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Closed model for granular compaction under weak tapping

J. Javier Brey* and A. Prados†
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~Received 25 June 2003; published 20 November 2003!

A one-dimensional lattice model is formulated to study tapping dynamics and the long time steady distri-
bution in granular media. The dynamics conserves the number of particles in the system, and density changes
are associated with the creation and destruction of empty sites. The model is shown to be consistent with
Edwards’ thermodynamics theory of powders. The relationship with lattice models in which the number of
particles is not conserved is discussed.
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I. INTRODUCTION

In the last few years, a great deal of effort is being ma
trying to understand the physical mechanisms leading
compaction in weakly vibrated granular systems, and
properties of the steady state eventually reached in the
time limit. This has been prompted and stimulated by
seminal papers of the Chicago group reporting experime
results of compaction@1–3#. Granular compaction consist
of the increase in the density, starting from an initial lo
density state, as a consequence of external excitations,
ally vertical shakes or taps. Every tap is followed by a fr
relaxation, so that in the process the system goes throu
series of blocked configurations.

Starting from an ‘‘ergodic hypothesis’’ for powders, bas
on the extensive, global, character of the dynamics indu
by shaking, Edwards and co-workers@4# have formulated a
microscopic theory for the steady state of vibrated granu
media that is similar to conventional statistical mechan
Moreover, they assume that the steady state is fully cha
terized by the volume of the system, which then plays a r
analogous to that of the energy in the usual thermal syste
This provides the ‘‘microcanonical’’ description. The asso
ated ‘‘canonical’’ probability distribution is obtained b
maximizing the statistical entropy under the condition th
the average volume is given. Of course, the probability o
given configuration depends only on its volume. The para
eter conjugated of the volume, similar to the thermal te
perature, was namedcompactivityby the authors in Ref.@4#.

Up to now, there has been no definite experimental tes
the above thermodynamic theory of powders. The meas
of the compactivity, or the entropy, of a granular syste
seems a rather difficult task not only in real experiments
also in realistic models, although some procedures have b
proposed. They are based on the determination of the a
age volume and its fluctuations as a function of the con
parameter of the shaking, e.g., the vibration intensity@1,5#.
From these two functions, the compactivity can be obtain
in principle, by integration, although this program is hard
carry out in practice due to the uncertainty of the measu
ments. Another alternative way, this one based on the ge
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alization of the Einstein relation between diffusivity and m
bility, has been recently discussed and analyzed in a sys
of inelastic hard spheres by means of molecular dynam
simulations@6#.

On the other hand, the validity of Edwards’ theory h
been studied in the context of several simple models, w
different underlying physical mechanisms. It has been fou
that the results for Tetris and spin-glass models@7–9# are
consistent with the theory. In these systems, the numbe
particles is fixed but most of the results are numerical, due
the complexity of the models used. One-dimensional Is
models, with or without kinetic constrains, have also be
considered@10–14#, because they are simple enough as
allow a detailed analytical study in many cases. For we
tapping, agreement with Edwards’ theory was found aga
although discrepancies show up in the limit of strong ta
ping. Quite interestingly, all the Ising-like models in Ref
@10–14# have been formulated as open systems. The num
of particles does not remain constant, but it changes al
the compaction process, as a consequence of adsorp
desorption events from a theoretical particle reservoir in c
tact with the system. Instead, it is the volume that is k
fixed, in this way leading to the variation of the densi
Then, although it is true that the steady distribution of the
models can be considered as a ‘‘grand canonical’’ ensem
generalization of the theory, it is also clear that it is n
characterized by the compactivity~temperature! but by an-
other parameter playing the role of the chemical potent
This difference is evidently relevant when trying to rela
any of them with the characteristics of the vibration proce
e.g., its intensity. Beyond that, the distinction might beco
conceptually crucial when dealing with granular mixtur
and segregation phenomena. In that case, each of the d
ent species is going to have its own analogous of the che
cal potential parameter@15#. Whether or not it is also neede
to consider different compactivities~temperatures!, as it has
been suggested recently@16#, is a different question.

The aim of this paper is to present a closed, const
number of particles, one-dimensional lattice model for co
paction. Again the model is simple enough as to be anal
cally tractable. During the tapping process, particles diffu
and also empty sites~holes! are created and destroyed in th
system, according to well defined rules. The latter are cho
to mimic, in a crude way, what happens in real compact
experiments. More precisely, the model tries to represe
©2003 The American Physical Society02-1
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vertical section of a vibrated two-dimensional system. In
shake, the length of the section can increase because e
regions~holes! are created between the particles. These
gions can be used for the particles to diffuse. Afterwar
once the shake has ended, the system tries to compact d
the action of gravity. This is accomplished in the model
means of the elimination of holes. But, because of the g
metrical constrains following from excluded volume effec
of the hard particles in the neighboring vertical sections,
all the holes can be destroyed in the free evolution. O
large enough empty regions can be reduced. As a co
quence of the combination of a tap and the next free re
ation, the length can increase in some regions of the sys
and decrease in others. The net balance determines the g
behavior of the system in the compaction process.

The plan of the paper is as follows. In Sec. II, the mod
is formulated at the mesoscopic level of description
means of a master equation for the transition probabi
This equation is exactly solved for the steady distribution
Sec. III, and the associated macroscopic description is
cussed in Sec. IV, where it is shown to be in agreement w
Edwards’ thermodynamic description. The compactivity
identified in terms of the parameters characterizing the
soscopic dynamics of the model. Also, the distribution
domains is derived there. Section V contains a detailed
cussion of the relationship between closed and open mod
and between the compactivity and fugacity parameters.
paper ends with a short summary and some additional
cussions.

II. THE MODEL

We consider a one-dimensional lattice havingN11 par-
ticles. The number of sites in the lattice is variable a
changes with time accordingly with the rules to be specifi
below. Those sites that are not occupied by a particle are
to be empty or, equivalently, being a hole.

The dynamics of the system is defined trying to mim
tapping experiments for the study of compaction in granu
media@1–3#. These experiments typically involve two diffe
ent series of processes of quite different nature. The sys
is submitted to taps or pulses separated by time intervals
which the system is allowed to relax freely, until bein
trapped in a metastable configuration. Therefore, each
starts in the metastable configuration reached in the prev
free relaxation. The taps are characterized by their dura
and their amplitude.

Physically, the effect of the taps is to decrease the lo
density in some regions of the system, moving grains fr
their metastable positions, and allowing a posterior reord
ing in the free relaxation. We will specify first the dynami
during the relaxation processes, since it leads to identify
the possible metastable, or blocked, configurations of
model. It will be assumed that in the free relaxation, t
system tries to reduce its length by eliminating some of
empty sites of the lattice. More precisely, whenever there
group of nearest neighbor holes, all except one are el
nated. These are the only processes taking place in the
relaxation, and have probability one. Therefore, the num
05130
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of particles is conserved in the relaxation, but the length
the system, measured by the total number of sites, is in g
eral reduced.

As a consequence of the above dynamics for relaxat
the metastable configurations of the model are character
by having all the holes surrounded by two particles, i.e.,
holes are isolated. In order to displace the system from
of these states, it has to be externally perturbed, for insta
by means of a tap. To complete the description of the dyna
ics of our model in a compaction experiment, the possi
transitions taking place during a tap and starting at a m
stable configuration, have to be identified and their probab
ties specified. Two kinds of elementary processes will
considered. Each of them will be discussed separately in
following.

First, a particle can be transiently desorbed from the
tice and posteriorly adsorbed in an empty site in the nei
borhood of its previous position. This process is restricted
the following rule. A particle can be desorbed from a s
during the tap only if at least one of its nearest neighbor s
is empty. More precisely, the probability for these events
proportional to the number of nearest neighbor holes of
particle being desorbed. This restriction tries to naive
model the short range constrains making difficult structu
rearrangements in granular materials. Then, during a tap
probability of desorption of a particle having only one nea
est neighbor hole isa, while it is 2a if it is surrounded by
two holes. Afterwards, the particle is reabsorbed either in
own original site or in any of the nearest neighbor hol
with a probability that is proportional to the number of hol
next to the site considered. In Fig. 1, cases~a! and ~b! in-
volve processes starting with the transitory desorption o
particle. Particles and holes are represented by circles
crosses, respectively. In the case referred to as~b! in the
figure, the elimination of a hole happening in the next fr
evolution has been also indicated. It is seen that the net re
of the series of events taking place during the tap and the
relaxation is, in this case, the destruction of a lattice s
with the consequent decrease of the lattice length.

During the tap, the creation of an empty site or hole
also possible, but only between two nearest neighbor
ticles located at one of the ends of a domain of at least
particles. The probability of the corresponding element
events, referred to as case~c! in Fig. 1, isb. Note that these
processes of hole creation are just the inverse of those

O X O O

O O X O
O X O X Oβ

O O X O 

O X O O

O X X O O X O O

O X X O O O X O 

O X O X O
O X X O O

O O X X O

O X O O

O O X O

1/2

1/2

1/4

1/4

(a)

(b)

α

α

2α
O X X X O

(c)

FIG. 1. Elementary rearrangements of the system in a single
and the following free relaxation in the weak vibration limit. Th
trajectories leading to a final state identical to the initial one are
shown.
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ducing the destruction of a hole.
Furthermore, it will be assumed that only one transiti

takes place at the most in every region on the system du
each tap, i.e., no site is involved into two different proces
in the same perturbation of the system. Physically, this
pothesis implies to consider the limit of weak and short ta
@10,14#. In summary, the dynamics of the model in the sha
ing process is defined by the effective transitions given
Table I, describing the combined events associated with a
and the next free relaxation. The transitions only affect
clusters shown, and their probabilities are independent of
configuration of the remainder of the system.

To formulate the model in a more mathematical langua
and also to characterize the metastable configurations,
convenient to define a set of variablesn[$n1 , . . . ,nN%. The
variableni takes the value unity if there is a hole next to t
right of particlei, while it vanishes if there is no hole, i.e.,
particlesi and i 11 are in nearest neighbor sites. By defin
tion, it is assumed that there is no hole to the left of parti
1 nor to the right of particleN11. Both particles define the
boundaries of the system. It is easily realized that this pr
erty is preserved by the dynamics of the system under
ping, as defined above. Then, we have established a on
one relationship between a set ofN variables taking values 0
and 1 and the metastable configurations of the model.

The transition probabilities in Table I can be express
in terms of the ni variables. Denoting Rin
[$n1 , . . . ,Rini , . . . ,nN%, with Rini512ni , the probabil-
ity W(n8un) of the several events going from configurationn
to configurationn8 in the effective dynamics describin
shaking process are

W~RiRi 11nun!5
a

2
@ni~12ni 11!1~12ni !ni 11#, ~1!

W~Rinun!5
a

2
~ni 21ni1nini 11!1b@ni 21~12ni !

1~12ni !ni 11#. ~2!

Equation~1! corresponds to diffusive events, while the fir
and second terms on the right-hand side~rhs! of Eq. ~2!
correspond to the destruction and creation of holes, res
tively. The Markov process defined by these transition pr
abilities is irreducible, i.e., all the metastable configuratio
of the lattice are connected by a chain of transitions w
nonzero probability. To verify this property, we begin b

TABLE I. Transition probabilities for the elementary rearrang
ments taking place in a single tap in the weak vibration regime

Initial state Final state Probability

OOXO OXOO a/2
OXOO OOXO a/2
OXOXO OXOO a/2
OXOXO OOXO a/2
OXOO OXOXO b
OOXO OXOXO b
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noting that any metastable configuration can be conne
with the configuration characterized by having just a h
located next to the right of a given fixed particle. This
because holes can be moved through particles by mean
diffusive events, so that the two consecutive holes can
ways be located on both sides of the same particle. Af
wards, one of the holes can be eliminated by a type~b! event
of Fig. 1. This procedure can be repeated until there is on
hole in the lattice, which can then be diffused to the desi
site. This proves the above statement. But, since each e
tive transition have its inverse also with nonzero probabil
the above paths can also be reversed, concluding that al
metastable configurations are connected. The irreducib
property of the Markov process implies that there is a uniq
steady probability distribution for the process@17#. This dis-
tribution will be explicitly obtained in the following section

In Fig. 2, the relaxation of the particle density is shown
a function of the ‘‘scaled time’’t5an, wheren is the num-
ber of taps before measuring the density for different val
of a andb. The initial state for all the curves was the lea
dense metastable configuration,r50.5, in which there is a
hole between every two particles. In all the reported ca
b!a, so that processes decreasing the density of particles
only relevant when the system is near the most comp
state,r51. Moreover, asb!a!1, there is a universal behav
ior up to a very large number of tapst5O(a21), i.e., an
5O(1). For longer times, when processes decreasing
density become relevant,n*O(b21), the system ap-
proaches a steady state characterized by the ratiob/a. The
observed universal scaled curve is very well described by
four-parameter empirical law

r~ t !5r`2
dr`

11B lnS 11
t

tc
D , ~3!

103 102 101 100 101 102 103 104 105

αn

0.5

0.6

0.7

0.8

0.9

1

ρ

FIG. 2. Evolution of the density of particles, as a function of t
scaled time defined in the text. The curves correspond to the pai
values a51023, b51025 ~circles!, a51022, b5531025

~squares!, anda51022, b5531026 ~diamonds!, while the solid
line is the best inverse logarithmic fit, Eq.~3!, with the parameters
given in the text.
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with r`51.04, dr`50.54, B51.17, andtc52.63. As it is
the case with the experimental data@1# and also with numeri-
cal results from other simple models@10,18#, the logarithmic
fit is not expected to give the correct asymptotic density
particles. In fact, in our case it isr`.1, which is clearly
unphysical. A similar behavior ofr` was found in Ref.@10#.
Also, values ofr` larger than the random close packing lim
have been reported from the fit of experimental data@1#.

III. THE STEADY DISTRIBUTION

To find the steady distribution of the Markov process d
scribing the effective dynamics of the model, we are going
assume it verifies detailed balance. Of course, this has t
justified a posterioriby showing that such a distribution ex
ists. Therefore, we look for a time-independent distribut
p(s)(n) having the property

W~n8un!p(s)~n!5W~nun8!p(s)~n8! ~4!

for all configurationsn andn8. A direct first consequence o
this equation is that all the metastable configurations with
same number of holes have the same probability in
steady state. This follows from the fact that they are c
nected by diffusive events and diffusion is isotropic in t
effective dynamics, as seen in Table I. Therefore, the dis
bution function verifying Eq.~4! can only depend on the
number of holes

NH5(
i

N

ni , ~5!

in the configuration, but not on their spatial distribution. S
we can write

pNH

(s) ~n!5
f ~NH!

Z
, ~6!

where the number of holes,NH , in the configurationn has
been made explicit in the notation,f (NH) is a function to be
determined, andZ denotes a normalization constant,

Z5(
n

f ~NH!. ~7!

Still remains to be analyzed, if Eq.~6! can be made compat
ible with Eq. ~4!, when particularized for effective even
increasing~and decreasing! the number of holes. The latte
reads

bpNH

(s) ~n!5
a

2
pNH11

(s) ~n8!. ~8!

Heren8 is a configuration differing fromn by the creation of
a hole. Use of Eq.~6! gives

f ~NH11!

f ~NH!
5

2b

a
~9!

and, by iteration,
05130
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f ~NH!5CS 2b

a D NH

, ~10!

for NH>1, C being an arbitrary constant that will be take
equal to unity. In this way, we have proven that the syst
has the property of detailed balance and that its steady
tribution is given by

pNH

(s) ~n!5
g2NH

Z
, ~11!

Z5(
n

g2NH5 (
NH51

N

VN~NH!g2NH, ~12!

where g5a/2b and VN(NH) is the number of metastabl
configurations of the lattice havingNH holes and, of course
N11 particles. It is worth remarking that no approximatio
has been done in order to derive the steady distribution,
~11!, i.e, it is valid for any value ofg. The steady average
number of holes and its dispersion can be evaluated froZ
by

^NH&s[(
n

NHpNH

(s) ~n!52
] ln Z

] ln g
, ~13!

^~DNH!2&s[^NH
2 &s2^NH&s

25
]2ln Z

]~ ln g!2
52

]^NH&s

] ln g
.

~14!

A simple combinatorial argument gives

VN~NH!5
N!

NH! ~N2NH!!
~15!

and substitution of this expression into Eq.~12! yields

Z5S 11
1

g D N

21. ~16!

Therefore, it follows by application of Eq.~13! that, in the
limit of large N,

^NH&s5
N

11g
. ~17!

The right-hand side of Eq.~17! is a monotonic decreasin
function ofg for fixed number of particlesN, i.e., the length
of the system decreases asg increases. Therefore,g21 plays
a role similar to the vibration intensity in real granular e
periments of compaction in the model. It follows that, in t
physical image depicted by the present model, the proba
ity of diffusion processa is expected to grow faster with th
vibration intensity than the probability of creation of hole
b, at least in the weak tapping limit.

The length~volume! of a configuration is given by

L5NH1N, ~18!

and the average particle density is
2-4
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r (s)5
N

^L&s
5

N

^NH&s1N
5

11g

21g
. ~19!

In Fig. 3, the numerical values for the steady density of p
ticles, obtained by Monte Carlo simulation of the model, a
compared with the theoretical prediction, Eq.~19!, and an
excellent agreement is found. The specific length per p
ticle, in site units, is the inverse of the particle density,

^ l &s[
N1^NH&s

N
5

21g

11g
. ~20!

Its dispersion is obtained from Eqs.~14! and ~16!,

N^~D l !2&s5~22^ l &s!~^ l &s21!, ~21!

presenting a maximum for̂l &s53/2, i.e., when the averag
number of holes isN/2 and the density of particlesr (s)

52/3, i.e.,g51. The numerical evaluation of the length flu
tuations is compared with the theoretical prediction, as gi
by Eq. ~21!, in Fig. 4. Again, a very good agreement is o
served for the range of ‘‘vibration intensities’’g21 plotted.
Outside this window of vibration intensities, the length flu
tuations are very small and, therefore, rather hard to mea
in the simulations.

IV. THERMODYNAMIC DESCRIPTION

Following Edwards and co-workers ideas@4#, the steady
distribution ~11! can be expressed in the canonical form

pNH

(s) ~n!5
e2NH /X

Z
, Z5(

NH

VN~NH!e2NH /X, ~22!

where

X5~ ln g!21 ~23!

102 101 100 101

γ−1

0.5

0.6

0.7

0.8

0.9

1

ρ(s)

FIG. 3. Comparison between the numerical values of the ste
density of particles and the theoretical prediction given by Eq.~19!.
05130
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is the so-called compactivity. It is the conjugated thermod
namic parameter of the volume in gently vibrated granu
systems, in an analogous way as the temperature is the
jugate of the energy in usual thermal systems. Note that
Eq. ~22!, the ratioNH /X can be replaced in both the numer
tor and the denominator byL/X, whereL is the length~vol-
ume! of the configuration, as defined in Eq.~18!. The struc-
ture of the above steady distribution is consistent with
two main ingredients of Edwards’ theory, namely, that t
measure over metastable configurations is flat, and that t
is a unique parameter the volume, characterizing the ma
scopic state of the system. Let us point out that, very
cently, the theory has been extended to include several m
roscopic control parameters, in an effort to explain t
discrepancies observed in some models with strong tap
@12,19#, and also segregation patterns in binary models@16#.
It is clear that such an extension does not apply to our mo
which is designed to describe compaction in one-compon
systems under weak tapping. In the same context, the exp
sion of the compactivity in Eq.~23! deserves some com
ments. AlthoughX can be formally negative, for valuesg,1,
it is quite doubtful that this fact be physically relevant, sin
this range of values ofg corresponds to strong tapping, lea
ing to low stationary densities, namely, with an average nu
ber of holeŝ NH&s.N/2. The possibility of negative value
of the compactivity has been also found in other simple m
els @10,20#, and it is associated with the existence of a ma
mum length for the metastable configurations.

In the limit g→`, i.e., asymptotically weak tapping, th
steady concentration of particles,r (s), given by Eq.~19! can
be approximated by

r (s).12
1

g
, ~24!

and, using the definition in Eq.~23!,

X2152 ln@12r (s)#. ~25!

dy

10
1 100 101

γ−1

0

0.05

0.1

0.15

0.2

0.25

0.3

N
 <

(∆
l)

2 >
s

FIG. 4. Comparison between the numerical evaluation of
length fluctuations and the theoretical prediction given by Eq.~21!.
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This relation between the compactivity and the steady d
sity has also been found in a model with facilitated dynam
having a variable number of particles and fixed volume@10#,
and a similar behavior has been reported from the analys
experimental data@3#.

An ‘‘entropy’’ S associated with the distributionp(s) can
be defined in the usual way,

S52(
n

p(s)~n!ln p(s)~n!, ~26!

and use of Eq.~22! gives

S5
^NH&s

X
1 ln Z. ~27!

Taking into account Eq.~13!, it is easily verified that

]S

]^L&s
5

]S

]^NH&s
5

1

X
, ~28!

consistently with the physical meaning of the compactiv
as discussed above. Given that the macroscopic state o
system is characterized by a single parameter, it is possib
express the entropy in terms of only the density of partic
or the intensity parameterg, or the compactivity. Then, for
instance, in the limit of largeN the entropy can be written a

S

N
5

1

X~11e1/X!
1 ln

11e1/X

e1/X
. ~29!

In addition to the global properties considered up to no
it is also possible to obtain information about the dom
structure of the steady configurations. In particular, we
going to derive here the probability distribution for the num
ber of particles in a domain. A domain of sizer is defined as
a cluster ofr particles, i.e., two holes withr particles in
between. First, we consider the probabilityFr

(s) of finding a
local domain of sizer,

Fr
(s)[^nk~12nk11!•••~12nk1r 21!nk1r&s , ~30!

with r<1. Use of Eqs.~11! and ~15! yields

Fr
(s)5

1

Z (
NH50

N2r 21

VN2r~NH!g222NH5g22S g

11g D r 11

,

~31!

where the limit of largeN has been considered once aga
Then, the probability of a domain of sizer, P(r ), is given by
the conditional probability of finding a cluster ofr consecu-
tive particles plus a hole to the right of a given hole, i.e.,

P~r !5
Fr

(s)

^nk&s
5

N

^NH&s
Fr

(s)5
g r 21

~11g!r
. ~32!

This distribution is correctly normalized:
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`

P~r !51. ~33!

It is instructive to express the distribution of domain sizes
terms of the average length per particle,^ l &s . This is easily
accomplished by means of Eq.~20!, obtaining

P~r !5~22^ l &s!
r 21~^ l &s21!. ~34!

V. RELATIONSHIP BETWEEN CLOSED AND OPEN
MODELS FOR COMPACTION

In the preceeding section, we have introduced the co
pactivity X from the canonical form of the steady probabili
distribution, Eq.~22!. In the Edwards and co-workers formu
lation of the granular thermodynamic theory@4#, the compac-
tivity was defined by

X215S ]S

]VD
N

, ~35!

where the entropyS is given by

S5 ln VN , ~36!

VN being the number of blocked configurations or, in t
language used in this paper, metastable states. In Eq.~35!,
the number of particles in the system is kept constant. T
quantityVN for the model considered in this paper is give
by Eq. ~15! and forN@1, NH@1, Eq. ~35! leads to

X215 ln
N2NH

NH
. ~37!

This is the microcanonical~constant volume! version of the
canonical~constant compactivity! expressions~17! and~23!.
In fact, combination of these two latter expressions gives

X215 ln
N2^NH&s

^NH&s
. ~38!

The expression equivalent to Eq.~36! in the canonical en-
semble is Eq.~26!. It is evident that, in the limit of large
systems, it is consistent with the definition ofX in Eq. ~35!.

In several proposed models for compaction, lattices wit
fixed number of sites, i.e., fixed length, have been cons
ered. The dynamics is defined involving elementary p
cesses associated with the adsorption and desorption of
ticles in such a way that the number of particles in the latt
changes along the shaking experiment. This is the mec
nism for which the density in the system varies with time.
particular, several models leading to similar kind of me
stable configurations as in the model in this paper have b
discussed in detail@10–12,19,14#. Then, aside from details
that are irrelevant for the following analysis, the number
blocked configurations is given by Eq.~15!, which we re-
write in the form

VL~NH!5
~L2NH!!

NH! ~L22NH!!
, ~39!
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where the number of sites of the latticeL is now considered
as fixed andL/2>NH>1. Moreover the steady distribution
in the weak tapping limit was found to have the form

p(s)8~n!5
h2NH

Z8
, ~40!

with

Z85 (
NH51

L/2

VN~NH!h2NH, ~41!

andh is a given parameter, depending on the specific mo
and characterizing the dynamical events in the system u
shake. Then, from Eq.~40! a compactivityX8 was identified
as

X85~ ln h!21. ~42!

This definition is equivalent to

X821 5S ln VL~NH!

]NH
D

L

52S ]S

]ND
L

, ~43!

or, using Eq.~39!,

X821 5 ln
~N2NH!2

NHN
. ~44!

This expression differs from Eq.~37! except in the limit of
high densityNH /N!1, in which both reduce to ln(N/NH),
but this only indicates that the same density is obtained
this limit if X5X8. Nevertheless, it must be stressed thatX is
associated to tapping processes at constant number of
ticles, while X8 describes processes at constant volum
Equivalently,X characterizes ensembles with fixedN, andX8
ensembles with fixedL. In this context, their physical natur
is rather different. The parameterX is the compactivity in-
troduced by Edwards and, on the other hand,h21, related
with X8 by Eq. ~42!, plays the role of a fugacity for the
particles. In terms of the entropy,X andX8 are related by

X215X8211S ]S

]ND
NH

. ~45!
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VI. CONCLUSION

In this paper, a one-dimensional model for compaction
granular media has been presented. One of its main feat
as compared with previous Ising-like models, is that the ti
evolution under tapping conserves the number of particle
the system, while it is the volume that changes in the co
paction process. This is in fact what happens in compac
experiments. Consequently, the steady distribution is cha
terized by the compactivity instead of a generalized fugac
The steady distribution function has been derived and
compactivity identified in terms of the parameters defini
the mesoscopic dynamics of the model. It has been fo
that the results are consistent with Edwards’ thermodyna
cal theory of powders. Nevertheless, since the model is
mulated in the context of weak and short tapping, it is in fa
quite doubtful that the same conclusions were reached fro
generalization to stronger tapping processes. Let us point
that this would require to modify the formulation of ou
model by including the possibility that a lattice region wou
experiment several elementary excitations during the sa
tap.

The relationship between closed and open models,
between compactivity and fugacity, has been discussed
the mesoscopic level of description used in this paper,
expression of one of them in terms of the transition ra
cannot be inferred from the expression of the other. Nev
theless, it is true that they correspond to different derivati
of the same entropy function, like in usual thermal system

The model presented here can be easily generalize
mixtures of several kinds of grains, then allowing the stu
of segregation phenomena. Also, it can be useful to inve
gate the validity of the Edwards theory in this case, a
eventually its possible generalizations, for instance, by
tending the number of parameters needed to characterize
steady state of the mixture, as has been recently propo
@16,15#.
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