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Ripples in a string coupled to Glauber spins
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Each oscillator in a linear chain (a string) interacts with a local Ising spin in contact with a thermal bath.
These spins evolve according to Glauber dynamics. Below a critical temperature, there appears an equilibrium,
time-independent, rippled state in the string that is accompanied by a nonzero spin polarization. On the other
hand, the system is shown to form “metastable,” nonequilibrium long-lived ripples in the string for slow spin
relaxation. The system vibrates rapidly about these quasistationary states, which can be described as snapshots
of a coarse-grained stroboscopic map. For moderate observation times, ripples are observed irrespective of the
final thermodynamically stable state (rippled or not). Interestingly, the system can be considered as a “minimal”
model to understand rippling in clamped graphene sheets.
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I. INTRODUCTION

Mechanical systems coupled to spins are used to describe
structural phase transitions. Examples include the collective
Jahn-Teller effect [1], structural phase transitions with a scalar
order parameter exhibiting a central peak in the dynamic
response function [2], and criticality in martensites and
externally driven models [3]. In many of these models,
the mechanical system provides a long range interaction
between the spins that produces a phase transition in which
the spin polarization ceases to be zero below a critical
temperature. While most studies consider the effective spin
system obtained after eliminating the mechanical degrees
of freedom, it is interesting to focus instead on the effect
of the phase transition on the mechanical system. In this
paper, we consider mechanical systems coupled to Ising
spins that undergo Glauber dynamics [4] in contact with a
thermal bath (a single harmonic oscillator connected to Ising
spins in the simplest case [5]). There is a phase transition
at a critical temperature below which the spin polarization
is nonzero and ripples appear in the mechanical system.
These thermodynamically stable ripples are inhomogeneous
stationary states of the mechanical system, which are quite
simple below the critical temperature. On the other hand,
there are long-lived dynamical ripples with a wide variety of
shapes at any temperature provided the period of mechanical
vibrations is short compared to the spin relaxation time. In
this limit, the spins are frozen during long time intervals
between spin flips and they fix a quasistationary state about
which the mechanical system oscillates. Observations of the
system may consist of time averages over intervals sufficiently
long to include many oscillation periods but short compared
to the intervals between spin flips. Then, these observations
will sample a coarse-grained stroboscopic map consisting of
successive quasistationary states that show ripples. After a
much longer time during which sufficiently many spin flips
have occurred and due to the dissipation introduced by the
Glauber spin dynamics, the ripples eventually evolve to the
simple version obtained from the equilibrium thermodynamics
of the spin-mechanical system.

These considerations may apply to the evolution of ripples
in suspended graphene sheets. Ripples are ondulations of the
sheet with characteristic amplitudes and wavelengths that,
according to experiments, do not have a preferred direction [6].
Time-resolved ripples and defects in graphene sheets can be
observed using aberration corrected transmission electron
microscopies (TEMs) that collect data every other second,
a time much longer than microscopic times such as the one
it takes a sound wave to cross one lattice constant [7]. As a
direct generalization of theories of defect motion in planar
graphene [8], atom motion in a suspended graphene sheet may
be described by the von Karman equations discretized on a
hexagonal lattice [9]. Coupling the vertical motion of graphene
atoms with an Ising spin located at the same lattice point may
account for a spontaneous trend of the sheet to bend upward or
downward. Spin dynamics adds dissipation to the von Karman
equations and thus the spin relaxation time should be much
longer than microscopic mechanical times. Experimental
observations are taken over long time intervals and therefore
should correspond to different takes of a coarse-grained
stroboscopic map similar to that described in this
paper.

The plan of the paper is as follows. In Sec. II, we introduce
the model and study the rippling phase transition which
appears therein. Section III is devoted to the analysis of the
slow spin relaxation regime. In this limit, we will see that
metastable long-lived ripples appear, which are different from
the “static” ripples found in Sec. II. We present arguments
that support that these metastable ripples are the relevant
ones, in connection with the rippling of graphene sheets. The
continuum limit of the model, together with the opposite
limit of fast spin relaxation, is investigated in Sec. IV.
Finally, we present the main conclusions of the paper in
Sec. V.

II. MODEL AND RIPPLING PHASE TRANSITION

Our mechanical system is a chain of oscillators with next-
neighbor interaction, which becomes a string in the continuum
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limit:

H =
N∑

j=0

[
p2

j

2m
+ mω2

2
(uj+1 − uj )2 − f ujσj

]
, (1)

with u0 = 0 = uN+1. The j th oscillator is coupled linearly
to an Ising spin σj = ±1. The spins are in contact with a
thermal bath at temperature T and flip stochastically following
Glauber’s dynamics [4] at temperature T . Unlike the case of a
regular mass-springs chain, here each triplet is biased against
being straight, with uj+1 − uj = uj − uj−1. The applied force
(the sign of which flips at random) makes the “preferred”
state at any instant a wedge shape. This translates the loose
idea that the three carbon links each atom shares to build
the graphene sheet do not want to be in a plane because
of the fourth “free” link (which may push the atoms up or down
the horizontal planar configuration). The free chemical bonds
of the carbon lattice in the graphene sheet may be assimilated
to our spins, which interact with phonons modeled by the
oscillators. Of course, in order to have a more realistic model of
a clamped graphene sheet, the structure of its two-dimensional
(2D) lattice should be taken into account. Nevertheless, we
hope that this simple model will be able to capture the main
physical mechanism involved in the rippling of graphene
sheets. In our model, we have chosen boundary conditions (bc)
corresponding to a suspended graphene sheet that is clamped
at its edges. We can consider different bc, corresponding to
other physical situations, but the bc do not affect the physical
mechanism giving rise to ripple formation. For the sake of
brevity, we will only consider the clamped case throughout
this paper.

Thus, at any time t , the system may experience a transition
from (u,p,σ ) to (u,p,Rjσ ) at a rate given by [4]

Wj (σ |u,p) = α

2
(1 − βjσj ), βj = tanh

(
f uj

kBT

)
, (2)

where Rjσ is the configuration obtained from σ by flipping
the j th spin and kB is the Boltzmann constant. The parameter
α gives the characteristic attempt rate for the transitions in
the Ising system. Individual spins experience a mutual long-
range interaction through their coupling to the string. This
long-range interaction causes a phase transition of the spin
system: the spins have nonzero polarization for T < Tc, the
counterpart for the string of which is the formation of ripples.
To see this, we find the following effective potential by
integrating e−H/(kBT ) over the spin configurations [5], with
the result

Veff =
N∑

j=0

[
1

2
mω2(uj+1 − uj )2 − kBT ln cosh

(
f uj

kBT

)]
. (3)

The extrema of this potential satisfy

mω2(uj+1 + uj−1 − 2uj ) + f tanh

(
f uj

kBT

)
= 0. (4)

Let us analyze the stability of the trivial solution uj = 0
(horizontal string, no ripples). We look for solutions Uj = eijk

of the linearization of Eq. (4):

Uj+1 + Uj−1 − 2Uj + f 2Uj

mω2kBT
= 0, j = 1, . . . ,N (5)

with clamped bc U0 = UN+1 = 0. The condition U0 = 0
implies that we only have to consider the imaginary part Uj =
sin(jk), whereas UN+1 = 0 restricts the possible values of k,
so that only kn = nπ/(N + 1), n = 1, . . . ,N + 1, are possible.
Finally, if Uj solves Eq. (5), the wave number k must be related
to the temperature through f 2/(mω2kBTn) = 4 sin2(kn/2).
This expression defines a set of critical temperatures Tn, at
which rippled solutions, characterized by a wave number kn,
of Eq. (5) emerge. The largest possible critical temperature
corresponds to n = 1,

Tc ≡ T1 = f 2K2
N

kBmω2
, KN = [2 sin(k1/2)]−1 ∼ N

π
, (6)

in the large system size limit N � 1.
The dependence of this critical temperature with the system

size N hinges on how the model parameters m, ω, f scale
with N . Of course, these scalings depend on the details of the
microscopic model, which, in some limit, can be described
by the stochastic dynamics we have introduced. We assume
that the frequency ω ∝ N , while m and f are independent
of the system size. In Sec. IV of the paper, we will show
that this scaling implies that both the effective potential (3)
and the nonlinear equation (4) have a well-defined continuum
limit [10]. This is a sensible property since graphene sheets
are often and successfully modeled by means of continuum
elasticity [11–15]. Thus, we define ω0 = ω/KN , which is of
the order of unity in the large system size limit as N � 1.
Then, the critical temperature Tc remains finite as N → ∞:

Tc = f 2

mω2
0kB

, ω0 ≡ ω

KN

. (7)

Let us briefly consider other possible scalings of the Hamil-
tonian parameters with the system size. For other scalings, the
expression (7) for the critical temperature Tc remains valid, but
ω0 is no longer of order 1. For instance, if all the parameters
in the Hamiltonian (1) are independent of the system size, Tc

diverges in the large system size limit N � 1. This means that
the flat configuration of the string becomes unstable for all
temperatures in this limit. Nevertheless, for any finite value
of N , there should be an “effective” critical temperature Tc,
above which the flat configuration would be stable.

In the following, we will restrict ourselves to the case ω0 =
O(1), independent of the system size. There is a well-defined
phase transition at T = Tc, then we define a dimensionless
temperature θ = T/Tc. For T > Tc (θ > 1), the trivial solution
of (4) is linearly stable, and for T < Tc (θ < 1), it is unstable
and there appear stable nonuniform states corresponding to
static ripples in the string. Using nondimensional variables
u∗

j = f uj/(kBTc) = mω2
0uj/f and omitting the asterisks so

as not to clutter the formulas, the first such state is proportional
to the sinusoidal mode with k1,

uj = ±2
√

1 − θ sin

(
πj

N + 1

)
+ O(|1 − θ |), (8)

in the limit as the reduced temperature θ tends to 1 from
below. Equation (8) is derived in Appendix A, making use of
bifurcation theory. According to Appendix A, initial conditions
that are not orthogonal to sin[jπ/(N + 1)] decay to (8) as
e−δt/2 for δ = α/ω0 < 2 and θ ∼ 1. At the lower critical
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FIG. 1. (Color online) Stable ripple state without internal nodes
for θ = 0.9, δ = α/ω0 = 0.1, and N = 104; t increases from top
to bottom. For each trajectory, the initial configuration consists of
a flat string at rest and random spins, such that the average spin
polarization has a sinusoidal shape. Averages over 100 trajectories
and spatial averages over 100 oscillators centered at a given one have
been performed in order to ensure good averages. See also movie in
the Supplemental Material [17].

temperatures θn = sin2 k1/ sin2 kn < 1, n > 1, other nonuni-
form states proportional to the sinusoidal modes with k = kn

(n − 1 interior nodes) bifurcate from the trivial solution. These
nonuniform solutions have a nonzero spin polarization 〈σj 〉 ∼
tanh[f uj/(kBTn)] and therefore the critical temperatures θn are
associated with cooperative Jahn-Teller phase transitions, in
which coupling to phonons (the string) breaks the symmetry of
a doubly degenerated electronic state (the spins) [1]. Numerical
simulations of the spin-string system confirm this. Below
Tc, stable string configurations are stationary, nonuniform,
and exhibit ripples. To test the bifurcation theory, we have
performed stochastic simulations at temperatures θ > 1 and
θ = 0.9 for δ = 0.1 and N = 104. In Fig. 1, we show how
an initially flat string at rest evolves to a state close to (8).
The initial conditions are random spins, such that the average
spin polarization has a sinusoidal shape and a horizontal,
zero-velocity string profile. A qualitatively analogous behavior
is found for the majority of initial spin configurations, but
for some of them the unstable flat string configuration is
stabilized (see Appendix A). This is a stabilization of the
thermodynamically unstable state akin to the one previously
found for a single oscillator coupled to Glauber spins [5]. For
lower temperatures, a similar stationary state without internal
nodes is stable, whereas the stationary states with n − 1
internal nodes that bifurcate from the flat string configuration
at temperatures Tn are unstable.

III. SLOW SPIN RELAXATION

Additional insight can be obtained in the limit δ = α/ω0 �
1, in which the spin flip rate is slow compared to the
characteristic string frequency. In the following, we will use a

dimensionless time t∗ = ω0t , and omit the asterisks as before.
Then, the uj ’s obey the equation of motion

üj − K2
N (uj+1 + uj−1 − 2uj ) = σj (9)

for j = 1, . . . ,N with boundary conditions u0 = uN+1 = 0
(ü = d2u/dt2). The spins σj are stochastic variables which
flip at a rate Wj (σ |u,p) = δ(1 − βjσj )/2, βj = tanh(uj/θ ),
θ = T/Tc instead of (2). Let us consider a trajectory of the
system for given initial states of the string and spins. Since the
spin flip rate is very small, the spins are frozen at fixed values
during time intervals that are long compared to the longest
oscillation period of the string. During the time interval before
the spin flip occurs, we may split the solution of (9) in a
quasistationary and a time-dependent part according to (see
Appendix B)

uj (t) = us
j + vj (t), (10)

us
j = 1

K2
N

[
j

N∑
l=1

(
1 − l

N + 1

)
σl −

j−1∑
l=1

(j − l)σl

]
, (11)

vj (t) =
N∑

n=1

[An cos(	nt) + Bn sin(	nt)]φn,j , (12)

where

	n = 2KN sin

(
πn

2(N + 1)

)
, (13)

φn,j =
√

2

N + 1
sin

(
πnj

N + 1

)
, (14)

An =
N∑

j=1

[
uj (0) − us

j

]
φn,j , Bn =

N∑
j=1

u̇j (0)φn,j . (15)

The string profiles in (10) represent vibrations of the string
about the quasistationary configuration in (11), the longest
period of which is 2π (	1 = 1 is the lowest frequency). Now,
let the first spin that flips after t = 0 be σj1 , which changes sign
at time t1. Immediately after t1, the right-hand side (RHS) of (9)
should be replaced by σj − 2δj1j σj1�(t − t1), where �(x) = 1
for x � 0, �(x) = 0 for x < 0 is the unit step function. The
changes in us

j and vj (t) due to the spin flip at t1 are

�us
j = 2σj1

K2
N

[
�(j −j1 − 1)(j − j1)−j

(
1 − j1

N + 1

)]
, (16)

�vj = −
N∑

n=1

(
N∑

l=1

�us
l φn,l

)
φn,j cos[	n(t − t1)], (17)

respectively, for t > t1. Successive spin flips produce changes
similar to (16) and (17) in the quasistationary and time-
dependent parts of uj (t), respectively, at times t2, t3, . . . with
tl − tl−1 = O[(Nδ)−1]. Time averages over sufficiently long
time intervals that are short compared to (Nδ)−1 eliminate
vj (t). Thus, successive snapshots of averaged string profiles
coincide with updated quasistationary us

j profiles. The latter
constitute a coarse-grained stroboscopic map showing how the
ripples in the string evolve to their final stable configurations:
the horizontal string for θ > 1 or a simple paraboliclike profile
above or below the horizontal string for θ < 1. Figure 2
depicts snapshots of the coarse-grained stroboscopic map for
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FIG. 2. (Color online) Four snapshots of the coarse-grained
stroboscopic map for θ = 0.1, δ = 10−4, and N = 100 up to t = 103.
The initial configuration consists of a flat string at rest, and the spins
are (a) initially distributed in seven spin domains of alternating sign
or (b) randomly distributed. The times corresponding to the spin
flips which change the quasistationary string profile are indicated.
Ripples with several domains persist for long times, whereas the
stable configuration corresponding to a string without internal nodes
is reached in a much longer time larger than 104. See also movie
in the Supplemental Material illustrating how the string oscillates
about quasistationary configurations given by the coarse-grained
stroboscopic map [17].

an initially flat string at rest with (a) a spin configuration
exhibiting seven domains and (b) completely random spins
for a temperature θ = 0.1, below the critical one. For mod-
erate time intervals, stable ripples are observed whereas the
stationary configuration of the string without internal nodes
is reached at extremely long time intervals. Rippling behavior
is also observed for above critical temperatures θ > 1, but
the string eventually approaches the flat configuration. In
time-resolved experiments such as those with suspended
graphene sheets [7], data are taken in long time intervals
(1 s), which we use as an estimate for the spin flip attempt
rate α. Typical times ω−1

0 are 1 ps, therefore, δ  10−12 and
the number of spins per linear dimension N  104 for square
1-micron samples. Thus, 1/(Nδ) ≈ 108 (much larger than
the value considered in Fig. 2) and ripple states corresponding
to snapshots of the coarse-grained stroboscopic map are
observed. The “true” thermodynamically stable state would
only be reached for extremely long time intervals, much
longer than the total observation time in an experiment. On

a physical basis, one may expect that the characteristic time
associated to the spin flips in graphene be larger than the
data-collecting time (1 s), so our estimate for the time between
spin flips is actually a lower bound to the actual value.
The movie in the Supplemental Material illustrates how the
string vibrates rapidly about the quasistationary configurations
corresponding to successive snapshots of the coarse-grained
stroboscopic map [17]. Given the large separation between
microscopic times, data collection times, and duration of a
given experiment, it is important to remark that ripples are
observed for all current time-resolved experiments no matter
what the temperature and the thermodynamically stable state
are. Thus, ripples are inherently dynamical, and explanations
based on thermodynamically stable states do not capture the
essence of rippling.

IV. CONTINUUM LIMIT AND FAST SPIN RELAXATION

Further analysis of string ripples can be done in the
continuum limit N → ∞. From (1) and (2), we obtain
equations for the averages of uj and σj . If we split the variables
uj = ũj + �uj , where ũj = 〈uj 〉, set q̃j = 〈σj 〉, and ignore
the fluctuations �uj in the limit N → ∞, we get the following
nondimensional macroscopic equations:

¨̃uj = K2
N (̃uj+1 + ũj−1 − 2ũj ) + q̃j , (18)

˙̃qj = δ

[
tanh

(
ũj

θ

)
− q̃j

]
(19)

for j = 1, . . . ,N . We now set ũj (t) = ũ(x,t) with x = j/KN

and take the continuum limit. Then, Eqs. (18) and (19) become

∂2ũ

∂t2
− ∂2ũ

∂x2
= q̃,

∂q̃

∂t
+ δq̃ = δ tanh

(
ũ

θ

)
, (20)

to be solved with the boundary conditions ũ(0,t) = ũ(π,t) =
0. In the limit δ � 1 (fast relaxation of the spins compared
to the string time scale), we can approximate the second
equation in (20) by q̃ ≈ tanh(ũ/θ ) + [δθ cosh2(ũ/θ )]−1∂ũ/∂t

and insert this in the first equation. The result is

∂2ũ

∂t2
+ 1

δθ cosh2
(

ũ
θ

)∂ũ

∂t
− ∂2ũ

∂x2
= tanh

(
ũ

θ

)
, (21)

the stationary solutions of which satisfy the equation

d2ũ

dx2
+ tanh

(
ũ

θ

)
= 0, (22)

which is the continuum limit of Eq. (4). A stability analysis of
the flat solution ũ(x) = 0 can be done along the same lines of
the study of its discrete version (4). The result is that the flat
solution ũ(x) = 0 is stable for θ > 1, while

ũ(x) = ±2
√

1 − θ sin x + O(|1 − θ |) (23)

is the stable string state just below θ = 1. Of course, Eq. (23) is
the continuum limit of the discrete expression (8). Moreover,
this solution can be rederived by analyzing the minima of the
continuum limit of the effective potential (3):

Veff ∼ NkBTc

π

∫ π

0
dx

[
1

2

(
∂u

∂x

)2

− θ ln cosh

(
u

θ

)]
, (24)
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where u is written in the same nondimensional units as ũ.
The condition for a profile to be an extremum of the effective
potential is nothing but the nonlinear equation (22). The small
damping term in (21) stabilizes the flat solution u(x) = 0 above
the critical temperature and the stationary ripple solutions
below it. The consistency of the scaling introduced in Sec. II
must be stressed: in the continuum limit, the effective potential
is an extensive quantity, proportional to the system size N .

The opposite limit of δ � 1 has already been studied
using the coarse-grained stroboscopic map. It is interesting
to note that we obtain a nonlinear Duffing equation from a
two-term expansion of the hyperbolic functions in (21). Similar
nonlinear equations have been recently proposed to model
graphene resonators on a phenomenological basis [11,16].

V. CONCLUSIONS

We have shown that stable ripples appear in a one-
dimensional (1D) string when each oscillator is coupled to
an Ising spin and the latter are in contact with a thermal
bath at temperature T . Below a critical temperature, the
thermodynamically stable string profile is not flat, but nonuni-
form without internal nodes. In spite of the simplicity of the
thermodynamically stable state, more complex ripples appear
when the spin flip rate is much smaller than the oscillator
period. Although strictly speaking these ripples are evolving
in time, they are very long-lived metastable states. The ripples
are snapshots of a coarse-grained stroboscopic map depicting
the average of the rapid string motion over long time intervals.
Whether the final thermodynamically stable state is the flat
or bent string, ripples should be observed on reasonable time
intervals at any temperature.

The system considered here is far from being a realistic
model of a graphene sheet. However, the free chemical bonds
of the carbon lattice in the latter may be assimilated to our
spins, which interact with the phonons modeled by the oscil-
lators. Thus, 2D ripples analogous to those found here should
appear. This opens the door to understanding the characteristic
rippling shown by graphene sheets at any temperature as an
inherently dynamical phenomenon, the physical mechanism
of which consists of the interaction between free bonds and
phonons with widely separated time scales.
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APPENDIX A: BIFURCATION CALCULATIONS

Let us consider the nondimensional macroscopic equa-
tions (18) and (19) of this paper:

d2uj

dt2
= K2

N (uj+1 + uj−1 − 2uj ) + qj , (A1)

dqj

dt
= δ

[
tanh

(uj

θ

)
− qj

]
, (A2)

j = 1, . . . ,N , with u0 = 0, uN+1 = 0. Here, we omit the tildes
for simplicity. Near the critical temperature θ = 1, we make
the ansatz

uj (t ; ε) = ε

2∑
l=0

εlu
(l)
j (t,s) + O(ε4), (A3)

qj (t ; ε) = ε

2∑
l=0

εlQ
(l)
j (t,s) + O(ε4), (A4)

θ = 1 − ε2θ2, s = ε2t, t̃ = t, (A5)

where ε is a small parameter measuring the amplitude of the
bifurcating solution. Inserting these equations in (A1) and
(A2), we get the following hierarchy of equations:

Lu
(0)
j − q

(0)
j ≡ ∂2u

(0)
j

∂t2
+ K2

N

(
2u

(0)
j − u

(0)
j+1−u

(0)
j−1

) − q
(0)
j = 0,

(A6)

Mq
(0)
j − δu

(0)
j ≡ ∂q

(0)
j

∂t
+ δq

(0)
j − δu

(0)
j = 0, (A7)

Lu
(1)
j − q

(1)
j = 0, (A8)

Mq
(1)
j − δu

(1)
j = 0, (A9)

Lu
(2)
j − q

(2)
j = −2

∂2u
(0)
j

∂t∂s
, (A10)

Mq
(2)
j − δu

(2)
j = δ

(
θ2u

(0)
j − 1

3
u

(0) 3
j

)
− ∂q

(0)
j

∂s
, (A11)

and so on.
At the critical temperature θ = 1, the eigenvalues cor-

responding to the linear system (A6) and (A7) are 0 and
− δ

2 ± i
√

1 − δ2/4 (for δ < 2). Thus, the solution of (A6) and
(A7) is

u
(0)
j = A(s)φ1,j = q

(0)
j ,

(A12)

φ1,j =
√

2

N + 1
sin

(
πj

N + 1

)
,

where we have omitted terms that decrease exponentially as
e−δt/2 cos[t

√
1 − δ2/4 + γ ]. Insertion of (A12) in (A10) and

(A11) yields

Lu
(2)
j − q

(2)
j = 0, (A13)

Mq
(2)
j − δu

(2)
j =

(
δθ2A − dA

ds
− δA3

3
φ2

1,j

)
φ1,j . (A14)

The right-hand side of (A14) should be orthogonal to the
eigenvector φ1,j for this system to have a solution bounded as
t → ∞. Using that

∑N
j=1 φ2

1,j = 1 [see Eq. (B10)] and(
2

N + 1

)2 N∑
j=1

sin4

(
πj

N + 1

)
= 3

2(N + 1)
, (A15)

we obtain

dA

ds
= δA

(
θ2 − A2

2(N + 1)

)
, (A16)
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the solution of which is

A(s) = sign[A(0)]

√
2(N + 1)θ2

1 + e−2θ2δs
( 2(N+1)θ2

A(0)2 − 1
) . (A17)

As s → ∞, A(s) vanishes for θ2 = −1 and it tends to
±√

2(N + 1) for θ = 1. This is the typical behavior of
a supercritical pitchfork bifurcation of stable nonuniform
stationary spin and string profiles from the trivial solution.
For θ < 1, we obtain the corresponding profiles of the string
and the spin systems by inserting (A17) in (A12) and (A3) and
restoring θ = 1 − ε2θ2 and the original time variable:

uj = qj = 2 sign[A(0)]

√
1 − θ

1 + e−2δ(1−θ)t
( 2(N+1)θ2

A(0)2 − 1
)

× sin

(
πj

N + 1

)
+ O(|1 − θ |), (A18)

εA(0) =
√

2

N + 1

N∑
j=1

qj (0) sin

(
πj

N + 1

)
. (A19)

In (A18), we have ignored exponentially small terms propor-
tional to e−δt/2. Even when δ � 1, these terms decay much
faster than the exponential e−2δ(1−θ)t in (A18) as (1 − θ ) → 0.
As t → ∞, the stationary profiles vanish only at the end points
of the string:

uj = qj = 2 sign[A(0)]
√

1 − θ sin

(
πj

N + 1

)
+ O(|1 − θ |).

(A20)

For A(0) = 0, the above equation should be understood as
giving uj = qj = 0 for all j because the solution of Eq. (A16)
with the initial condition A(0) = 0 is A(s) = 0 for all s. Thus,
the flat string configuration is stabilized for initial conditions
such that A(0) = 0; for any other different condition, the
system eventually reaches one of the two symmetrical rippled
profiles without internal nodes.

Similar calculations at the critical temperatures

Tn = f 2K2
N

kBmω2	2
n

, 	n =
sin

(
πn

2(N+1)

)
sin

(
π

2(N+1)

) (A21)

yield the following bifurcating stationary profiles:

uj = qj = 2 sign[A(0)]

√
θn − θ

	n

sin

(
πjn

N + 1

)
+O(|θn− θ |),

(A22)

where θn = Tn/Tc. In the continuum limit, (A22) becomes

u(x) = q(x) = ±2

√
θn − θ

n
sin(nx) + O(|θn − θ |), (A23)

with θn = 1/n2, n = 1,2, . . . . The profiles (A23) vanish at
n − 1 interior points in 0 � x � π .

APPENDIX B: SPLITTING OF u j (t) IN THE LIMIT α � ω0

The stationary part us
j of uj (t) satisfies

−K2
N (uj+1 + uj−1 − 2uj ) = σj (B1)

for j = 1, . . . ,N according to Eq. (9) of the main text. Defining
wj = uj+1 − uj , (B1) becomes

wj − wj−1 = − σj

K2
N

, (B2)

the solution of which is

uj+1 − uj = wj = u1 − 1

K2
N

j∑
l=1

σl (B3)

because w0 = u1 due to the boundary condition u0 = 0.
Summing (B3) from 1 to j − 1, we find

uj = ju1 − 1

K2
N

j−1∑
l=1

l∑
k=1

σk. (B4)

The other boundary condition uN+1 = 0 yields

u1 = 1

(N + 1)K2
N

N∑
l=1

l∑
k=1

σk. (B5)

These formulas can be simplified using summation by parts:
j−1∑
l=1

l∑
k=1

σk =
j−1∑
l=1

[l − (l − 1)]
l∑

k=1

σk

=
j−1∑
l=1

[
l

l∑
k=1

σk − (l − 1)
l−1∑
k=1

σk − (l − 1)σl

]

= (j − 1)
j−1∑
l=1

σl −
j−1∑
l=1

(l − 1)σl =
j−1∑
l=1

(j − l)σl.

(B6)

Substituting this in (B4) and (B5), we obtain

uj = 1

K2
N

[
j

N∑
l=1

(
1 − l

N + 1

)
σl −

j−1∑
l=1

(j − l)σl

]
, (B7)

which is Eq. (11) for uj = us
j .

To find vj (t) = uj (t) − us
j , we note that it satisfies Eq. (9)

with zero RHS and insert in that equation the eigenvector
expansion

vj (t) =
N∑

n=1

Vn,j (t)φn,j , (B8)

−K2
N (φn,j+1 + φn,j−1 − 2φn,j )= 	2

nφn,j , (B9)

where eigenfrequencies 	n and eigenvectors φn,j are given by
Eqs. (13) and (14), respectively. Equation (B9) can be checked
by direct computation. The eigenvectors φn,j of the discrete
Laplacian satisfy the orthogonality condition

N∑
n=1

φn,jφm,j = δnm. (B10)

The result is

V̈n,j + 	2
nVn,j = 0, (B11)

thereby producing Vn,j = An cos(	nt) + Bn sin(	nt), which,
inserted in (B8), yields Eq. (12). Equation (13) of the main text,
giving An and Bn, follows from the initial conditions for uj (t)
and the orthogonality condition (B10) for the eigenvectors
φn,j .
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