a sink term d; ,. The latter is
proportional to 1 — «, thus vanishing in the elastic case o« = 1.

The hydrodynamic (or average) evolution equation is
obtained by summing over all the possible trajectories of
the system «, that is, if A is a certain physical property of
the system, (A) = > A®/Np, where A® is the value
of A in the kth realization of the stochastic process, and the
number of trajectories Ny — oo. This procedure is equivalent
to averaging over all the possible sequences of the pair of
independent random numbers (z,,y,) which determine the
microscopic dynamics. This said, and in order not to clutter
our formulas, we drop the superindex « in the remainder of the
paper, as all expressions where the pair of random numbers
(zp,yp) appears are also valid for each trajectory of the system.
Averaging in this way Eq. (3.5) we arrive at

(o1 p+1 — P1p) = {i=1,p — Ji.p) + {di,p)- (3.6)
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Let us consider first the average value of the energy current.
From Eq. (3.3),

i<(p[,p - pl+lqp)f(21’1’)>’ 3.7

e =37 Q,(L)

where we have taken into account Eq. (3.2) and (z,) = 1/2.
On the other hand, the average value of the dissipation is

_ _1—0[ f(zl,p)+f(zl—l,p)
(di.p) = I <pz.p [ oL D (3.8)

In the large system size L — oo, we are interested in the

density, current, and dissipation fields, which are smooth
functions of the continuous spatial variable

)C:L—l, AXE)C/+1—X[:l,

L 2 L

with x € [-1/2,1/2]. In this continuum limit, the average
density {p; ,) will be replaced with p,y(x,1),

(3.9

<IOZ,])> - paV('x5t)7 (310)

where ¢ is a continuous time that will be introduced later on.
On the other hand, because of the discrete derivative inside
the average in Eq. (3.7), (ji,) is expected to scale as L™2,

(3.11a)
(3.11b)

(ip) = L2, jay(x,0),
= lim (Q7'(1)).
7, = lim (@, /(L))

We have introduced the term 1, above for the sake of
convenience, because (Q;l(L)) has a finite limit as L — oo.
Since for each configuration of the system 2, is its total
exit rate, , is a sort of microscopic time scale, that depends
on the choice of the collision rate function f(X). Finally,
the dissipative term (d; ,) in Eq. (3.8) scales as (1 — o)LL
From this discussion, the diffusive term in the evolution
equation (3.6) for the average density, (j;—1,, — ji,p), should
scale as L3,

(imtp = Jip) = —L 77,0y juv(x,1), (3.12)

and this diffusive term should be neglected in the thermody-
namic limit, unless the “microscopic” dissipation parameter
scales as 1 — @ oc L2, In fact, this is the correct scaling for the
microscopic “inelasticity” 1 — « in the large system size limit,
being the only one which guarantees that both diffusion and
dissipation interplay on the same time scale at the mesoscopic
level [13]. With this scaling,

! v

YN
where v is a “mesoscopic” dissipation coefficient which
remains finite in the large system size limit L — oo.

In order to be more concrete, we have to evaluate the
averages on the right-hand side of Egs. (3.7) and (3.8).
This can be done within a local equilibrium approximation
(see Appendix A), which we expect to be valid in the
thermodynamic limit [11,29]. For large system sizes, a clear
time-scale separation appears between the scale (of the order
of several times 7,,) in which the system approaches locally the
equilibrium distribution (i.e., a local product Gibbs measure
with local temperature {p;,)) and the much longer time
scale over which the average density field evolves following

(drp) = L7 Tpday(x,1), (3.13)
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the hydrodynamic equation. Under this local equilibrium
approximation, the average current verifies

. _ (P1+1,p — P1p)
Grp) ~ =L, D({py )~ ERE (314
AXx
with the diffusivity D(p) given by
1 * 7 2y —r?
D(p) = 3 drr' f(pro)e " . (3.15)
0

Equation (3.14) is thus consistent with the scaling in
Eq. (3.11a). Furthermore,

jav(xvt) = _D(pav)axpav; (316)

that is, Fourier’s law holds with diffusivity D(p,y). On the
other hand, the average dissipation [Eq. (3.12)] can be written
within the local equilibrium approximation as

(dp) ~ =L T,vR({p1 ), (3.17)

with

oo
R(p)=p / dri’ f(orhe ™. (3.18)
0
Again, Eq. (3.17) is consistent with the previously assumed
scaling (3.13), with

day(x,t) = —VR(pay).

Interestingly, this new transport coefficient R(p), associated
with the dissipation, can be related to the diffusivity. By
differentiating Eq. (3.18) with respect to p after a change of
variables z = r./p, it is found that

D(p) = é_dl;(,o) + M.
p 3p
In fact, given the diffusivity, this equation can be considered
as a first-order differential equation for R(p). The solution
thereof, with an appropriate boundary condition [normally
R(p =0)=0], is equivalent to calculate the integral in
Eq. (3.18).
Now, by introducing a macroscopic time ¢, such that its
time increment at step p is given by

(3.19)

(3.20)

p-l1 p—l1
Aty =L77, t=» At;=L7Y 1;, (321
j=0 j=0

we can rewrite the evolution equation for the average den-
sity (3.6) as

— 0y Jav(X,1) + day(x,1), (3.22)

0; Pay(x,1) =

where the average current j,,(x,t) verifies Fourier’s law with
diffusivity D(p,) [Eqs. (3.15) and (3.16)] and the average
dissipation d,y(x,?) is given in terms of the density field by
Egs. (3.18) and (3.19).

The boundary conditions for Eq. (3.22) depend on the
physical situation of interest. For instance, we may consider
that the system is kept in contact with two thermal reservoirs
at x = +1/2, at the same temperature 7'. In that case, the
system eventually reaches a steady state in the long time
limit, for which the injection of energy through the boundaries
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and the dissipation balance each other. The stationary average
(macroscopic) solution of Eq. (3.22) verifies

Jay ) FVR(pay (X)) =0, Jay(x) = —D(pay(x)) o (%),

(3.23)

where the prime indicates spatial derivative. The first equation
in Eq. (3.23) follows from Eq. (3.22), while the second one
is Fourier’s law. Equivalently, a closed second-order equation
for p may be written,

d

d_[D(/Oav)p;V] = VR(,Oav)’ (324)

X

with the boundary conditions p,,(+1/2) = T. We may now
introduce an auxiliary field y that will be helpful later on,

y = R(p), (3.25a)
such that

d(x,t) = —vy(x,t), (3.25b)

Equations (3.23) and (3.24) can be also rewritten for the
variable y,

Ja) vy () =0, () = =D (yay(0))yy, (x), (3.26)

with
. dy\ ! dR -1
D(y>=<£> D(p)=<%) D(p). (3.27)

Thus, D acts as an “effective” diffusivity, that s, the factor mul-
tiplying the spatial gradient when writing Fourier’s equation
in terms of the new variable y. Taking into account Eq. (3.20),

1  1dlnp(y)

D(y)= -+

—_—. 3.28
6 3 dlny ( )

Interestingly, the above equation shows that D is constant,
independent of y, whenever y = R(p) depends algebraically
on p. This observation is very useful in Sec. V, where we
study in detail a particular family of models. Equation (3.26)
can also be summarized in a second order differential equation
for yay,

[DGa)ye) = vya,  Ya(£1/2) = R(T),  (3.29)

the solution of which gives the average density field in the
situation at hand. When D is constant, Eq. (3.29) is linear in y
and can be readily integrated.

IV. FLUCTUATIONS OF THE CURRENT
AND DISSIPATION FIELDS

The local energy p;,, obeys the balance equation (3.5),
with a diffusive term, given by the discrete spatial derivative
of the microscopic current, and a dissipative term. Taking
averages over all possible realizations of the dynamics, the
hydrodynamic equation (3.22) has been obtained, with a simi-
lar structure but now in terms of the continuum hydrodynamic
fields (density, current, and dissipation). The main objective
of this section is to analyze the local fluctuations of the current
and the dissipation fields away from their averages or, in other
words, the properties of their respective noise terms.
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We address the problem of characterizing the current
and dissipation noise terms in the limit of large system
size L > 1, the same one in which Eq. (3.22) has been
shown to be valid over the hydrodynamic scale defined in
Eq. (3.21). The idea is to split the microscopic current j; ,
into a “main” term 71 »» whose average coincides with (j; ,)
[see Eq. (3.7)] and a noise term & ,. Similarly, we will
have d; , = 3, p + 11, p, with the main term d~1 p verifying
(071,,,) = (d; ) [see Eq. (3.8)]. Thus, n; , is the dissipation
noise. We investigate the properties of both noise terms
and find that, in the large system size limit: (i) both
noises are white and Gaussian, and (ii) the dissipation noise
is subdominant against the current noise if 1 — o = O(L™?),
as given by Eq. (3.13). Therefore, the fluctuations of the
dissipation field are enslaved to those of the density field,
and the current noise is the main source for the fluctuations in
the system at the mesoscopic level.

A. Fluctuating current: Average value and noise properties

Let us consider the fluctuations of the microscopic current
Ji.p- As we have already stated, the idea is to split the current
into a “main” and a “noise” term,

~

jl,p =Jl,p+gl,p’ 4.1

such that (};_p) = (j1,p). It is clear from Eq. (3.7) that the
choice

v o (Prp = prip)f(Erp)
e =50 Q,(L)

4.2)

guarantees the previous condition on the average. To stress
out the difference between j; , and j; ,, notice that while the
former is exactly zero unless pair (/,/ 4+ 1) actually collides
at time p [see Eq. (3.3)], the latter may take a nontrivial
value even in the absence of such collision; however, their
averages coincide [30]. Equation (4.2) is Fourier’s law at the
microscopic level; that is, j; , is proportional to the local
density gradient. We want to study now the properties of the
noise &, = ji., — Ji,p» Namely its average and its correlation
function (§; , & ). Since (ﬁp) = (Ji,p), it is clear that

(El,p) = 0.

For the noise correlation function, it is straightforward to show
that

4.3)

~ o~

<‘§l,p Sl’,p’) = (jl,p jl’.p’) - <jl,p Jl’,p’)‘ 4.4

Furthermore, from the current definition Eq. (3.3), it is also
easily proven that (& , & ) = 0 for p # p’, so the current
noise at different times is uncorrelated. For equal times, p =
p’, the second term on the right-hand side of Eq. (4.4) is
negligible against the first one in the limit L > 1, because it
is ~O(L~?), while the leading behavior of the first term will
be shown to be ~O(L~"). Using now the definition of the
microscopic current (3.3),

Jipir.p = @1 = 2)p1p — 2pPit1.p]

X [(l - Zp))ol’,p - prl’+1,p]8y,,,18y,,,l’- (45)
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Taking into account that (z,) = 1/2, (zi) =1/3, and
F (X p)

(5y,7,l5y,,,l’)p = L9,(L) LI (4.6)
we arrive at
. o [ (P21, + PPy = PLpPis1p) F(B1p)
(rpdr.p) ~ §< 2,0 >51,1/.

“@.7
Hence, the leading behavior of the current noise correlation in
the L > 1 limit is

(él,p Sl’,p’) ~ (4.8

I 81,081,068, '
where we have neglected O(L7?) terms, and defined

Ol_z (:0[2+1,p + 10[2,[7 - pl,ppl-&-l,p)f(zl,p) (4 9)
3 Q,(L) ) ’

Eip=

Equation (4.9) cannot be expressed in terms of (o ,), so
the fluctuating balance equation (3.5) is not closed at the
microscopic level, as otherwise expected. Using here again
the local equilibrium approximation previously employed [11]
(see Appendix A), we obtain
2.2 oo
1y~ fp“TpaV /0 drr’ f(pur®e™ . (4.10)

A rigorous proof of this local equilibrium approximation can
be found in Ref. [29], in the context of conservative interacting
particle systems. The application thereof to the dissipative case
studied here relies on the fact that the microscopic dynamics
is quasielastic. Moreover, the validity of this local equilibrium
approximation is fully confirmed a posteriori in extensive
numerical simulations (see Sec. V).

In the large system size limit we have to take into account
Eq. (3.11a) and introduce a similar scaling for the fluctuating
current and its noise,

Jip = L7 t,j(x,0), &, — L721,6(x,1),  (4.11)
so that
JCen) = jx.0) + E(x,0). (4.12)
With this definition,
(1) = janlx.1), (4.13)

and thus (£(x,7)) = 0. Besides, the correlation function of the
current noise is, by combining Egs. (4.8)—(4.11),

1
(G .DEE" 1Y) ~ 70 (Pa)d(x = X8 —1t),  (4.14)

where we have taken into account the quasielasticity of
the microscopic dynamics, 1 —a = O(L™2), as given by
Eq. (3.13). We have also introduced the so-called mobility

2 %)
(o) = & / dr el f(pr)e ™ =20°D(p)  (4.15)
0

3
and made use of
NG ’ 6P~P' ’
— ~8x—x"), == ~8t—-1), 4.16
A (x ) At ( ) (4.16)
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where Ax and Af, were defined in Egs. (3.9) and (3.21),
respectively. The current noise is hence white, its average value
vanishes, and it is §-correlated in space. Furthermore, it can be
shown that it is Gaussian, and we present a sketch of the proof
in Appendix B.

Remarkably, Eq. (4.15), which relates mobility and diffu-
sivity, o(p) = 20%D(p), is a fluctuation-dissipation relation
for the dissipative case, equivalent to the one found in con-
servative systems [11,12,31]. The validity of zAis fluctuation-
dissipation relation can be traced back to the quasielasticity
of the underlying microscopic (stochastic) dynamics: For
a given value of the mesoscopic dissipation coefficient v,
the corresponding microscopic inelasticity parameter is o =
1-— # [see Eq. (3.13)], so values for v of the order of
unity correspond to quasielastic microscopic dynamics 1 —
o < 1 in the large-size limit. Similar fluctuation-dissipation
relations have been observed in many dissipative systems
(including granular materials) not too far from equilibrium
[32]. However, for large enough dissipation, v ~ O(L?) so that
1 — a = O(1), the local equilibrium approximation employed
above fails and one expects a breakdown of the fluctuation-
dissipation relation, as is the case also in other dissipative
systems [32,33].

The Gaussian character of the current field fluctuations
will allow us, in a forthcoming paper [27], to extend the
recently introduced MFT [11] to the case of nonlinear driven
dissipative systems [14]. This theoretical scheme makes it
possible to study the fluctuations (both typical and rare)

G+ f(Eimy)

PHYSICAL REVIEW E 86, 031134 (2012)

of macroscopic observables arbitrarily far from equilibrium,
offering predictions for the LDFs which characterize their
statistics and the optimal paths in phase space responsi-
ble of these fluctuations. The validity of the fluctuating
hydrodynamic equation derived in this paper, and in par-
ticular of the local equilibrium approximation used here,
can be checked a posteriori by comparing the predictions
for the LDFs that arise from the MFT with the numerical
results.

B. Fluctuating dissipation: Average value and noise properties

Our starting point is Eq. (3.4) for the microscopic dissipa-
tion d ,, which we split into a main term plus a noise term,
that is,

dl,p = ;l;,p + M.p
l -« pl,p[f(zl,p) + f(El—l,p)]
L Q,(L)

(4.17a)

dip=—

(4.17b)

Clearly the average of the main term verifies (2,, p) = {dp)
[see Eq. (3.8)], and thus the noise average vanishes, (1, ,) = 0.
From Eqgs. (3.4) and (4.17), we have

f(El,p) + f(zl—l,p)i|

= — 1 - 3 87 =1
M.p ( o)pLp |: ypd T 0y,0-1 LQ,(L)

(4.18)

and

fGrp)+ fZr-1,p)

ey = (1 — ) prppr |:8y,,,l +3y,.1-1

Now, taking averages it is clear that (n; ,nr ) = 0if p # p/,
because the variables y,, y, are independent in that case and
the terms in brackets have zero average. Then, we restrict
ourselves to the case p = p’, for which a simple calculation
similar to the one carried out for the current leads to

a- 05)2<pl,ppl/,p
L Q,(L)

(Mi,pn,p) ~ Lf (X, )60 + 81—1)

+ (1,0 + 51,1'+1)]>, (4.20)
after having made use of Eq. (4.6) and neglected O(L~2)
terms. Using now the local equilibrium approximation for
the averages above, an explicit expression for this correlation
can be derived. This effort is not necessary, however, as
the quasielasticity of microscopic dynamics, 1 —a = 57,
implies that the dissipation noise amplitude [Eq. (4.20)] is
subdominant against the current noise in the large system size
limit. In particular, the structure of Eq. (4.20) implies that

—s.2_ (D) @ 6)
Mipnr ) ~ L2020, (g 810 + iy 811 41 ) 81041)8p s

4.21)
where Kl(.i;, i = 1,2,3 are certain averages which remain of the
order of unity in the limit L — oo (they become functions

LQ,(L)

] |:8)',,/J’ + Sy,,/,l’fl - L9, (L) :| . (4.19)
»

of (p; ) in the local equilibrium approximation). With the
consistent definition n(x,t) = L3m’,,/r,, [see Eq. (3.13)], we
introduce the continuum limit of the dissipation noise and its
correlation function becomes

(G, 'ty ~ L7202 k(p)8(x — x)S(t — 1),

where we have used Eq. (4.16) and defined «(p) as the
continuum limit of Z?Zl /cl(fl)7 above. In particular, it can be

shown that the continuum limit of the diagonal term Kl(,lji in

Eq. (4.21) is exactly equal to o(p), while each nondiagonal

term Kl(if) contributes %o(p) to k(o). Equation (4.22) tells us

4.22)

that the dissipation noise ( L73/%) is much weaker than the
current noise (ocL~'/?) in the large system size limit L > 1.
Therefore, we neglect it in the following; that is, we consider
that

d(x,t) = —vR(p), 4.23)

which means that only the fluctuations affecting the current
term will play a relevant role in the mesoscopic limit.
We expect that this approximation becomes exact in the
thermodynamic limit as L — oo. Hence, the fluctuations of
the dissipation d(x,t) are “enslaved” to those of the energy
field p(x,t), as a consequence of the quasielasticity of the

031134-7



A.PRADOS, A. LASANTA, AND PABLO I. HURTADO

dynamics at the microscopic level. This quasielastic character
of the microscopic dynamics is compatible with the existence
of a finite dissipation at the mesoscopic level, as expressed by
the finite value of the macroscopic dissipation coefficient v.

V. A NONLINEAR DISSIPATIVE VERSION OF THE KMP
MODEL OF HEAT TRANSPORT

We now apply the theory developed in the previous sections
to a broad class of dissipative models. More concretely, we will
restrict ourselves to the following choice for the collision rate
function:

LI

N4 (5.1
rg+3)
that is, f(p) o< p#, with B > —3 but otherwise arbitrary.
We have introduced the constant 2/ T'(8 + 3) [34] for the
sake of convenience, as it simplifies the expressions of the
transport coefficients (see below). For 8 =0, f(p) =1 and
all the pairs collide with equal probability, independently of
their energy value. Thus, the dissipative generalization of the
KMP model introduced in Ref. [14] is recovered. For 8 =1,
f(p) = p/3 and the colliding pairs are chosen with probability
proportional to their energy. The conservative case has been
recently analyzed in Ref. [28].

The transport coefficients for this family of models are
easily calculated. The coefficient linked to the dissipation,
R(p), is readily obtained from Eq. (3.18),

f(p) =

2 o 2
R(p) = ————p""" / drrit?Pe™ = pPtl (52)
LB +3) 0

which gives the rationale behind the choice of the propor-
tionality constant in Eq. (5.1). The diffusivity is calculated by
substituting Eq. (5.4) into Eq. (3.20),

_B+3
6

Of course, the same result is obtained with Eq. (3.15). Finally,
the mobility o(p) follows from the fluctuation-dissipation
relation (4.15), which gives it in terms of the diffusivity,

B+3
Tpmz_

Of course, for 8 = 0 the values of the transport coefficients
of the dissipative version of the KMP model are recovered,
D(p) = 1/2,0(p) = p?,and R(p) = p [14]. Interestingly, this
kind of dependence with the energy density p appears in real
systems. For instance, in granular materials [6] the density
field p may be assimilated to the local granular temperature.
Moreover, for the hard sphere model, the average collision rate
is proportional to the square root of the granular temperature.
Thus, this granular gas case should correspond to 8 = 1/2,
and in fact it is found that D(p) o« p'/? while the dissipative
term goes as R(p) o p3/2. The latter is the responsible for the
algebraic decay of the granular temperature (Haff’s law; oc 1 =2
for large times) observed in the homogeneous case when the
system is isolated [6].

For the class of models at hand, we thus have a fluctuating
hydrodynamic equation

dp(x,1) = —0x j(x,1) — VR(p(x,1)),

D(p) oP. (5.3)

o(p) =2p*D(p) = (54)

(5.5)
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where j(x,t) is the fluctuating current,

JjG,0) = Qlp(x, 0] + &(x,0), (5.6)
with local average behavior given by Fourier’s law,
Qlp]l = =D(p)dp(x.1), (5.7

and v is the macroscopic dissipation coefficient defined in
Eq. (3.13). The first term in the right-hand side of Eq. (5.5)
accounts for the diffusive spreading of the energy, and it is also
present in the conservative case, while the second one gives the
rate of dissipation of energy in the bulk. The current noise term
&(x,t) describes the random fluctuations at the mesoscopic
level, as has been analyzed in the previous section. In the large
system size limit L >> 1, it is Gaussian and white with

((x,1) =0,
1
EG(x,DE 1)) = 70 (P)3x — X8t —t').

(5.8a)
(5.8b)

This Gaussian fluctuating field emerges in the mesoscopic limit
as a result of the central limit theorem: Although microscopic
interactions are rather complicated, the ensuing fluctuations
of the hydrodynamic fields, which evolve over a much slower
time scale, result from the sum of an enormous amount of
random events at the microscale and give rise to Gaussian
statistics of O(L~!/?) at the mesoscale.

Let us investigate now the average behavior for the family
of models defined by the collision rate choice (5.1), whose
transport coefficients are given by Eqs. (5.2)—(5.4). First,
we focus on the time evolution of an isolated system (i.e.,
with periodic boundary conditions). Due to the dissipation,
and assuming no spatial structure, the system enters into
an homogeneous cooling state (HCS) characterized by a
continuous energy dissipation. Homogeneity implies that
o(x,t) = p(), and this energy density obeys 3,0 = —vpf+!
according to Egs. (5.5) and (5.2). The solution is

p(t) =
poe”" B =0,

(5.9)

where pg is the initial energy density in the system (which
is fixed). Notice the exponential decay of energy in time for
the linear (8 = 0) case, while for all nonlinear cases 8 # 0 a
power-law decay is obtained. This is, in fact, a generalization
of the well-known Haff’s law of granular gases, which
corresponds to 8 = 1/2 in our model. Figure 2 shows the
time evolution of the average energy density for different 8’s
and particular values of v and L as measured in Monte Carlo
simulations. The agreement between numerical results and
Eq. (5.9) is excellent in all cases, supporting the homogeneity
conjecture used above. We do not expect the HCS to become
unstable as time proceeds because our model does not contain
velocity variables whose correlation upon collision is at the
origin of the well-known breakdown of HCS in d-dimensional
(d > 1) granular gases [6].

Next, we study the steady-state behavior when the system
is coupled to boundary thermal baths at equal temperature 7.
Following the procedure introduced at the end of Sec. 11, it is
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FIG. 2. (Color online) Decay with time of the average energy per
site in the isolated nonlinear dissipative KMP model. Here we plot
data for v =1, L = 80, and different values of g € [0,2], though
qualitatively similar behavior is obtained for other values of v and L.
Lines are theoretical predictions [see Eq. (5.9)].

convenient to define an auxiliary variable

p+1 (5.10)

1
y=p"", p=ymH,
where we have made use of Eqgs. (3.25a) and (5.2). We also

calculate the “effective” diffusivity D(y) defined in Eq. (3.27),

pE3
6B+ 1)

where we have made use of Eq. (3.28). Thus, while the “true”
diffusivity D(p) depends on p, as given by Eq. (5.2), the
“effective” diffusivity is constant, D(y) = D. This allows us
to calculate explicitly the average profiles for the density and
the current, since Eq. (3.29), which determines them, is linear
for y. The steady average solution in this boundary-driven case

D= (5.11)

is thus
cosh (x\/z)
Yay(x) = TP —\/i, (5.12a)
cosh /-2
4D
sinh (x &)
Jav(x) = =Dyl (x) = —T‘?“\/E—ﬁ. (5.12b)
cosh %

The average density is readily obtained by combining

Egs. (5.10) and (5.12),
1
cosh (x\/%) r

pav(x) =T - (5.13)
cosh /7=
The average dissipation field is basically y,,(x), since
day(X) = —Vyay (X). (5.14)

Equation (5.13) reveals clearly one of the main properties
of dissipative media: The gradients are controlled by the
dissipation and not by the boundary conditions. Although both
ends of the system are in contact with two heat reservoirs at
the same temperature 7', the density is not constant throughout
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FIG. 3. (Color online) Average density profiles for different
values of v € [107!,10°] and 8 = 0,0.5,1, for N = 160. The bath
temperature is 7 = 1. Lines correspond to theoretical predictions,
and the agreement is excellent in all cases.

the system, as it is clearly shown in Fig. 3: The higher the
macroscopic dissipation coefficient v gets, the larger the spatial
gradient is. In the figure, the points correspond to Monte Carlo
simulations of the stochastic model introduced in Sec. 11, while
the lines are the analytical prediction of the hydrodynamic
theory [Eq. (5.13)]. The agreement between theory and
simulation is excellent in all cases. In the quasielastic limit
v — 0, the density is almost constant, as p’(x) o v in that
limit. This is shown in the figure by the case v = 107, in
which a weak spatial structure is observed in the scale of the
figure, for all values of §. Similar profiles have been observed
in hard-core particle systems [35]. As v increases, the system
departs from the “quasihomogeneous” behavior. In fact, for the
highest value v = 10°, there are two boundary layers near the
system walls, characterized by a very high internal gradient,
while p — 0 in the bulk of the system.

An important question is the rate of convergence to the
hydrodynamic description as the system size is increased.
In order give an estimation thereof, we plot in Fig. 4 the

0.008

0.006

0.004

0.002

Ap, (x)

0

-0.002

-0.004 |- .

-0.006 | L | L | L | L |

FIG. 4. (Color online) Average excess density profiles for dif-
ferent values of L € [10,160], v = 10, and B8 = 0.5. Finite size
corrections quickly decay to zero with the system size.
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10

AT (v,B)

10°

10

FIG. 5. (Color online) Boundary thermal resistance as a function
of the system size L for different values of v € [1073,10?] and 8 =
0.5,1. In all cases the boundary thermal gap decays as L~', with an
amplitude which increases with v.
difference Apr(x) = p{L)(x) — pav(x) between the numerical
values measured for the density and the theoretical ones for
different system sizes in the range 10 < L < 160, as a function
of the spatial coordinate x. For the sake of concreteness, we
show the data for v = 10 and 8 = 0.5, for which the spatial
gradient is quite important in the system, as seen in Fig. 3.
Apr(x) exhibits a nontrivial structure which, however, rapidly
decreases with the system size, being very small across the
whole system for L = 160. In fact, even for the smallest
size L =10, Ap; is quite small, since the relative error
is under 1% for all x. This means that the hydrodynamic
description developed here is valid already for quite small
system sizes, although the concrete threshold size depends
on the macroscopic dissipation coefficient v. As v increases,
larger system sizes must be considered, since the gradients
become more important.

A main feature of the nonlinear driven dissipative models
studied here is the presence of a nontrivial boundary thermal
resistance which shows up as a gap between the average energy
of boundary sites and the temperature of the corresponding
heat baths, AT, = p{E)(x = +1) — T # 0, see Figs. 3 and 4.
Interestingly, this boundary thermal resistance appears only for
B # 0, meaning that the nonlinearity is essential to develop
a boundary thermal gap. This phenomenon is well known
to appear in nonlinear energy transport as a result of the
scattering of energy carriers when crossing the bath interface,
with examples ranging from Fermi-Pasta-Ulam oscillator
chains to hard-disks fluids, etc. [36]. Figure 5 plots the
measured boundary thermal gap as a function of the system
size for different values of v and B8 > 0, showing that AT},
decays as L~! for large enough systems, with an amplitude
that increases with the dissipation parameter v and the
nonlinearity .

Further insight into the hydrodynamic behavior discussed
above is given by Fig. 6. The average current profile, as
measured in simulations after each collision event, is shown for
different values of the macroscopic dissipation coefficient v.
For the sake of concreteness, and to make the figure appearance
simpler, we have considered B = 0, though other values of
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FIG. 6. (Color online) Average current profiles for different val-
ues of v € [10~',10°] and B = 0 for N = 160. Notice the nontrivial
structure due to bulk dissipation (in contrast to conservative systems
where the current field is constant across space). Lines correspond to
theoretical predictions, and the agreement is excellent in all cases.

B exhibit qualitatively similar behavior. The current is not
constant throughout the system, in contrast to the situation
found in conservative systems. For high dissipation, v > 1,
the average current vanishes except in the boundary layers,
inside which it is, in fact, very large. Again, the agreement
between the theoretical expression for the current (solid
line) [Eq. (5.12b)] and simulation (points) is excellent in all
cases.

The spatial dependence of the average dissipation field
day(x) is presented in Fig. 7. Note the logarithmic scale in the
vertical axis, in order to show more clearly the behavior in the
bulk of the system in the high dissipation regime v >> 1. Again
the agreement between theory (solid line) and simulation
(points) is excellent in all cases, up to the very center of the
system, in which |d,(x)| is really very small when v > 1.

The simplicity of the model at hand allows us to measure
directly in simulations the transport coefficients entering

103 T T T T T T T T T v=10"
v=10°
101 e V=10
- '7 v=1
10_1 Y - y 4 7104
5@10-3 L _
kel L i
10°F -
107F .
-9 1 . 1 . I . 1 . 1
1001 0.2 0 0.2 0.4

FIG. 7. (Color online) Average dissipation profiles for different
values of v € [107',10°] and B = 0,0.5,1 for N = 160. The bath
temperature is 7 = 1. Lines correspond to theoretical predictions,
and the agreement is excellent in all cases.
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FIG. 8. (Color online) Dissipation transport coefficient R(p)
measured in simulations as a function of the local average density,
for different values of v, 8, and L. For each value of g, the numerical
data collapse on the theoretical prediction p#*!' V v, L.

the fluctuating hydrodynamic theory. In particular, a strong
implication of this hydrodynamic description is that the
transport coefficients are functions of the energy density p
alone, for large system sizes and under the local equilibrium
hypothesis, as expressed by Egs. (3.15), (3.18), and (4.15).
We have tested the validity of this picture by comparing
the numerical values of the transport coefficients, measured
in Monte Carlo simulations, and the theoretical predictions
for the general class of models considered in this section
[Egs. (5.2) and (5.3)]. Let us start by considering the numerical
evaluation of R(p), the new transport coefficient associated to
the dissipation. We have built Fig. 8 by plotting the local
dissipation along the chain versus the local energy density,
that is, by combining the points of Figs. 3 and 7, and plotting
|dav(X)|/V VS pay(x) VX € [—%, %]. Aside from the system size
L = 160 considered in Figs. 3 and 7, we have included points
obtained for smaller system sizes, ranging from L = 10 to
L = 80, in order to see the convergence to the hydrodynamic
behavior as the system size grows. For each value of 8, all the
points collapse onto a master curve, which agrees perfectly
with the theoretical expression (5.2). This is a clear signature
of the rapid convergence to the hydrodynamic description with
the system size, L = 10 being enough to recover the theoretical
prediction.

In order to measure numerically the diffusivity, which
is just the factor relating the local energy current with the
local density gradient according to Fourier’s law, we have
to combine the data used in Figs. 3 and 6 to plot — ju,/p5,
(where the prime indicates the numerical spatial derivative of
the measured energy profile) vs the average energy density pay.
As for the dissipation transport coefficient R(p), the agreement
between simulation and theory is again very good for D(p) (see
Fig. 9) . Notice, however, that there are some points which
depart from the the theoretical prediction, but this departure is
due to the smallness of both j,,(x) and p,,(x) near the center
of the system, which gives rise to large numerical errors for
the quotient — ju /0y, -

Finally, we have also checked the theoretical prediction
for the noise amplitudes, by comparing them to the numerical
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h
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FIG. 9. (Color online) Comparison between the numerical and
theoretical values of the diffusivity D(p) for 8 = 0,0.5,1. Different
values of v and L have been considered. The agreement between
theory and simulation is excellent.

data obtained in Monte Carlo simulations. Figure 10 shows the
measured amplitude of the current fluctuations, the so-called
mobility 0. Combination of Eqs. (4.8), (4.9), and (4.15) gives
that

L (slz,p)

= 0 (Pav)- (5.15)

P
Therefore, we have plotted the left-hand side of the above
equation as a function of the average density along the chain,
both of them numerically measured in simulations. This has
been done for the same values of 8 of the previous figures
and for various values of v and L. In the inset, the same
plot is shown in logarithmic scales. Straight lines with slope
B + 2 are observed, in agreement with the algebraic behavior
of o o pP*? predicted by the hydrodynamic theory [Eq. (5.4)].
It should be stressed that the excellent agreement between

4 p=1.0

1.5 B=0.5
(o8
(=)
~~
NA
a 58=0.0
ur
—
\%

Pay

FIG. 10. (Color online) Comparison between the numerical
measurement of the mobility o(p), as given by Eq. (5.15), and
the theoretical prediction (5.4), for 8 = 0,0.5,1. The agreement is
excellent in all cases, even for rather small system sizes (L = 10).
Curves for 8 = 0.5 (8 = 1) have been shifted vertically by 0.3 (0.6)
units. The inset shows the equivalent plot in logarithmic scale.
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(A p=1.0
_\“3:0.5

2)=0.0

FIG. 11. (Color online) Comparison between the numerical mea-
surement of the diagonal part of x(p), as given by Eq. (5.16), and the
theoretical prediction Eq. (5.4), for 8 = 0,0.5,1 and different values
of v and L. Curves for § = 0.5 (8 = 1) have been shifted vertically
by 0.3 (0.6) units for clarity.

theory and simulation, and particularly the collapse of the data
corresponding to different values of L, is a strong proof that
the predicted scaling of the current noise with the system size,
(E(x,H)E(x",1")) o« L™! as given by Eq. (4.14), is correct.

Similarly, Fig. 11 shows the measured diagonal fluctuations
of the dissipation field as a function of the local average density.
Following Eqgs. (4.21) and (4.22) and the ensuing discussion,
these fluctuations are defined as

Lz )
V2T,

= Kdiag(pav) = 0 (0av)- (5.16)
Again the agreement between theory and simulation results is
very good, though finite-size effects, particularly at high den-
sities, are more evident here than for the current fluctuations
(see Fig. 10). This is natural since dissipation fluctuations are
very small and have to be scaled as L° in the continuum limit,
which strongly amplifies the small finite-size effects present
in measurements. In any case, Fig. 11 confirms the scaling of
the dissipation fluctuations, that is, that (n(x,)n(x’,t")) oc L™3
in the continuum limit, as given by Eq. (4.22). This supports
our claim that dissipation fluctuations are negligible in the
L — oo limit, where the only source of fluctuations concerns
the current field.

VI. SUMMARY AND CONCLUSIONS

In this paper we have studied in detail the fluctuating
hydrodynamic theory for a large class of diffusive lattice
models characterized by the presence of bulk dissipation
and boundary driving. The model dynamics is stochastic:
Pairs of neighboring lattice sites collide at a rate which is
a certain function of the pair energy. A given part of the pair
energy is dissipated to the environment, and the remainder
thereof is randomly redistributed within the pair. In addition,
boundary sites may be coupled to thermal reservoirs which on
average inject energy into the system so eventually it reaches
a (nonequilibrium) steady state. Thus, this class of driven
dissipative models is a generalization of the KMP model for
heat conduction to the nonlinear dissipative case. Moreover,
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they can be considered as a simple way of modeling certain
aspects of real dissipative systems like granular fluids. In fact,
most interestingly, their respective fluctuating hydrodynamic
descriptions display some quite remarkable analogies, as seen
throughout this work.

In the large system size limit, the energy density p(x,?) has
been shown to obey a mesoscopic fluctuating balance equation,
which contains both fluctuating current and dissipation fields,
j(x,t)and d(x,t), respectively. The average current field obeys
locally a nonlinear Fourier’s law, with a diffusion coefficient
which depends on the density, while the average dissipation
becomes a certain function of the local density. Moreover,
the current noise is shown to be white and Gaussian, while the
dissipation noise is subdominant because of the quasielasticity
of the microscopic dynamics. Detailed expressions for the
transport coefficients are derived in this context, using a local
equilibrium approximation whose validity has been tested a
posteriori. Interestingly, the amplitude o(p) of the current
fluctuations (or mobility) is related to the diffusivity D(p) by
an Einstein fluctuation-dissipation relation, o (p) = 20%D(p),
despite the fully nonequilibrium character of the problem
at hand. Besides, the new transport coefficient associated
to the dissipation, R(p), is not independent of the diffusion
coefficient, but it is related thereto by a first-order differential
equation.

In order to test in detail the emerging picture, we have
applied the general fluctuating hydrodynamic framework
developed in the first part of the paper to a particular family of
models, in which the collision rate depends algebraically on
the energy of the chosen pair. The reasons for this choice are
twofold: (i) Such power-law dependence mimics the physics of
many realistic systems (e.g., for hard-disk fluids the collision
rate is proportional to the square root of the local energy
density), and (ii) with this choice, the transport coefficients
can be explicitly calculated as simple, also algebraic, functions
of the energy density. We have checked the predictions of
the fluctuating hydrodynamic theory against extensive Monte
Carlo simulations of the proposed family of models, and an
excellent agreement is found, even for quite small system sizes
L 2 10. This agreement strongly supports the validity of the
fluctuating hydrodynamic picture and, given the generality of
the proposed family of models, a similar situation should be
expected for any nonpathological choice of the collision rate
function.

The fluctuating hydrodynamic equation here derived is a
first step in the complete description of the macroscopic be-
havior for the broad class of nonequilibrium models introduced
in this paper. The governing evolution law, summarized in just
three transport coefficients, can now be used in conjunction
with the recently introduced MFT [11] to derive the LDFs
which control the statistics of fluctuations of the relevant
macroscopic observables, in this case the current and the
dissipation. LDFs play in nonequilibrium systems a role akin
to the free energy or entropy function in equilibrium systems,
and hence are of utmost importance to the development
of nonequilibrium statistical physics [11]. In a forthcoming
paper [27] (see also [14]) we will use the tools of MFT and
advanced Monte Carlo simulations to study in detail the LDF
of the relevant macroscopic observables for the general class
of nonlinear driven dissipative systems here introduced, thus
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aiming at a full characterization of macroscopic behavior for
this broad family of systems.
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APPENDIX A: LOCAL EQUILIBRIUM APPROXIMATION

In the hydrodynamic fluctuating theory developed in this paper, one of the main goals is to write a closed fluctuating balance
equation for the energy density at the mesoscopic level. At some points in the development of this theoretical framework, we have
found that the average current [Eq. (3.7)], the average dissipation [Eq. (3.8)], or the amplitude of the current noise [Eq. (4.9)] are
given in terms of certain average values with the general form

<g(pl,pvpl+1,p)f(21,p)>
Q,(L) ’
where g(0;,p,0141,p) are different functions of the energies {o; ,,01+1,,}, while X; , and £2,(L) have been defined in Egs. (2.1)
and (2.4), respectively. Therefore,

<g(PZ$p,pl+1,p)f(P1,p + o141,p)
Q,(L)

(AL)

o0 o0
>=/ dpl/ dpi+1 8o, o141 f (o1 + pi+-1) P (o1, 1415 P)
0 0

o0 o0 o0 o0
X/ dm"‘/ dﬂl—l/ d,01+2"'/ dpn QT LYP(O1, - -+ P1=1,P1525 - - - s PN P15 L1415 P)-
0 0 0 0
(A2)

In order to write the equation above, we have used Bayes theorem to write the probability that the system is in configuration p =

{p1,02,...,pon} attime step p as P(po1,01+1; P)P(P1, -« - 0i=1,P1425 - - - s PN | P15 P1415 P), in Which P(p;,p14+1; p) is the probability
of finding sites / and / 4 1 with energies p; and p;4; at time p, independently of the configuration of the remainder of the sites,

and P(p1,...,01—1,P1+2, - - -, PN |01, P1+1; p) 18 the conditional probability of finding the remainder of the sites in configuration
{o1s.--s01-1,0142, - .. ,pn} at time p, provided that sites [ and [ 4 1 have energies p; and p;41, respectively.
First, let us calculate the integral over {py, ...,0/—1,0/42, - . . ,on} in EQ. (A2). From the definition of ©,(L) [Eq. (2.4)],
-2 L I+1
QL) = . D For+ o)+ flo+ o)+ Y flor+ pr) | + . D flor+pran) = flora + pria) |- (A3)
L =1 =142 L I=i—1

Note that, in Eq. (A3), we write (L) and p;, omitting the subindex corresponding to the time step p. This is so because we
insert Eq. (A3) into Eq. (A2), where the integration variables are dummy, {0;, 02, ...,pon}, and the time dependence appears in
the probability distributions. In fact, we have already used this notation in Eq. (A2) for €2, (L) but also for the functions g and f.
Equation (A3) implies that

L_2 1 I+1
QL) = TQ*(L —D+7 [ Z Sfor + pra) = flor-1 + pz+2)} ; (A4)

I'=l—1

where Q*(L — 2) corresponds to a system with size L — 2, without the sites / and / 4+ 1. Equation (A4) suggests that, in the large
system size limit,

o0 o0 o0 o0
[ o [ o [ dpa [ @ WP prpria vl p) ~ (2 L= D) ~ 1 (49
0 0 0 0

where 1, = (Q;I(L)) for L — oo, as defined in Eq. (3.11b). The subindex p reappears in 7,, because the average value is
calculated at time p, with the probability distribution P(p1, 02, ...,pon; p). Thus, substituting Eq. (AS) into Eq. (A2),

<g(,01,p7,01+1,p)f(/01,p + 01+1,p)
Q,(L)

This result is repeatedly used in the following sections to simplify the calculations. In order to further advance, we have to
calculate the average

> ~ 1,(8(01,ps0111,p) f(O1p + P111,p))- (A6)

o0 o0
(801, p»141.p) (01, p + P141,p)) = / dpz/ dor1 801, o141 f(or + pix1) P (o1, 01415 P), (A7)
0 0
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for which the distribution function P (o, p;+1; p) must be known. At this point, and so as to calculate these averages, we introduce
the local equilibrium approximation, that is, we assume that the probability distribution P(p;,p;+1; p) inside the integral in
Eq. (A7) can be substituted by

1 i Pi+1

Pie(or, pi415 p) = (— - : (A8)
<p1,p><pl+1,p) (pl,p> (pl+l,p>

This local equilibrium hypothesis allows us to calculate expressions of the averages in terms of local energy densities (o, ,)

and {p;41,,). Furthermore, it will be assumed (when necessary) that (0,11, — p1,p) = O(L™"), consistently with the spatial

continuum limit introduced in Sec. II. In this way, the average in Eq. (A7) becomes a functional of the energy density field

pav(xv[)s

_i{Pi1,p — p1,p) _
(Prevp) = (prp) + L7 P o~ (0 + L o pun(,0), (A9)
since
{orerp — prp) 3, pan(x,1) (A10)
Ax

in the spatial and time continuum limits we are considering throughout the paper.

1. Derivation of Eq. (3.14)
Our starting point is Eq. (3.7) for the current,

o <(P1,p - ,01+1,p)f(21,p)> o
2L Q,(L) 2L

(Ji.p) = tp{(o1p = Pr11.p) f(Zi1p))s (ALD)

where we have made use of Eq. (A6). Therefore, we have to evaluate the average ((p;,, — p1+1,5) f (X1, )) in the local equilibrium
approximation. Up to first order in L',

0xPay [~ *© o P+ P
o f dpi / d,01+1(/?1—/>l+1)(1— ;H)f(/)l-l-;om)exp (—ﬁ . (A12)
av 0 0

av av

((Prp = Prs1,p) F(Zp)ie ~ —L7!

where we have taken into account Egs. (A8) and (A9). By interchanging the dummy integration variables p; and p; 1, an expression
symmetric to the previous one is obtained. Averaging the two equivalent expressions, the above equation is transformed into

1 0xpay [T °° o+ p
((pr.p — Pre1,p) fF(Zpp)ie ~ —L 7! Zp:V / dpz/ dpis1(or — pre1)* f (o1 + pi1) exp <—%>
av O 0 av
axpav o o
=-L" - f dx / dy(x — y)* f(pay(x + y))e O+, (A13)
0 0

where we have made use of {p;41,,) ~ (01,,) = pav(x,1), as given by Eq. (A9), in the large system size limit. Besides, in order
to obtain the last equality in Eq. (A13), we have introduced the change of variables p; = payX, p1+1 = pavy. We can further
simplify this expression by going to polar coordinates (r,¢), and defining x = a2, y = b2, with a = r cos ¢, b = r sin¢. Thus,
the integral over the angle variable ¢ can be carried out, with the result

ax av * —r2
(Prp — Pt p) f(S e = — 2 / drr’ f(pwre™" . (Al4)

3L )
The equation above, together with Eq. (A11), is equivalent to Eqgs. (3.14) and (3.15).

2. Derivation of Eq. (3.17)
Now, we start from Eq. (3.8) for the dissipation,

1—05< |:f(El,p)+f(El—1,p)i|>~ l -«
L p Q,(L) L

(dip) = {01 p[f (X p) + f(Zim1,p)])s (Al5)

where we have used again Eq. (A6). Similarly to what has been done in the previous section, we calculate now the average

(o1, pLf(Z1,p) + f(Zi-1,p)]) in the local equilibrium approximation. In fact, we have a simpler case, because this average is of
the order of unity in the large system size limit. It is easily shown that

(1 plf(Z1p) + f(Zim1, ))DIE = Pay /0 dx /0 dy(x + ) f(pay(x + y))e " (A16)

As already done when writing Eq. (A13), we have taken into account (p;41,,) ~ {01,p) = Pav(x,1) [Eq. (A9)] and introduced
the change of variables p; = puX, pj+1 = pPavy. Now, by introducing the same change of variables to polar coordinates as in the
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previous section, and making the integral over the angle variable, we arrive at

Prplf (i) + F(St ) Die = 20 / drr f(oar)e ™ (A17)
0

which implies Eq. (3.17), taking into account Egs. (A15).

3. Derivation of Eq. (4.10)

Now, we evaluate the average in Eq. (4.9),

o [(0F, + 07, = Prpprirp) fF(Zp)
3 Q,(L)

2
o
Sty > ~ (0, + 00 = PLppiep) F(E1p)), (A18)

along the same lines of the previous sections. By introducing the local equilibrium approximation,

o0 o0
((Perp + 07 p = Prppirp) F(Z1p) s = P2 / dx / dy (% + ¥ = xy) f (pa(x + y))e 0, (A19)
0 0

where we have used again the same simplifications as above. After going to polar coordinates and evaluating the angle integral,
one arrives at

o0
2
((0Fi1p + 08 p = PrpP1r1p) f(Z1p)) = Py / drr’ f(pyrhe ™. (A20)
0

Inserting Eq. (A20) into Eq. (A18) leads to the desired result (4.10).

APPENDIX B: GAUSSIAN CHARACTER OF THE CURRENT NOISE

In the large system size limit L >> 1, the current noise introduced in Sec. IV B is white,

1
(EG,n) =0, (EGDEX,)) = Zo(p)S(x —x3(t 1), (BI)

with the mobility o (x,?) given by Eq. (4.15), independent of L. We can introduce a new noise field g(x,t) by
.t = L™ (), (B2)
and g(x,t) remains finite in the large system size limit as L — oo,
E.0) =0, ECnEE.1)) = (s — 28 — 1), (B3)

In this Appendix, we show that all the higher-order cumulants of g(x,t) vanish in the thermodynamic limit as L — oo. Let us
consider a cumulant of order n of the microscopic noise & , that is equal to the nth order moment of & plus a sum of nonlinear
products of lower order moments of £. A calculation analogous to the one carried out for the correlation (& ,& /) shows that
the leading behavior of any moment is of the order of L~!, which is obtained when all the times are the same. Therefore, the

moment (i, ji. * ++ jiw, pm) gives the leading behavior, of the order of L™! for p = p’ = --- = p™; any other contribution to
the cumulant is at least of the order of L~2. Therefore,
Grpdvp =+ Jio o) ~ L 20 (Cip)8pudp r -+ - 8o jrd 8 pr =+ 8 pay o, (B4)

where (C;,) is a certain average which remains finite in the large system size limit as L — oo. In the continuum limit, each
current introduces a factor L2/, due to the scaling introduced in Eq. (3.11a), and

(Ex,DEX 1) - Ex™, ™))
8(x — xN8(x" — x")- - §(x"D — x(m) Tl’j—lﬁ(t — Y@ —1") - 8D — t(”)).

~ L) - = L B9
that is,
(ECeDEC ) - £ 1) = L37(C,0)8(x — 18 — 1) 8D = xM)5(t — )8 — 1) -+ 8"V — 1),
(B6)

where (C(x,t)) is the (finite) leading behavior of (C; ,) in the large system size limit L >> 1, under the local equilibrium
approximation introduced in Sec. IV A. We have also taken into account the relationship between Kronecker and Dirac §’s
[Eq. (4.16)]. Going to the rescaled, of the order of unity, noise &,

E,DEQ ) - Ea™, ™)) ~ L3059 (C(x,1))8(x — x)8(" — x) - 8(x"™D — xMY§(t — £)8(t — 1) - - - 81D — 1™,
(B7)
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Therefore, in the limit as L — oo,

PHYSICAL REVIEW E 86, 031134 (2012)

EC,nDE ) E@™,1™) =0 foralln > 2, (BS)

which completes the proof. A similar calculation can be carried out for the dissipation noise, which is also Gaussian in the
thermodynamic limit. Nevertheless, it will not be presented here, since it is subdominant as compared to the current noise for

large system sizes L > 1, and therefore has been neglected.
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