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Spin-oscillator model for the unzipping of biomolecules by mechanical force
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A spin-oscillator system models unzipping of biomolecules (such as DNA, RNA, or proteins) subject to
an external force. The system comprises a macroscopic degree of freedom, represented by a one-dimensional
oscillator, and internal degrees of freedom, represented by Glauber spins with nearest-neighbor interaction and
a coupling constant proportional to the oscillator position. At a critical value Fc of an applied external force
F , the oscillator rest position (order parameter) changes abruptly and the system undergoes a first-order phase
transition. When the external force is cycled at different rates, the extension given by the oscillator position
exhibits a hysteresis cycle at high loading rates, whereas it moves reversibly over the equilibrium force-extension
curve at very low loading rates. Under constant force, the logarithm of the residence time at the stable and
metastable oscillator rest position is proportional to F − Fc as in an Arrhenius law.
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I. INTRODUCTION

Many physical situations can be modeled by a mechanical
system coupled to a thermal bath or to spin systems. Examples
abound: The collective Jahn-Teller effect has been analyzed by
spin-phonon systems [1–3], mass spectrometry through a na-
noelectromechanical oscillator whose resonant frequency de-
creases as single molecules are added thereto [4], decoherence
of a spin representing a two-level system due to coupling to a
boson bath (the spin-boson system) [5], a classical oscillator
coupled to a spin causing wave function collapse thereof [6],
a 1/2-spin representing a nonlinear Josephson phase quantum
bit coupled to an oscillator (superconducting resonator) and to
a classical signal [7,8], rippling in clamped graphene sheets
investigated by means of a spin-string system [9], etc.

Very recently we have introduced a simple model in
which a single oscillator is coupled to a chain of Ising spins
undergoing Glauber dynamics in contact with a thermal bath
[10–12]. In our model the spins in the chain are coupled
only to their nearest neighbors, but their coupling constant
is proportional to the oscillator position, which makes their
interaction effectively long range. In equilibrium, elimination
of the oscillator coordinates gives rise to an effective spin
interaction equivalent to a one-dimensional Ising model with
mean-field coupling [13]. There is a second-order phase
transition at a finite temperature, with the oscillator rest
position as its order parameter. Above the critical temperature,
the oscillator rest position is zero, thereby coinciding with that
of the uncoupled oscillator. Below the critical temperature, two
symmetric nonzero rest positions issue forth symmetrically
from zero as in the case of a pitchfork bifurcation. In the limit
of fast relaxation of the spins compared to the natural period
of the oscillator, the oscillator position satisfies an effective
equation having both nonlinear force and nonlinear friction
terms [10,12]. Interestingly, this nonlinear friction arises from
the coupling of the macroscopic elastic mode with the internal
degrees of freedom (modeled in our system by the spins). A
related mechanism has been proposed to explain the “internal
friction” observed in experiments with proteins or polymers in
solution [14].

In recent years, technological development has allowed to
manipulate or visualize individual molecules and to measure
microscopic forces with high-precision instruments. These
single-molecule experiments (SMEs) provide key informa-
tion about the thermodynamic and kinetic properties of
biomolecules, offering a complementary but different perspec-
tive to understand molecular processes. An extensive review
of these techniques can be found in Ref. [15]. Using SMEs,
distributions describing certain molecular properties can be
measured, thereby allowing one to characterize the kinetics
of biomolecular reactions and the observation of possible
intermediate states. A typical outcome of SMEs are the
force-extension curves for DNA, RNA, and other biomolecules
like proteins. In a seminal paper, Liphardt et al. [16] pulled
a RNA hairpin by an increasing applied force until it unfolds
at a critical value of the force, Fc � 14.5 pN. Afterwards,
the molecule is pushed back, by decreasing the force, until
it refolds. At low pulling (pushing) rates, the stretching and
relaxing force-extension curves are superimposed, and the
molecule unfolds at the critical value of the force Fc. Taking a
closer look at this transition, hopping between the two possible
extension values is observed. This suggests that the system is
bistable: There are two possible states of the molecule with
stochastic transitions between them. This physical picture is
confirmed by experiments carried out at constant load, in
a narrow region around the critical force [see Fig. 2(c) of
Ref. [16]]. The residence times in the zipped and unzipped
states have an Arrhenius-like dependence. When cycles of
pulling and pushing the molecule are carried out at high
loading rates, the extension of the molecule occurs at a higher
force F+ > Fc, whereas the hairpin folds at a lower force
F− < Fc. Thus a hysteresis cycle arises, and some authors
have been claimed this to be a signature of irreversible
nonequilibrium behavior [16–19]. More recently many works
have tried to understand these unzipping experiments from a
physical point of view [17–26].

The elastic response of DNA [27–36] and other
biomolecules like proteins [37–41] exhibits similar behavior.
Despite some differences in minor details, in all cases the
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“basic” behavior is like that found in Ref. [16]: There is a
critical value of the applied force Fc, at which the molecule
unzips (or unfolds) and its length increases discontinuously.
Some peculiarities arise when going into fine detail though.
On the one hand, in experiments with DNA or RNA hairpins
the molecule is attached to two beads and the distance between
them is controlled. Thus the total length of the molecule is kept
fixed in these experiments, and it is the control parameter. The
stretching transition is accompanied by a drop in the measured
force [16–19]. In very recent experiments, the applied force is
the control parameter, and the unzipping transition occurs at a
constant value of the force [25]. For proteins, on the other hand,
a typical sawtooth pattern with regularly spaced force peaks
is often observed at the transition. This behavior is usually
interpreted as the successive unfolding of each of the protein
domains in a single protein molecule [37–39]. Performing
pulling and pushing back cycles, both a “simple” reversible
behavior and hysteresis cycles similar to those of Ref. [16] have
been observed [40,41]. Finally, in the case of DNA, there are
different transitions that depend on the experiment details [30].
There is a so-called overstretching (or B-DNA to S-DNA)
transition at Fc � 65 pN. The base pair distance increases
by approximately 70% for this value of the force [26–28,36],
resulting in a sudden elongation of the molecule. In addition,
the unzipping transition occurs at a critical force Fc in the
range 10–20 pN [24,28,32] (of the same order of magnitude
of the critical force for RNA hairpins in Ref. [16]). At this
value of the force, many base pairs of double-stranded DNA
(dsDNA) are “opened,” and the length suddenly increases. As
has been already pointed out [29,33,34], this behavior is a
signature of a first-order transition, with its associated region
of metastability [32].

In this paper we add an external force to our previous
oscillator-spin model [10] and analyze the resulting force-
extension curves. Qualitatively these curves have the same
features as those of the force-extension curves measured in
experiments with DNA, RNA, and other biopolymers de-
scribed above. At subcritical temperatures, our spin-oscillator
system has a first-order phase transition at a critical force Fc

with the oscillator rest state as its order parameter. We find
that the DNA force-extension curves correspond to cycling at
different rates the curves of the first-order phase transition.
As in the experiments, we find a region of metastability in
a certain range of forces, close enough to Fc. Moreover, the
residence time spent at the basin of attraction of both the stable
and metastable states obey an Arrhenius law: Its logarithm is
proportional to F − Fc. A note about terminology: We will
use the terms folded or zipped to denote the shortest value
of the length, and unfolded or unzipped to denote the longest
one. These terms are equivalent in the model, but they should
be properly “translated” to the concrete physical situation at
hand. For instance, folded and unfolded are most appropriate
in the context of protein folding, although they are also used
in the unzipping of RNA hairpins, while zipped or unzipped is
the most adequate for the transition from double-stranded to
single-stranded DNA.

The rest of the paper is as follows. In Sec. II the oscillator-
spin model is motivated in a biological context, and its
equilibrium properties analyzed. The dynamical behavior of
the model is analyzed in Sec. III. The oscillator obeys Newton’s

second law with a mean-field force due to the coupling with
the spins. The latter flip stochastically following Glauber
dynamics at temperature T [42]. This causes the oscillator
position to become a stochastic process. In the limit of fast
spins, the spin-oscillator coupling gives rise to a nonlinear
friction term, which drives the oscillator to equilibrium. In
Sec. IV, we present Monte Carlo simulations of the system
and analyze them in the light of the effective potential acting
on the oscillator. Section V contains the main conclusions of
the present work.

II. THE MODEL

We consider a one-dimensional chain of length L0. There
is a large number N + 1 of “internal” degrees of freedom
sitting at regularly spaced lattice sites that are modeled by
Ising spins. Thus, the distance between spins is d0 = L0/N

(Fig. 1). Assume that we stretch the chain so that its length
becomes L = L0 + �. For the sake of simplicity, we will
assume that the spins are regularly spaced after the stretching,
so that the distance between two neighboring spins changes to
d = d0 + �/N . This assumption amounts to a “mean-field”
approximation. The potential energy of the system is

V(�,σ ) = 1

2
mω2�2 + J (�)

N+1∑
i=1

σiσi+1, (1a)

where

J (�) = J0 − μ� (1b)

is a function of �. The potential V contains a harmonic macro-
scopic elastic term mω�2/2 and a spin energy arising from
a nearest-neighbor interaction. The spin coupling constant J

depends linearly on the separation between sites, and equals J0

for the initial chain length L0. This simple choice is reasonable
for � � L. The interaction between nearest neighbor spins
mimics (in a very simple way) the short-ranged interaction
between the internal degrees of freedom of complex biological
molecules like nucleic acids. We assume that both J0 and μ

are positive. Let us define

x = � − J0

μ
, (2)

such that J (x) vanishes for x = 0. For x < 0 (folded state) the
interaction between the spins is ferromagnetic, whereas for
x > 0 (unfolded state) it is antiferromagnetic. In terms of x, V
becomes

V = 1

2
mω2x2 + Fcx − μx

N+1∑
i=1

σiσi+1, Fc = mω2J0

μ
(3)

except for an irrelevant additive constant. The parameter Fc

has the dimensions of a force. If an external load F is applied

d0

L0

FIG. 1. Sketch of the model described in the main text. The spin
representing the internal degree of freedom at each lattice site is
shown.
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to the system, a new term −Fx is added to (3) so that the
potential energy is now

V = 1

2
mω2x2 − Hx − μx

N+1∑
i=1

σiσi+1, H = F − Fc. (4)

This potential energy is the same as introduced in Ref. [10–12],
except for the extra term −Hx. Interestingly, in the “zero field”
case, our system has a second-order phase transition at a critical
temperature Tc, given by [10–12]

Tc = μ2(N + 1)

mω2kB

, (5)

where kB is Boltzmann’s constant. The rest position x is the
order parameter of the transition: For T > Tc, x = 0, whereas
for T < Tc there are two equally probable equilibrium states
with rest positions x = ±x0 (x0 > 0).

The potential energy (4) has the key ingredients to model
DNA/RNA behavior in unfolding or refolding experiments.
For T < Tc and applied force F < Fc, H < 0 stabilizes the
solution with rest state −x0 (folded state), whereas forF > Fc,
H > 0 and the stable solution has rest state +x0 (unfolded
state). The main effect of the “external field” H is that the
system undergoes a first-order phase transition at H = 0 (F =
Fc) [43]. Thus, Fc is the a critical value of the force F : At any
temperature T < Tc the oscillator rest position as a function
of the force changes abruptly at F = Fc. Furthermore there is
a region of metastability around Fc, as discussed in Sec. II A.

To analyze our model, it is convenient to render its equations
of motion dimensionless first. Let ω−1 be the time unit.
The elastic and the spin term in the potential are of the
same order if the scale of the oscillator position is [x] =
μ(N + 1)/(mω2). The force and the spin term are of the same
order provided the scale of F is [F ] = μ(N + 1), and therefore
the order of magnitude of the potential is [F ][x] = μ2(N +
1)2/(mω2) = (N + 1)kBTc. This scaling is reasonable because
makes V extensive. For the critical temperature Tc to be
size-independent, we must assume that μ scales as (N + 1)−1/2

in the limit of large system size [10–12]. Thus we can define
nondimensional variables according to x∗ = x/[x], t∗ = t/[t],
V∗ = V/[V], . . ., where the units [x], [t], [V], . . . are as
defined in Table I. The dimensionless potential is

V∗ = V
(N + 1)kBTc

= x∗2

2
− H ∗x∗ − x∗

N + 1

N+1∑
i=1

σiσi+1,

(6a)

H ∗ = F ∗ − F ∗
c , (6b)

with

F ∗
c = Fc

μ(N + 1)
= mω2J0

μ2(N + 1)
= J0

kBTc

. (7)

TABLE I. Nondimensional units and parameters.

x t F V θ
μ(N+1)

mω2
1
ω

μ(N + 1) (N + 1)kBTc
T

Tc

We will drop the asterisks in the following (so as not to clutter
our formulas), and from now on every expression will be
written in terms of the dimensionless variables and parameters.

A. Equilibrium state: Effective potential

In equilibrium, the joint probability distribution for
the oscillator position x and the spin configuration σ =
{σ1, . . . ,σN+1} is the canonical distribution, which, in nondi-
mensional variables, is

Peq(x,σ ) = 1

Z
exp[−(N + 1)V(x,σ )/θ ]. (8)

Here Z is a normalization constant. Let us study the equilib-
rium values of the oscillator position x. Then we sum over the
spin variables to obtain the marginal distribution probability

Peq(x) =
∑

σ

Peq(x,σ ) = 1

Z̃
exp[−(N + 1)Veff(x)/θ ], (9)

where Z̃ = 2NZ. In Eq. (9), Veff is an effective potential for
the x variable,

Veff(x) = x2

2
− Hx − θ ln cosh

(x

θ

)
, (10)

whose minima will be the stable equilibrium values of x.
Therefore,

xeq = H + tanh
(xeq

θ

)
(11)

gives the oscillator rest position xeq in equilibrium as a
function of the dimensionless external field H = F − Fc and
temperature θ .

For H = 0, we recover the model analyzed in
Refs. [10–12], in which xeq = 0 is always a solution for
any θ . For θ > 1, it is the only solution; it corresponds to
a maximum of Peq and is therefore stable. At θ = 1 two new
stable equilibria corresponding to two different maxima of Peq

bifurcate from that having xeq = 0. For θ < 1, the positions of
these maxima are ±x(0)

eq . As θ → 1−, we have

x(0)
eq ∼

√
3(1 − θ ) . (12)

On the other hand, for θ → 0+, we have x(0)
eq → 1, which is the

maximum value of x(0)
eq > 0. For H = 0, the two (positive or

negative) equilibrium rest positions ±x(0)
eq are equiprobable

because they correspond to equally deep minima of the
effective potential (10), which is an even function of x for
H = 0.

For H �= 0 and temperatures below critical, θ < 1, the field
term −Hx in Eq. (10) breaks the symmetry between x > 0 and
x < 0, and the effective potential is no longer an even function
of x. If H < 0, the field term favors the negative branch x < 0,
since it gives a negative contribution to the effective potential.
Therefore, we expect to find the system in the “folded” state
x < 0 for low values of the loading force, F � Fc. On the
contrary, for H > 0, the energy of the positive branch x > 0
will be lowered by the field term, stabilizing it. Thus, the
system will be in the “unfolded” state x > 0 for high values
of the loading force, F � Fc.
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Differentiating Eq. (11) with respect to H , we find

∂Hxeq =
[

1 − 1

θ
sech2

(xeq

θ

)]−1

. (13)

The right-hand side of this expression is the reciprocal of the
second derivative of the effective potential, and therefore we
can rewrite (13) as

∂2
xV|x=xeq∂Hxeq = 1. (14)

Then the effective potential has a local minimum, and the
corresponding equilibrium rest position is stable for ∂Hxeq >

0, while the equilibrium rest state is unstable for ∂Hxeq < 0.
Since ∂Hxeq = θ/(θ − 1) for xeq = 0, the zero rest position
of the oscillator is stable at θ > 1 and unstable at subcritical
temperatures θ < 1.

The equilibrium position xeq is a monotonically increasing
function of the applied load F (or the applied field H = F −
Fc) for supercritical temperatures, θ > 1. There is a unique
value of xeq for each value of the applied force F if θ > 1,
and it is stable. As shown in Fig. 2, H is nonmonotonic as
a function of xeq for subcritical temperatures θ < 1: It has a
local maximum at −xb and a local minimum at +xb, with

cosh2
(xb

θ

)
= 1

θ
. (15)

For each value of H between −Hb and +Hb, with

Hb = xb − tanh
(xb

θ

)
, (16)

eq eq

FIG. 2. (Color online) Plot of H vs xeq for θ = 0.5. The values
±Hb between which there are three equilibrium values of the
oscillator position are shown. For a given value of H , −Hb < H <

+Hb, the two locally stable equilibrium points xL and xR (big green
circles) and the unstable one xU (small red circle) are indicated. The
two symmetric stable equilibrium points ±x(0)

eq corresponding to the
zero field case are also shown. The qualitative shape of the curve is
the same for all the subcritical temperatures θ < 1.

there are three possible values of xeq: xU between −xb and xb

is therefore unstable, while the other two, xL < −xb and xR >

xb, are locally stable. The absolute minimum of the potential
corresponds to the value of x having the same sign as the
applied field H . The other local minimum, with sgn(x) �=
sgn(H ), is a metastable state in the thermodynamic sense.
Then we expect to find bistability in the system for |H | < Hb,
i.e., for a given range of loadings |F − Fc| < Hb around the
“critical” force Fc.

III. DYNAMICS

The Hamilton equations of motion corresponding to the
nondimensional Hamiltonian function

H(x,p,σ ) = p2

2
+ V(x,σ ), (17)

with potential energy given by Eq. (6a), are

ẋ = p, ṗ = −∂xV(x,σ ), (18)

so that

ẍ = −x + H + 1

N + 1

N+1∑
i=1

σiσi+1. (19)

According to the stochastic Glauber dynamics, the spins flip
at a rate [42]

Wi(x,σ ) = α

2

[
1 − γ (x)

2
σi(σi−1 + σi+1)

]
, (20a)

γ (x) = tanh

(
2x

θ

)
. (20b)

Here Wi(x,σ ) is the transition rate from configuration σ to
Riσ , the same as σ except for the sign of the ith spin. Since the
oscillator evolution equation (19) includes a term that depends
on the stochastically changing spin configuration, the oscillator
position becomes an stochastic process.

The average values of the spin correlations,

Ci,n = σiσi+n, (21)

satisfy the system of equations

d〈Ci,n〉
dt

= α

[
− 2〈Ci,n〉 + 1

2
〈γ (x)(Ci,n−1 + Ci,n+1

+Ci−1,n+1 + Ci+1,n−1)〉
]
, (22)

for n � 1, with the boundary condition Ci,0 = 1. If the oscilla-
tor position x were time independent, the spins would reach the
equilibrium distribution corresponding to the constant value
x. Then the average spin correlations 〈Ci,n〉 = [tanh(x/θ )]n

would be independent of i due to the spatial translation
invariance. Something similar occurs in the limit of large
system size, N � 1. Both x and the spin correlations Ci,n

become macroscopic self-averaging variables; i.e., they tend to
their respective “macroscopic values,” x̃ and C̃n (independent
of i), which coincide with their averages and are the most
probable values of the corresponding stochastic variables [44].
Splitting both x and the correlations Ci,n in their corresponding
macroscopic and fluctuating parts,

x = x̃ + δx, Ci,n = C̃n + δCi,n, (23)
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where δx and δCi,n are O(N−1/2), Eqs. (19), (22), and (23)
yield the evolution equations,

¨̃x = −x̃ + H + C̃1, (24a)

dC̃n

dt
= α[−2C̃n + γ (̃x)(C̃n−1 + C̃n+1)], n � 1, (24b)

to be solved with C̃0 = 1 and appropriate initial conditions.
In Eq. (24b) we have neglected terms or order 1/N such as
〈(δx)2〉, 〈δxδCi,n〉, etc.

As the spins represent the internal degrees of freedom of
the molecule, we assume that they evolve rapidly compared
with the time scale of the macroscopic degree of freedom
modeled by the oscillator position. Thus, the dimensionless
characteristic attempt rate satisfies α � 1 (recall that the
unit of time has been chosen as ω−1). Thus, we can solve
approximately the system of Eqs. (24b) using a power series
in the small parameter α−1 [45–47], a procedure akin to the
Hilbert method in kinetic theory. If x̃ were time independent,
the spin correlations C̃n would reach the equilibrium values
corresponding to x̃,

C̃n,eq = [C̃1,eq]n, C̃1,eq = tanh

(
x̃

θ

)
, (25)

in the long time limit. The leading order correction of this
result is [10]

C̃1 = C̃1,eq − τ
dC̃1,eq

dt
, (26)

where τ is the spins average relaxation time [45,46]

τ = 1

2α

1 + C̃1
2
eq(

1 − C̃1
2
eq

)2
. (27)

Equation (26) does not depend on the initial condition for C̃1

which is forgotten after a time much shorter than the oscillator
natural period. Inserting Eqs. (25)–(27) into (24a), we obtain

d2x̃

dt2
+ 1

2αθ

1 + tanh2
(

x̃
θ

)
1 − tanh2( x̃

θ
)

dx̃

dt
+ x̃ − H − tanh

( x̃

θ

) = 0,

(28)

which can be rewritten in terms of the nondimensional effective
potential (10) and the friction coefficient

R(̃x) = 1 + tanh2( x̃
θ

)

1 − tanh2( x̃
θ

)
, (29)

as

d2x̃

dt2
= −V ′

eff(̃x) − 1

2αθ
R(̃x)

dx̃

dt
. (30)

This approximate evolution equation gives the dynamics of
the macroscopic value x̃ of the oscillator position for fast
spins: The nonlinear friction term drives the system towards
equilibrium, which corresponds to the minima of Veff. Both
the “renormalization” of the potential to Veff and the nonlinear
friction term are a consequence of the coupling between the
oscillator and the internal degrees of freedom. Equation (30)
ceases to hold as θ → 0+ because the spin relaxation time
given by (27) diverges. A detailed discussion on this point can
be found in Refs. [10,11]. In the remainder of the paper, we

will restrict ourselves to a temperature range for which the
spins change rapidly compared to the oscillator motion and
Eq. (30) holds.

A. Metastability region

For H = 0 and subcritical temperatures, θ < 1, the effec-
tive potential has two equally deep minima at the symmetric
positions ±x(0)

eq of Sec. II, and a maximum at x = 0. For |H | <

Hb (see Fig. 2 for a qualitative picture), the effective potential
has two minima at xR > 0 and xL < 0 and a metastability
region appears. The globally stable position satisfies xiH > 0
(i = R,L), while the other one is a metastable state in the
thermodynamic sense. It must be stressed that this bistability
is present for all the subcritical temperatures θ < 1, it is not
limited to a region near the critical temperature.

Let us analyze in more detail the situation for weak fields.
Expansion of Eq. (11) in powers of H = F − Fc � 1 gives

xR,L = ±x(0)
eq + χH + O(H 2), (31)

where x(0)
eq is given by the solution of Eq. (11) for zero field,

and χ is the zero-field “susceptibility”

χ = ∂Hxeq

∣∣
H=0 =

(
1 − 1

θ
+ x(0)

eq
2

θ

)−1

. (32)

Therefore, xR − xL = 2x(0)
eq to lowest order in H . Close to

the critical temperature, θ → 1−, substitution of Eq. (12) into
(32) yields χ ∼ θ/[2(1 − θ )]. On the other hand, the unstable
position xU changes from zero to

xU = −
(

1

θ
− 1

)
H + O(H 2). (33)

According to (9), the transitions between the two minima are
hindered by the presence of large energy barriers,

BR,L = (N + 1)[Veff(xU ) − Veff(xR,L)], (34)

which are proportional to the system size N + 1. For H = 0,
both equilibrium states have the same energy barrier,

B(0) = −(N + 1)Veff
(
x(0)

eq

)
> 0. (35)

For H �= 0, the barrier corresponding to the stable equilibrium
point verifying xiH > 0 (i = R,L) is larger than the one
for the metastable equilibrium point. The barrier from the
metastable state tends to zero as |H | → Hb because xU and the
metastable equilibrium position (xL for H > 0, xR for H < 0)
coalesce in that limit. The maximum effective potential at xU

separates the basins of attraction of the minima at xL and
xR . The system spends long periods of time oscillating in the
vicinity of either xL or xR until it is able to hop to the other
minimum via a thermally activated process. The residence
times in each basin of attraction increase exponentially with
N + 1, and we have to consider a system of moderate size in
order to see hopping between the two minima on a reasonable
time scale.

Let us estimate the barrier height for weak fields. From
Eqs. (10) and (31), we have

Veff(xR,L) = Veff
(
x(0)

eq

) ∓ Hx(0)
eq + O(H 2), (36)
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while Veff(xU ) = O(H 2). In Eq. (36) and for the rest of this
section, the upper sign corresponds to xR and the lower sign
to xL. The respective barriers from the equilibrium states xR,L

defined in Eq. (34) are

BR,L � B(0) ± (N + 1)Hx(0)
eq . (37)

The residence times in the respective basins of the minima
should have the Arrhenius form [32],

τR,L = τ0 exp(BR,L/θ ), (38)

where τ0 is some characteristic time. By inserting Eq. (37) into
(38), we get

τR,L = τc exp

[
± (N + 1)x(0)

eq

θ
H

]
, (39)

where τc = τ0 exp(B(0)/θ ) is the residence time for zero field in
each basin (the same for them both). Equation (39) is the main
result of this section; we should stress that it is valid for weak
fields H � 1, but (N + 1)H can be of the order of unity or
even a large number. For H > 0, we have τR > τL, because xR

is the globally stable state, while for H < 0 it is τR < τL, since
xR is the metastable state in that case. Interestingly, the ratio
of the average lifetimes τR/τL gives the so-called equilibrium
constant K for folding and unfolding at that force value [16].
Therefore, for our model we arrive at

K ≡ τR

τL

= exp

[
2(N + 1)x(0)

eq

θ
H

]
, H = F − Fc, (40)

ln K is a linear function of the applied force F . A completely
analogous behavior has been observed experimentally [16].
The exponent in Eq. (40) is simply N + 1 times the difference
of values of the effective potential (which plays the role of the
free energy per particle) between both states, as readily seen
by making use of Eq. (36).

IV. NUMERICAL RESULTS

We have performed Monte Carlo simulations of the system
dynamics introduced above. In all the cases presented here,
the dimensionless temperature has been chosen to be θ = 0.9.
The qualitative shape of the equilibrium H versus x curve is
similar to the one shown in Fig. 2. For θ = 0.9, the oscillator
rest position at equilibrium and zero field is ±x(0)

eq � ±0.525,
as given by Eq. (11). Interestingly, the approximation in
Eq. (12), which is expected to be valid very close to the critical
temperature, gives quite a good estimate x(0)

eq � 0.547. The
points at which the curve H versus x has either a maximum or
a minimum are ±xb = ±0.295; the corresponding values of
the field are ∓Hb = ∓2.15 × 10−2. There is metastability for
applied fields in the interval |H | < Hb.

A. Force-extension curves

Let us analyze the force extension curves of the model. The
pulling-pushing cycle is as follows. We start at the equilibrium
configuration corresponding to xmin < 0 (folded state), so that
the initial value of the field is Hmin = xmin − tanh(xmin/θ )
given by Eq. (11). We pull the system by a stepwise increment
of the field: At each step, the field is increased by �H , and

then the system is allowed to evolve during a given time �t . At
the end of this period, we record the oscillator position x. Then
we increase again the field by �H and continue the process
in the same vein. The pulling process ends when we reach
a positive value of the field Hmax = −Hmin. Then we start
to push back, decreasing the field by �H at each step, until
we reach again the minimum field value Hmin. As during the
pulling process, we record the value of x at fixed H after the
evolution time �t . This process is completely analogous to
that carried out in unzipping experiments with biomolecules.

Figure 3 shows some typical pulling-pushing cycles with
different loading rates �H/�t . We have used a system with
N + 1 = 1000 spins, and a spin attempt rate α = 4, large
enough for the spins to be fast as compared to the oscillator
[10]. For all the curves, the minimum value of the oscillator
position is xmin = −1.5, and the field increment at each step
is �H = 10−3, which is smaller than Hb, and it allows the
system to visit the metastability region. The system behavior
is qualitatively similar for other parameter values, as long
as the temperature θ < 1. The loading rate is changed by
varying the amount of time �t at each step. The red (solid)
lines correspond to the unfolding process (�t = 5, 100, and
104 from top to bottom), and the green (dashed) lines to
the refolding process (�t = 5, 100, and 104 from bottom to
top). These numerical curves are qualitatively similar to those
observed in unzipping experiments with nucleic acids [16].
There is always some hysteresis as the unfolding and folding
curves are not superimposed. The area of the hysteresis cycle
increases with the loading rate, being large for the largest
loading rate considered and almost zero for the smallest one.
The main difference with the experimental results is that, in
our model, the extension of the molecule is not linked to a
dropping of the loading force (in order to see this effect in
a real experiment, see, for instance, Figs. 2(A) and 2(E) of
Ref. [16]). In the experiments of Ref. [16], the total length
between the beads localizing the molecule is controlled. This

x

H

10.50-0.5-1

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

FIG. 3. (Color online) Hysteresis cycles for different values of
the loading rate �H/�t . The red (solid) lines correspond to the
unfolding process (�t = 5, 100, and 104 from top to bottom), and
the green (dashed) lines to the refolding process (�t = 5, 100, and
104 from bottom to top). The H vs x curve at equilibrium is plotted
with blue stars.
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corresponds to fixing the length L in our model, not the load
given by H as we have done. When the force is externally
controlled in experiments, there is no drop of the loading
force at the extension transition, and the hysteresis cycle de-
scribed by the molecule extension is completely analogous to
ours [25].

Our numerical results can be explained as follows. As
depicted in Fig. 2 and observed in the last paragraph of
Sec. II A, for |H | > Hb we have a unique stable equilibrium
point for |H | > Hb, the zipped state xeq < −xb < 0 for H <

−Hb < 0 and the unzipped state xeq > +xb > 0 for H > Hb.
For |H | < Hb, there are two (locally) stable rest positions
xL < 0 and xR > 0 and an unstable position xU between
them. The true thermodynamic equilibrium state of the system
corresponding to the global minimum of the potential satisfies
xiH > 0 (i = L,R), whereas the metastable state has rest
position such that xiH < 0.

Let us consider again the pulling processes in Fig. 3, starting
from the equilibrium configuration corresponding to a low
value of the applied force, H < 0, |H | � |Hb|. When we
increase the force at a moderate rate, the oscillator follows
the equilibrium curve for negative values of H , with xeq < 0,
because its relaxation time is small compared to �t , and the
friction term in Eq. (30) can drive it to equilibrium. When
the field reaches H = 0 (or a very small value), the stable
equilibrium position of the oscillator changes discontinuously
from −x(0)

eq to x(0)
eq . The important question is now whether

�t insufficiently long for the oscillator position to overcome
the energy barrier B(0) at zero field, given by Eq. (35). If the
answer is positive, the system jumps during the time interval
�t to the other stable branch where x > 0, and it stays on
that branch when the force is further increased. In the pushing
back experiment, the system reverses its path and the behavior
is almost reversible. This behavior is observed for the largest
value �t = 104, corresponding to a loading rate �H/�t =
10−7. For larger pulling rates, such as the other ones considered
in the same figure, the system does not have enough time to
jump over the energy barrier at H = 0. Therefore, x moves
over the metastable branch with xiH < 0, until the barrier
decreases sufficiently for the oscillator position to jump to the
most stable branch, with x > 0. Of course, the actual part of the
metastable region visited by the system depends on the loading
rate. For the highest loading rate considered, corresponding to
�t = 5, the system visits the whole metastable branch up
to the maximum. A similar line of reasoning explains the
behavior observed in the refolding curve. It is interesting to
note that the hysteresis cycle found for high loading rates is not
a nonequilibrium behavior, as previously suggested [16–19],
but it arises from the sampling of the regions of metastability
for subcritical temperatures.

A pulling experiment corresponding to a rate even slower
than the smallest loading rate in Fig. 3 is plotted in Fig. 4.
Again, the minimum value of the oscillator position has been
chosen to be xmin = −1.5, and the field increment at each step
�H = 10−3, but the time spent by the system at each value
of the force is very large, namely, �t = 105. For the sake of
clarity, the region around the critical force F = Fc (H = 0) has
been zoomed in. We observe several jumps between the folded
(x < 0) and unfolded (x > 0) states for |H | = |F − Fc| <

5 × 10−3. This behavior is a clear signature of the bistability
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FIG. 4. (Color online) Detail of the metastability region |H | �
Hb for a pulling experiment with a very slow loading rate, �H = 10−3

and �t = 105. Hopping between the zipped and unzipped state is
clearly seen for |H | = |F − Fc| < 5 × 10−3.

shown by our system in the region |H | < Hb. At zero field,
the energy barriers between the two stable states are identical,
τR = τL = τc in (39), and the reverse transition is equally
likely. For �t � τc, the oscillator position has enough time to
surpass the energy barriers several times, and it may go back
and forth from one state to the other, as shown in Fig. 4.

B. Constant force experiments

We have also carried out Monte Carlo simulations at
constant force. We have chosen θ = 0.9, a small value of
the field, H = 3 × 10−3 < Hb, and a smaller size, N + 1 =
500, in order to keep the simulation time under control.
Equation (11) gives the two locally stable oscillator rest
positions xL = −0.509 (metastable) and xR = 0.540 (globally
stable), separated by the unstable oscillator position xU =
−0.027. These values agree with the weak field expressions
(31)–(33). Figure 5 shows a time trace of the system. The
oscillator jumps stochastically between the two values xL and
xR corresponding to the two locally stable equilibrium points.
The system spends more time in the stable state xR (recall
H = 3 × 10−3 > 0), because it has to surpass a larger energy
barrier so as to escape therefrom.

In order to check Eqs. (39) or (40) for the residence times
in each basin of attraction, we have measured the average time
spent in each basin for different values of the applied field in the
metastability region |H | < Hb. We find that ln τR,L increases
linearly with H , with a slope that agrees with the theoretical
prediction of Eq. (39). We have plotted the ratio of average
lifetimes K = τR/τL defined in Eq. (40) as a function of the
applied field H in Fig. 6. Therein, ln K shows a linear behavior,
similarly to that seen in actual experiments [16]. The slope m =
d ln K/dH obtained numerically, m = 542.5 agrees well with
the theoretical prediction calculated from Eq. (40), m = 583.8.
This result strongly supports the physical picture developed in
Sec. III A for the behavior of the system in the metastability
region, both from a qualitative and a quantitative point of
view.
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FIG. 5. (Color online) Time trace of the oscillator position for a
constant force experiment in the metastability region, namely, H =
3 × 10−3. Hopping between the two locally stable equilibrium points
of the oscillator is observed.

V. CONCLUSIONS

We have modeled biomolecules’ folding and unfolding
under an external load force by a macroscopic linear oscillator
coupled with internal degrees of freedom represented by
Ising spins that undergo Glauber dynamics. The simple
mean-field character of the model prevents us from doing
quantitative comparisons with the real experiments, and we
have to settle for qualitative comparisons. We cannot simulate
position-controlled experiments, only force-controlled ones.
To overcome the limitations of this simple system, we should
consider more realistic models. One possibility is to use
spin-string models, in which a discretized string is coupled
to Ising-like variables. These models do not have a mean-field
character because the couplings between the string variables
and the spins are local, thereby exhibiting a much richer
and more complex phenomenology [9]. In the context of
DNA unzipping, it is worth considering extensions of the

H
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FIG. 6. (Color online) Logarithm of the ratio K ≡ τR/τL

(squares) of the residence times for the two equilibrium states xR,L in
the metastability region. The number of spins is N + 1 = 500. Also
plotted is the best fit to the Arrhenius law (solid line) [Eq. (40)].

well-known Poland-Scheraga and Peyrard-Bishop models
[29,33], which take into account the base pairing between
the different DNA strands. This ingredient, which is missing
in the spin oscillator model presented here, is crucial for
understanding the importance of the entropic effect due to
bubble formation in DNA denaturation.

Despite its shortcomings, the present spin-oscillator model
is an useful minimal model to understand experiments in
which biomolecules are unzipped by mechanical force. This
simple model allows us to obtain exact analytical results from
which a physically appealing and general picture arises. The
hysteresis cycles show that the system exhibits a metastable
equilibrium behavior in the unzipping experiments, not a
true nonequilibrium behavior, as was suggested previously
[16–19]. In this regard, the unfolding and refolding cycles are
quite different from the truly nonequilibrium hysteresis cycles
exhibited by glass formers in cooling and heating processes
(see Refs. [46,47] and references therein). In the cooling pro-
cess, the glass formers depart from the equilibrium curve and
end in a far from equilibrium state at low temperatures. In the
reheating process, they return to equilibrium following a curve
different from the cooling one, which typically overshoots the
equilibrium curve. In contrast with this behavior, the hysteresis
cycles in our system arise because the metastable equilibrium
branches of the x versus H curve are swept at high loading
rate (such that the system does not have enough time to find
the true minimum of the potential in the bistable field interval
|H | < Hb). Due to the shape of the equilibrium x versus H

curve in Fig. 2, the system unzips at a higher value of the field
than the one at which it rezips. We expect that this general
picture remains valid for more realistic models and/or actual
biomolecules.

As in the experiments, the system hops between the zipped
and the unzipped state at very small loading rates. It has
then enough time to surpass the energy barrier separating
the unfolded and the folded states. When the force is held
constant with |H | < Hb (bistable region), the system hops
back and forth between the two possible equilibrium values
of the oscillator position. The average lifetimes show an
Arrhenius-like dependence on the applied field H = F − Fc,
again in agreement with the behavior of real systems.

For all subcritical temperatures T < Tc, these behaviors
occur due to the first-order transition and its associated region
of metastability. The phase transition is a consequence of the
coupling between the oscillator and the one-dimensional spin
system, which introduces an effectively long-range interaction
between the spins. Similar hidden one-dimensional long-range
effective correlations enable phase transitions in biological
systems [48].
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