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Linear response of vibrated granular systems to sudden changes in the vibration intensity

J. Javier Brey and A. Prados
Fı́sica Teo´rica, Universidad de Sevilla, Apartado de Correos 1065, 41080, Sevilla, Spain
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The short-term memory effects recently observed in vibration-induced compaction of granular materials are
studied. It is shown that they can be explained by means of quite plausible hypothesis about the mesoscopic
description of the evolution of the system. The existence of a critical time separating regimes of ‘‘anomalous’’
and ‘‘normal’’ responses is predicted. A simple model fitting into the general framework is analyzed in the
detail. The relationship between this paper and previous studies is discussed.
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I. INTRODUCTION

Experiments have shown that when a loose packing
grains is submitted to vertical vibration or ‘‘tapping,’’ i
slowly approaches a steady state of higher packing frac
@1,2#. The final steady density is a decreasing function of
dimensionless parameter characterizing the vibration in
sity. Moreover, the relaxation is slower for smaller vibrati
intensity. In the time evolution of the system neither conv
tion effects nor oscillatory behavior are observed. The st
of the kinetics of compaction is important both from a form
point of view and because of its economical relevance
many industrial processes. Most of the peculiar behav
exhibited by granular materials submitted to vibration or ta
ping processes show a great similarity with conventio
structural glasses. This includes slow relaxation, annea
properties, and hysteresis effects.

The first study of the response of a granular system t
sudden change in the vibration intensity we are aware
was carried out by means of numerical simulations o
model for compaction@3#, and the data indicated the pre
ence of memory effects in the evolution of the density of
system. Very recently@4#, memory effects were also directl
observed in a series of experiments. The results showed
the system has a short-term memory of its shaking history
that the response in the evolution of the density to a cha
in the vibration intensity at a given time, is not determin
by the density at that time. Mathematically, this phenomen
implies that the time evolution of the density does not obe
closed ordinary first-order differential equation.

In this paper, we propose a general theoretical framew
to understand the origin and characteristic features of
memory effects seen both in simulations and in experime
Using quite plausible hypothesis, we will be able to expla
the short-time response of the system to a small chang
the vibration intensity. In particular, the theory predicts tha
decrease~increase! in the intensity can lead to an increa
~decrease! of the compaction rate on short-time scales,
agreement with experiments. Nevertheless, is not necess
so. If the change in the intensity is made at the early stage
the compaction process, the theory we will develop lead
a modification of the compaction rate having the same s
as the intensity change. In fact, there is a critical time, wh
depends on the tapping intensity before the change, sep
ing the regions of ‘‘normal’’ and ‘‘anomalous’’ response
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The existence of these two different regimes has not b
verified experimentally up to now, although such a behav
has been numerically observed in a simple model for gra
lar compaction@5#.

As an illustration of the theory, we discuss its applicati
to a model for compaction introduced recently@6,7#. The
model has already been shown to reproduce the qualita
behavior of granular materials under tapping. Here we w
show that it also captures the same short-term memory
fects seen in the experiments. Moreover, it fits perfectly
the general scheme developed in this paper, therefore pro
ing a first test of validation of the ideas in which the theo
is based. We have also used the model to investigate
relaxation of the system following a perturbation in the v
bration intensity for a short-time period. This idea also ori
nates from the experiments reported in Ref.@4#. The results
indicate that the response function is accurately describe
a Kohlrausch-Williams-Watts~KWW! or stretched exponen
tial function.

The paper is organized as follows. In the next secti
some general properties of the equation governing the t
evolution of the density in tapping processes of granular m
dia are discussed. These properties are used in Sec. I
analyze the short-term memory effects by considering
response of the system to a small change in the vibra
intensity. The theory is particularized for a simple model f
tapping in Sec. IV, where other patterns of change of
vibration intensity are also considered. The choices w
originated from the experiments reported in Ref.@4#. Finally,
Sec. V contains some additional comments and final
marks, as well as a relevant discussion of the relationshi
our paper to previous experimental and theoretical studie

II. EVOLUTION OF THE DENSITY IN DISCRETE
TAPPING PROCESSES

Let G denote the dimensionless parameter characteriz
the intensity of the vibration applied to the granular mediu
In typical experiments@1#, G is defined as the ratio of pea
acceleration of a tap to the gravityg. Under very general
conditions, the time evolution of the densityr in a discrete
tapping process will be given at a mesoscopic level by
equation of the form
©2001 The American Physical Society01-1
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ṙ[
dr~ t !

dt
5 f 1~G!m1~ t !2 f 2~G!m2~ t !. ~1!

Here the time is measured in units of complete taps in so
continuous limit,f 1(G) and f 2(G) are semidefinite positive
functions ofG having dimensions of frequency, andm1(t)
and m2(t) are positive quantities depending on the state
the system, but they are not univocally determined by
density at the same instantr(t). Therefore, Eq.~1! is not in
general a closed equation and cannot be solved by itself.
two terms on the right-hand side of the equation desc
elementary processes increasing and decreasing the de
respectively.

The structure of Eq.~1! as a gain-loss equation is consi
tent with the experimental observations in compaction p
cesses, as we will discuss in detail in the following. Also
the elementary events taking place in the system being
brated can be described by means of a Master equatio
formal equation like this follows directly. This is the case f
some simple kinetic models for compaction introduced
cently @6–9#.

Since Eq.~1! describes the evolution of the density as
consequence of tapping, the functionsf 1 and f 2 must vanish
in the limit of no tappingG50, so that

f 1~0!5 f 2~0!50. ~2!

Because of continuity, it follows, at least for small values
the intensityG, that

f 18~G![
d

dG
f 1~G!.0, f 28~G![

d

dG
f 2~G!.0. ~3!

We will assume that the above inequalities hold for arbitr
G. The physical reason for this assumption is that we exp
the number of elementary processes taking place in the
tem to increase asG increases. Of course, this does not imp
by itself that the rate of variation of the density also i
creases. The behavior ofṙ depends on the net balance b
tween the gain and loss elementary events, as indicate
Eq. ~1!. This picture is in agreement with the qualitative ro
of temperature played by the shaking intensity in many d
ferent aspects@2,7,10–13#.

In the long-time limit of a tapping process with consta
G, the experiments show that the system reaches a st
state with a densityrs , which is a monotonic decreasin
function of G, as displayed by the ‘‘reversible’’ branch i
cycling experiments@9#. Let us point out that the relaxatio
process is very slow, and for very small values ofG the
steady density is hard to reach within the experimental t
scale. Therefore, the functionrs(G) verifies that
drs(G)/dG,0, and it is bounded by the two formal limits

rmin5 lim
G→`

rs~G!, rmax5 lim
G→0

rs~G!. ~4!

Particularization of Eq.~1! for a steady state yields

f 1~G!m1s5 f 2~G!m2s , ~5!
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wherem1s andm2s denote the steady values of the quantit
m1 and m2, respectively. As pointed out above,m1(t) and
m2(t) are not expected to be simply functions ofr(t) in
general. But, on the other hand, it seems sensible to ass
that the steady state reached by a given system in a tap
experiment is fully determined by the intensityG or, equiva-
lently, by rs . Therefore, we assume thatm1s and m2s are
functions ofrs , and in the following we are going to inves
tigate some qualitative properties of these functions. Forrs
→rmin , m2s(rs) must vanish, since by definition atrs
5rmin there are no processes decreasing the density. Th
fore, it is

lim
rs→rmin

m2s~rs!50, lim
rs→rmin

m1s~rs!.0. ~6!

The second relationship expresses that starting from the
sity rmin , any tapping process of arbitrary intensityG can
only produce an increase of the density. What happens in
steady high-density limit? A similar argument to the o
carried out above would lead to

lim
rs→rmax

m1s~rs!50, lim
rs→rmax

m2s~rs!.0. ~7!

Nevertheless, some care is required when analyzing
limit. Simple models for discrete tapping lead to an abs
bent steady state in the high-density limit@6,7#. That means
that the system will not be able to leave this state wh
submitted to tapping of arbitrary intensity. This is equivale
to saying thatm2s(rs) also vanishes forrs→rmax. As a
consequence, and in order to include such a possibility in
formulation, instead of Eq.~7! we will assume the more gen
eral and precise condition

lim
rs→rmax

m1s~rs!

m2s~rs!
50, ~8!

i.e., m2s@m1s whenrs→rmax, and the density loss term i
dominant in that limit. Let us note that Eq.~6! yield

lim
rs→rmin

m1s~rs!

m2s~rs!
5`. ~9!

The simplest behavior that is consistent with Eqs.~8! and
~9! is that the ratiom1s /m2s be a monotonic decreasing func
tion of the steady densityrs going from infinity to zero.
Since there is not any physical reason to expect a more c
plicated density dependence, we assume this is the cas
our formalism. From the steady condition given by Eq.~5!, it
follows that

m1s

m2s
5

f 2~G!

f 1~G!
[g~G!. ~10!

The functiong(G) is a measure of the rate of the decompa
tion processes with respect to the rate of the compac
ones. Because of Eqs.~8! and ~9!, it is
1-2
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LINEAR RESPONSE OF VIBRATED GRANULAR . . . PHYSICAL REVIEW E63 061301
lim
G→`

g~G!5`, lim
G→0

g~G!50. ~11!

Taking the derivative with respect to the intensityG in Eq.
~10!, we obtain:

dg~G!

dG
5

drs

dG

d

drs
S m1s

m2s
D.0, ~12!

where we have taken into account the monotonically
creasing density dependence ofm1s /m2s assumed above
The physical meaning of Eq.~12! is evident; the rate of the
decompaction processes grows faster withG than the rate of
the compaction processes. Also this implication of our
sumptions seems physically plausible.

In summary, we can write the equation for the time ev
lution of the density in discrete tapping processes as

dr~ t !

dt
5 f 1~G!@m1~ t !2g~G!m2~ t !#, ~13!

with f 1 andg being positive increasing functions ofG, both
of them vanishing in the limitG→0. The quantitiesm1(t)
and m2(t) are some moments of the complete distributi
function of the system, and they contain the influence
correlations on the evolution of the density. As a con
quence, Eq.~13! is not a closed equation.

Becauseg(G) vanishes forG→0, if a tapping experimen
with low enough intensityG is carried out, the decompactio
term f 1(G)g(G)m2(t) will be negligible in the first stages o
the process, i.e.,

m1~ t !

g~G!m2~ t !
@1, ~14!

and the evolution of the system will be approximately d
scribed by

dr~ t !

dt
. f 1~G!m1~ t !. ~15!

At much later times, whenr(t) is close enough to the
asymptotic steady value, the decompaction contribution
Eq. ~13! plays a decisive role, leading to a steady dens
rs,rmax, and it is

m1~ t !

g~G!m2~ t !
5O~1!. ~16!

The observed behavior that the system tends toward
steady state and, therefore, a regime wherem1 , m2, and g
verify a relationship of the form given in Eq.~16!, can be
understood ifm1(t) decreases in time whilem2 increases.
Quite interestingly, this is consistent with a mean-field a
proximation in whichm1(t) is replaced bym1s@r(t)# and
m2(t) by m2s@r(t)#. Sincer(t) increases monotonically in
time, andm1s /m2s is a monotonic decreasing function of th
density, it follows that the left-hand side of Eq.~16! will
decay in time.
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Of course, as long as Eq.~15! is accurate, the larger theG
the faster the compaction of the system, in agreement w
experiments. Over a larger time scale, the complete Eq.~15!,
including the decompaction term, is needed in order to
plain the dependence of the steady densityrs on G, and also
the existence of a a slow long-time tail in the relaxation o
the density, oncers2r(t) is very small. In this context, the
presence of an ‘‘anomalous’’ density relaxation, followin
an inverse logarithm law, would be associated to some s
cific dynamical properties of the compaction termm1 when
the system is submitted to ‘‘nonlinear’’ tapping process
@1,2#. We use the term ‘‘nonlinear’’ here in the sense that,
the experiments, the initial value of the density is not ve
close to the steady density.

Later on, we will show that an evolution equation like E
~13! applies in the case of a simple model recently int
duced to describe discrete tapping@6,7,10#. Another similar
equation is obtained for the ‘‘parking’’ model@8,9,14,15#,
although this latter refers to continuous vibration process
in which the system is not allowed to relax to a metasta
configuration between every two vibration cycles. In t
parking model, the state of maximum densityrmax is not
totally absorbent, but this possibility has been included
our theory, as discussed below Eq.~7!. By identifying the
intensity of tappingG with the ratio between the desorptio
and adsorption rates in the parking model, it is trivial
check by using the expressions in Ref.@8# that the quantities
corresponding tom1s and m2s verify that their ratio is an
increasing function ofrs , and also the limiting behavio
given in Eqs.~8! and~9!. Moreover, the steady density is a
increasing function of the quantity playing the role of th
vibration intensity. In conclusion, the parking model belo
to the general class of systems we have considered.

III. RESPONSE TO SMALL VIBRATION
INTENSITY JUMPS

In this section we will investigate whether Eq.~13!, which
has been built under very general arguments and is expe
to have a wide range of applicability, is able to predict t
memory effects recently observed in vibration-induced co
paction in granular materials@4#. The fact that the equation i
not closed for the density, implies that its time evolution in
given experiment with constantG is not determined by its
the initial value. Starting from the same valuer0, different
time evolutions are possible depending on the way in wh
the system was prepared. Our aim is to analyze some
ticular relevant manifestations of this general statement.

Consider that, starting from a given configuration, the s
tem is tapped with an intensityG. At a certain timetw , the
intensity is instantaneously changed toG1DG. Quite pecu-
liarly, it has been observed in the experiments that
change in the compaction rate has opposite sign that ofDG
on short time scales, though in the long-time regime the
laxation is slower for smaller values of the intensity of v
brationG. The same kind of effect has also been previou
found numerically in some models for compaction@5,16,3#,
although it only shows up when the time intervaltw is not
too short. IfG is changed at the beginning of the compacti
1-3
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J. JAVIER BREY AND A. PRADOS PHYSICAL REVIEW E63 061301
process, the variation of the compaction rate has the s
sign asDG @5,17#.

Application of Eq.~13! for the instanttw
2 , just before the

change in the intensity of the vibration, yields

r w[ṙ~ tw
2!5 f 1~G!@m1w

2 2g~G!m2w
2 #, ~17!

wherem1w
2 5m1(tw

2) and m2w
2 5m2(tw

2). When the intensity
of vibration is changed intoG1DG, the compaction rate
becomes

r w8 [ṙ~ tw
1!5 f 1~G1DG!@m1w

1 2g~G1DG!m2w
1 #. ~18!

The continuity of the distribution function of the system im
plies thatm1

25m1
1 andm2

25m2
1 for an instantaneous jum

of G, although there is a discontinuityDr w5r w8 2r w in the
compaction rate. ForDG small we can approximate

Dr w

DG
5 f 18~G!@m1w2g~G!m2w#2 f 1~G!g8~G!m2w5

f 18~G!

f 1~G!
r w

2 f 1~G!g8~G!m2w . ~19!

Therefore, if over the compaction curve corresponding
intensityG, we define the function

l~ t !5
f 18~G!

f 1~G!
r ~ t !2 f 1~G!g8~G!m2~ t !, ~20!

the sign of this function at the timetw when the intensity is
changed will determine the relative behavior ofDr w with
respect toDG, for infinitesimal changes of the latter. Iflw
[l(tw),0, the anomalous response observed in the exp
ments will follow, while if lw.0 the compaction rate wil
change in the same direction asDG. Let us analyze the sign
of the function l(t). In the long-time limit, formally tw
→`, the system is known to reach the asymptotic ste
density, so thatr w→0 and, consequently,

l`5 lim
t→`

l~ t !52 f 1~G!g8~G!m2s~G!,0, ~21!

where it has been taken into account that bothf 1(G) and
g1(G) are positive increasing functions ofG and that
m2s(G).0.

On the other hand, if the initial density in the experime
is the minimum possible density of the system at restrmin ,
corresponding to the random loose packing configuration
follows from the properties ofm2 that

lim
t→0

l~ t !5
f 18~G!

f 1~G!
r ~0!.0. ~22!

Even though we have considered in our discussion thatr(t
50)5rmin in order to derive the above inequality, the sam
result will apply if the initial density is close enough to it, s
that the first term on the right-hand side of Eq.~20! domi-
nates the second one in the initial regime.

Then, we conclude that for short times,Dr w andDG have
the same sign, while for large times their signs are oppos
06130
e

o

ri-

y

t

it

e.

This renders compatible and explains what is seen in
experiments and also in numerical studies of simple mod
From our analysis it follows that there is~at least! a timetc ,
which depends on the value ofG, such that the response o
the system to a small variation of the intensity of tapping
qualitatively different fort,tc and t.tc .

The study carried out in this section has been restricte
small instantaneous changes inG, allowing the use of a lin-
ear analysis of Eq.~13!. Whether the behavior of the syste
remains the same when submitted to a finite change in
shaking intensity, it cannot be inferred from our analysis.
this case, nonlinear effects can modify dramatically the
sponse of the system. More will be said about this in the n
section of the paper.

IV. APPLICATION TO A SIMPLE MODEL FOR
COMPACTION

The general scenario developed in the previous sect
will be particularized here for a one-dimensional latti
model for compaction@7,10#. In the model, each sitei can be
either empty or occupied by a particle. A variablemi is de-
fined, beingmi51 in the former case andmi50 in the latter.
A configuration of the system is fully specified by giving th
values of all the variablesm[$mi%. As usual, we will refer
to the empty sites as being occupied by a hole.

Let us describe the dynamics of the system when sub
ted to a discrete tapping process. Mechanical stability
quires that all the holes be isolated, i.e., surrounded by
particles, at the end of every tap. The time evolution of
system is defined as a Markov process, and formulated
means of a Master equation for the probability distribution
the system@7,10#. The equation contains the transition rat
W(mum8) from statem8 to statem. There are three kinds o
possible transitions. Indicating only the variables associa
to the sites involved in the transitions, the nonvanishing tr
sition rates are

~1! Elementary diffusive events conserving the number
particles,

W~010u100!5W~010u001!5
a

2
, ~23!

~2! Transitions increasing the number of particles,

W~010u101!5
a

2
, ~24a!

W~001u101!5W~100u101!5
a

4
. ~24b!

~3! Transitions increasing the number of holes, i.e., decre
ing the number of particles,

W~01010u00100!5
a2

2
, ~25a!

W~01010u01000!5W~01010u00010!5
a2

4
. ~25b!
1-4
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In the above equations,a is a positive constant, characteri
ing the tapping process completely, and playing in the mo
a role similar to the intensity of vibrationG in real experi-
ments. ForaÞ0, the system evolves from any arbitrary in
tial configuration to a final steady state with density

rs~a!5
1

2
@11~114a!21/2#. ~26!

From here it follows that

lim
a→0

rs51[rmax, lim
a→`

rs5
1

2
[rmin , ~27!

being

drs

da
,0, ~28!

for all a. Therefore the density in the model has the sa
kind of dependence on the intensitya as assumed in the
general discussion in Sec. II. The time evolution ofr is
obtained from the Master equation for the model, and re
@18#

ṙ5ax101~ t !2
a2

2 Fx00100~ t !1
1

2
x01000~ t !1

1

2
x00010~ t !G ,

~29!

wherex010 is the concentration of three-site clusters of t
form hole-particle-hole,x00100 is the concentration of five
site clusters formed by a hole between two pairs of partic
and so on. Comparison of Eqs.~1! and~29! allows to identify

f 1~a!5a, f 2~a!5a2, ~30!

m1~ t !5x101~ t !,

m2~ t !5
1

2
x00100~ t !1

1

4
@x01000~ t !1x00010~ t !#. ~31!

In the steady state, the only correlations in the system
those forbidding to have two nearest-neighbor holes@18#.
Then, it is a simple matter to compute the steady value
the several cluster concentrations appearing in Eq.~31! with
the result

m1s5
~12rs!

2

rs
, ~32!

m2s5
~12rs!~2rs21!2

rs
2

. ~33!

In the limit rs→rmin51/2,

m1s→
1

2
, m2s→0, ~34!
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while in the high-density limitrs→rmax51, both m1s and
m2s vanish, as a consequence of the absorbent charact
the state with all the sites occupied by particles. The rati

m1s~rs!

m2s~rs!
5

rs~rs21!

~2rs21!2
~35!

vanishes in this latter limit. Equations~34! and ~35! are in
agreement with Eqs.~6! and~8!. Moreover,m1s(rs)/m2s(rs)
is a monotonic decreasing function ofrs and, consistently
@see Eq.~10!#,

g~a!5
f 2~a!

f 1~a!
5a ~36!

is an increasing function ofa, vanishing in the limita→0.
We conclude that this model for compaction fits perfec

the general picture developed in the previous sections. Eq
tion ~13! particularized for the model is

dr~ t !

dt
5a~m12am2!, ~37!

with m1 and m2 defined in Eq.~31!. To solve Eq.~37! we
would need some~approximate! expressions for the cluste
concentrations as functions of the density.

If we submit the system to the tapping experiment d
scribed in Sec. III, the effect of the intensity changeDa at
t5tw on the compact rate will be given by

Dr w

Da
5

r w

a
2am2w , ~38!

in the limit of smallDa. Therefore, the function determinin
whether the response of the system will be ‘‘normal’’
‘‘anomalous’’ is

FIG. 1. Time evolution of the functionl defined in Eq.~39!, for
a vibration intensitya50.15 ~solid line!. Also plotted is the mean-
field approximation forl ~dashed line!.
1-5
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l~ t !5
r ~ t !

a
2am2~ t !. ~39!

In Fig. 1 this function is plotted fora50.15. The curve has
been obtained by Monte Carlo simulation of the Mas
equation of the system. The data represent an average
10 different runs. The initial state was the one correspond
to the steady minimum density. For this particular value
the intensitya, l(t) changes sign between taps 19 and
i.e., 19<tc<20. For comparison purposes, we have a
plotted the mean-field approximation forl(t) ~dashed line!.
The latter has been constructed by substituting in Eq.~39!
m1(t) and m2(t) by m1s@r(t)# and m2s@r(t)#, respectively,
and using for the density the simulation results. It is seen
the mean-field approximation also changes sign, but
larger times, and it is always above the ‘‘exact’’ Monte Ca
curve. This is consistent with the mean-field approximat
giving a faster approach to the steady state than the ac
relaxation of the system@18#.

According to the results derived in this paper,Dr w is
expected to have a different sign than thatDa for tw.tc and
the same fortw,tc . In order to check this theoretical pre
diction, we have carried out series of Monte Carlo simu
tions, all of them starting in the minimum density configur
tion, with a50.15. At tw550, the value of the intensitya
was instantaneously changed toa8. The results for four dif-
ferent values of a8 are reported in Fig. 2, namely
0.1,0.125,0.15,0.175, and 0.2, from top to bottom. The c
tral value corresponds to no change. Since in these sim
tions it is tw.tc , the compaction rate is observed to decre
as the value ofa8 increases. It is also seen that the amplitu
of the jump in the compaction rate is larger fora850.2

FIG. 2. Evolution of the densityr, as a function of the numbe
of taps t. Five numerical experiments are shown, the vibration
tensity a was changed attw550, wherel,0, from 0.15 to 0.1,
0.125, 0.15, 0.175, and 0.2, from top to bottom. Thus, the cen
curve corresponds to no change in the tapping intensitya ~solid
line!, while the dotted and dashed lines correspond to a decr
and an increase ina, respectively. The ‘‘anomalous’’ response e
perimentally observed shows up.
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(Da50.05) than fora850.1 (Da520.05). This feature
cannot be explained by Eq.~38!, and it is due to nonlinear
effects that have been neglected in the linear approxima
used here. This will be analyzed below.

In Fig. 3 the same set of experiments is carried out, w
the only difference that in this case the intensitya is modi-
fied at tw510,tc . The several curves correspond to t
same values as in Fig. 2, but now they are ordered fr
bottom to top. As predicted by the theory, the variation of t
compaction rate has the same sign as the change ina. More-
over, the same kind of nonlinear effects as in Fig. 2
present.

Now, we will briefly discuss the nonlinear corrections
Da to the change in the compaction rate. It is easy to sh
that

Dr w5Dalw2~Da!2m2w . ~40!

The second term on the right-hand side of Eq.~40! is ne-
glected in the linear approximation. In this simple model, t
nonlinear correction is always negative, so it can mod
dramatically the response of the system to the jumpDa if
the linear termDalw.0. In particular, there is a critica
value

Dac5
lw

m2w
~41!

such thatDr w50. For smaller jumps,uDau,uDacu, the sign
of Dr w is the one predicted by the linear approximation, b
for larger jumps,uDau.uDacu, the sign ofDr w is the oppo-
site to the prediction of the linear approximation. For t
sake of concreteness, in Fig. 4 we have repeated the num
cal experiment of Fig. 2, but with larger intensity jump
From the Monte Carlo simulation, we obtain the critic

-

al

se

FIG. 3. The same experiment of Fig. 2, but the change in int
sity is introduced at an earlier timetw510, at whichl.0. The
curves correspond to the same values ofa8 as in Fig. 2, but now are
ordered from bottom to top. In this region the response is ‘‘n
mal,’’ i.e., the compaction rate increases with the vibration inte
sity.
1-6
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valueDac.20.1 for a50.15 andtw550. Then, attw550
we change the vibration intensity froma50.15 to a85a
1Dac520.05, finding that the compaction rate does n
change in the short-time limitt2tw→0. Moreover, if the
vibration intensity is further decreased,a850.03, the com-
paction rate also decreases, while the linear approxima
predicted an increase of the compaction rate ifa8,a, since
lw,0.

FIG. 4. Time evolution of the densityr when the vibration
intensity a is changed attw550, wherel,0, from a50.15 to
a850.05 ~circles! and 0.03~squares!, respectively. The curve cor
responding to a constant vibration intensitya50.15 is plotted for
reference~solid line!. For such large jumps, the linear approxim
tion is not valid, and the compaction rate does not increase. In
a850.05 corresponds to the critical valueDac , for which no
change in the compaction rate is observed for short times.

FIG. 5. Time evolution of the density for a system, which w
tapped up to the same densityr50.8 using three different intensi
ties, a50.2 ~circles!, 0.15 ~squares!, and 0.1 ~triangles!. After-
wards, the system was always tapped witha850.15. The time ori-
gin for each experiment has been taken at the time when the sy
reached the prescribed density, namely,r50.8. The evolution for
t.0 strongly depends on the prehistory of the system.
06130
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Following Ref. @4#, we have also considered another s
ries of numerical experiments where the system was tap
up to the same density with three different intensities,a
50.2, 0.15, and 0.1, respectively. Afterwards, the syst
was always tapped with the same intensitya850.15. The
time evolution of the density is shown in Fig. 5, where t
time origin for each experiment has been taken at the t
when the system reached the prescribed density, namer
50.8. The figure clearly shows that the evolution of the de
sity for t.0 strongly depends on the previous tapping h
tory, indicating the relevance of short-term memory effec
Mathematically, this is equivalent to say thatm1(t) and
m2(t) in Eq. ~1! are not determined univocally by the densi
at the same time, so that it is not in fact a closed first-or
ordinary differential equation. Note that in all the plotte
curves the jump in the compaction rate has opposite s
than the variation of the intensity. We have verified thatl(t)
is negative at the time in which the intensity is modified
all cases, the behavior being then consistent with the the

V. DISCUSSION

Along this paper, we have studied the nonequilibrium l
ear response of a vibrated granular system to an insta
neous change in the intensity of the taps. In the first par
general theory was developed on the basis of some plau
hypothesis about the mesoscopic dynamics of the sys
The results are in qualitative agreement with the experim
tal observations. In particular, the presence of short-te
memory effects appears as correlated with the relaxa
properties of the system at constant intensity. An import
theoretical prediction, not observed in the experiments ye
the existence of a critical timetc . For timest,tc the re-
sponse of the system to a change in the intensity is ‘‘n
mal,’’ in the sense that an increase in the intensity produ
a positive jump in the compaction rate. On the other ha
for t.tc , an ‘‘anomalous’’ response is produced. Th
change in the compaction rate has opposite sign than tha
the modification of the vibration intensity, in contrast wi
the long-time behavior found in experiments, where the
laxation is faster for larger vibration intensity.

In the second part of the paper, a simple model for co
paction has been considered. It is shown to fit perfectly i
the general scheme developed before, allowing a deta
quantitative analysis of the theoretical predictions. This
not a peculiarity of this model, since the ‘‘parking’’ mode
@9# also verifies all the conditions assumed in the theoret
framework. In fact, this is not surprising because this lat
model has a mathematical structure very similar to the
considered in this paper@6#.

In Sec. IV we have shown that our model reproduces
experimentally observed behavior of the system when s
mitted to changes in the vibration intensity under differe
conditions @4#. Now we will refer to a more complicated
pattern of changes in the intensity that are also discusse
Ref. @4#. First, the system is shaken with an intensityG0 (a0
in the model notation! for a long period of time, so that the
system practically reaches a steady density. Afterwards,
time taken ast50, the intensity is switched toG.G0 for a

t,

em
1-7
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given period of timet0 and, finally, the system is tappe
again with the original intensityG0, and the subsequent re
laxation of the system is studied. Experimentally it w
found that the relaxation is slower the larger thet0; the sys-
tem ‘‘ages.’’ Moreover, on the basis of a simple two-sta
model, it was proposed that

r~ t !2rs;
exp~2k0t !

t
, ~42!

for t2t0@1. In the above expression,k0 is a decreasing
function of t0. Josserandet al. @4# also reported that the re
laxation can be fitted by a superposition of exponentials,
of them with the same amplitude. We have carried out
merically this kind of experiments in our model. In Fig. 6 w
present the results obtained witha050.3, a50.5, and four
different values oft0, namely,t051,2,4, and 8 from bottom
to top. The plotted response functionf(t) is defined as

f~ t !5
rs~a0!2r~ t !

rs~a0!2r~ t0!
, ~43!

FIG. 6. Relaxation functionf(t), defined in Eq.~43!, of the
model, when it is prepared by tapping for a long time witha
50.3, and afterwards tapped fort051, 2, 4, and 8~from bottom to
top! with a larger intensitya850.5. Finally, the intensity is turned
back to the original intensitya50.3. All the curves tend to zero in
the infinite time limit, and the solid lines are the best numerical
to a KWW function.
.R

.R

e
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wherer(t0) is the density of the system at the time in whic
the the intensity is switched back toa0. For the model, the
steady values of the density can be computed analytic
@6#, and it isrs(a50.3).0.8371. For a given time interva
t2t0 , f(t) increases with the ‘‘waiting’’ timet0. Thus, the
relaxation is slower for largert0, consistently with the ex-
perimental observation@4#. Also, we have fitted~solid lines!
the data to a stretched exponential or KWW function@19#,

rKWW~ t !5rs~a0!2F @rs~a0!2r~ t0!#expF2S t2t0

t D bG ,
~44!

with t and b being fitting parameters. As observed in th
figure, the fit is quite satisfactory, except for times very clo
to t0 and, probably, for very large times. The parameterb in
Eq. ~44! measures the width of the relaxation-time distrib
tion. The values we have found go fromb50.366 for t0
51 to b50.478 for t058. The latter is close to the valu
1/2, characteristic of systems whose dynamics are domin
by one-dimensional diffusive processes. However, the KW
relaxation is not equivalent to a superposition of expon
tials with the same amplitude, as proposed in Ref.@4#. There-
fore, this point deserves more work in the future, both th
retically and experimentally. With respect to the long-tim
behavior predicted by Eq.~42!, we could not reach a definite
answer. Although the numerical data seems to be compa
with it, the noise is too large and further high-precision stu
ies would be required.

Finally, a crucial point in the analysis presented in th
paper is the small amplitude of the perturbation in the vib
tion intensityDG. As pointed out at the end of Sec. III, th
behavior following a large change in the intensity may
different. In the model considered in Sec. IV the nonline
corrections are very simple, leading always to a decreas
the compaction rate and to the appearance of a critical v
of the intensity jump, such that no change in the vibrati
intensity is observed in the short-time regime. Moreover,
jumps larger than the critical one, the sign of the change
the compaction rate is reversed as compared with the pre
tion of the linear approximation. We think that it is wort
looking for this kind of behavior in other models for com
paction, and also in experiments with real granular syste
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