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Slow logarithmic relaxation in models with hierarchically constrained dynamics
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A general kind of model with hierarchically constrained dynamics is shown to exhibit logarithmic anoma-
lous relaxation similar to a variety of complex strongly interacting materials. The logarithmic behavior de-
scribes most of the decay of the response function.
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In past years, an anomalous slow relaxation that can beegiong. A similar picture has been already suggested in
accurately described by a logarithmic law has been found ifRefs. [4,5]. The aim of this paper is to introduce a quite
the time evolution of a variety of complex strongly interact- general class of hierarchical models, which seem appropriate
ing materials. This includes spin-glasgés?], granular ma- to describe this kind of system, in order to derive the loga-
terials [3—6], structural glassef7—9], and protein models rithmic relaxation of Eq(1).

[11,10. In all the above cases, the decay of some perturba- Like PSAA, we will formulate our model in the most
tion ¢(t) can be fitted at intermediate times by an expressiorgeneral way, hoping it characterizes the behavior of a spe-
of the form cific class of systems. We assume that the state of the system
can be given by means &f modes. They do not correspond
¢(t)=C;—C,Int, (1) to a particle description of the system, but to some mesos-
copic level of description. In this sensH, does not scale
where C, and C, are constants, and may depend on thewith the size of the system, but it is assumed to have a
macroscopic variablegemperature, compactivity, etchar- ~ definite value, independent of the size, for a large enough
acterizing the state of the system. The time range in whickmacroscopigsystem. Of course, the specific value depends
the logarithmic law accurately describes the relaxation covon the system and the physical situation we are dealing with.
ers most of the change a@f(t) from its initial value to the The N modes can be grouped into a discrete series of
final one. levels,n=0,1,2 ... . Thenumber of modes belonging to

Palmer, Stein, Abrahams, and Anders@®SAA) in a level n will be denoted byN,,, so thatN=X,N,. Moreover,
seminal papef12] described some dynamical models for modes in leveln will be indicated by the variabIeSI(”), i
relaxation in complex systems with strong interactions. The=1,2, ... N,,. For the densification experiments of Refs.
models were based inkaerarchically constrained dynamics [4,5,7,9, we can regards,(”) as a pseudospin variable, with
so that the relaxation of the system involves a sequentiats two possible values corresponding to different volumes of
series of correlated processes. Although PSAA concentratettie mesoscopic regions. The dynamics of the system is de-
on those physical systems showing “stretched exponential'fined in a hierarchical way as follows. A mode in level
relaxation, it is clear that the general picture emerging from4- 1 can only modify its state if the configuration of modes in
hierarchically constrained dynamics can be translated inttevel n belongs to a well-defined subset of all the possible
very different physical situations. As a consequence, theonfigurations of the modes in that level. Clearly, this slows
above models provide a very useful tool to investigate manylown the modes in a given level, as compared with those in
kinds of “anomalous relaxation” in complex systems. the previous level. More specifically, the average transition

In particular, the picture of hierarchical constrained dy-rateW, ., for a mode in leveh+1 is assumed to have the
namics seems to be physically appropriate to describe marfgrm [12]
of the complex systems showing logarithmic relaxation. Let
us consider, as a particular example the densification of pow- W, 1=W,P,, 2
ders and structural glasses at high hydrostatic pressure stud-
ied in Refs[4,5,7,9. External pressure causes some selectetvhereP,, is the probability that the modes in levelare in
mesoscopic regions of the system to reach a more compaanhy of the configurations allowing us to relax lewel 1.
state very quickly. The nearest neighbor regions are influOur choice forP,, will be
enced by this rearrangement, and can also reorganize them-
selves. Of course, these new structural changes will affect Pr=exp—N,Auw), 3)
the regions outside the nearest neighbors, allowing them to
relax, and so on. The above discussion suggests that the reith A being a dimensionless free energy defining the ac-
laxation in this kind of system is slow because it consists otivation barrier per mode. Equatidi3) appears quite natu-

a large number of correlated reorganization steps with amally if P, is evaluated from the equilibrium distribution of
increasing characteristic time. In other words, it has a hierthe system under consideration, provided that the subset of
archical structure, with the faster degrees of freedasso- configurations of leveln allowing us to relax leven+1
ciated with the “inner” regiongcontrolling the relaxation of involves all the modeor an extensive part of thenn level

the slower degrees of freedofassociated with the “outer” n. Of course, the free energyu must be appropriately in-
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terpreted in each particular situation. For instance, in thgow. We define a functiono(x) by w(ne)=w,, with €
densification experiments at high pressi#,7,9 it would <1, so that the variable,= ne is almost continuum and the

be an activation enthalpy divided by the temperature of theyym overn can be replaced by integrals. Let us introduce a
sample. On the other hand, in a granular system, it could bgew variablex,,,, = Nmaxe

understood as an “effective volume” divided by the com-

pactivity [13—-16. Thus, the corresponding average relax- x
ation time of the mode is dx w(x")
0
Te1= T €XPNGAL). (4) R T D
f dx' w(x")
For the sake of simplicity, the barrietw is assumed to be
independent of the level of the mode and also of the num- ) i
ber of modes in the leve\,, . Iteration of Eq.(4) yields O=<u=1, which measures the fraction of the total number of
modesN that are in levels up to a value=x/e. It is then a
n-1 simple task to transform E@9) into
Th= To X A,uz N |- (5)
m=0 1 t
- t)= [ duex ——eéu), 12
The range of variation af and the values of the popula- ¢t fo ;{ To 12

tionsN,, characterize the complexity of the time evolution of

the system. In principle, there is no need for a maximumshowing that the decay ap can be characterized by only
valuenna, of n, i.e.,Nyax May be infinite. On the other hand, two parameters, namely, andZ. The former fixes the time
the systems we are interested in show slow relaxation, whicBcale, while the latter determines the actual shape of the re-
requires a large relaxation time. In this way, it is necessaryaxation. The elementary relaxation times given by ).

that are 7(u)=rgexp(u) and, in particular, 7. = 7o €XPE).
) Thus, the condition for slow relaxation, E@), implies that
Tmax= liM 7> 7. (6 expE)>1.
n—»nmax

The analysis of Eq12) is greatly simplified by realizing
This condition for slow relaxation was already pointed outthat it is equivalent to

t

7__0 1

by PSAA[12].
We are interested in the relaxation of the quantity
whereE;(2z) is the integral exponential functidi7]. There
are two natural time scales in E(L3). One is defined by
where the angular brackets denote configuration averagé.ry, while the other is a slow time scale defined by
Note that in the context of the densification experiments=(t/m,)e ‘<(t/7,). In the following, we will use the
[4,5,7,9, Q(t) would be proportional to the actual volume of asymptotic expansions of the exponential integral function
the sample at timg with the physical meaning given above from Ref.[17]. For very short times such thatry<1, Eq.
to the variable§|(”). The corresponding relaxation function (13) is equal to
is defined in terms of the asymptotic long-time valQé=)

E, (13

1 t z)
¢(t)—z T_oe —E;

1. oo
Q=52 2 (8", ()

as 1-e ¢t t)?
d(t)=1— 7 G+O(T—O) , (14
Q(t) —Q(») F{ t )
== =% pexg ——|, (8
() Q(0) —Q(=) ; R T ® i.e., ¢(t) decays very little from its initial unity value in this

) ) ) . region. In the opposite limit of very large times for which
with w,=N,/N being the fraction of modes in level Com- <71 it s

bination of Egs.(5) and(8) gives

N=Npax t n—1 ¢ le s 15
s= Y wnexr{——exp(—zi wm”, ©) PO 15
n=0 To m=0
where the response function has already decayed to very small val-
ues. One main conclusion of the above discussion is that the
[=NApu. (100  relevant part of the relaxation, in whiah(t) changes from

values very close to unity to very close to zero, takes place
Next we will assume thab,, changes very smoothly with between the two asymptotic time regimes we have analyzed.
n. This allows us to introduce a continuum limit for the dis- In this way, we are led to consider the distinguished limit
tribution of relaxation times, which is expected to be closert/7o>1, s<1. In this intermediate time window it is found
to real systems than the discrete level model considered up that
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FIG. 1. Relaxation functionp plotted as a function of time.
From left to right, the curves correspond to efp{10° and 16.
The integral representation @f [Eq. (13)], is given by the circles,
while the solid lines are the asymptotic expression for intermediat
times[Eqg. (16)].
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This is precisely the logarithmic decay of Ed). Moreover,
the previous discussion of the short- and large-time limit
clearly indicates that most of relaxation of the system is ex
pected to be accurately described by Ef). As an ex-
ample, we present in Fig. 1 the relaxation functig(t) for
exp@)=10° and exp{)=1C°. The integral expression given
by Eqg. (12) (circles is well fitted by the logarithmic
asymptotic form of Eq.(16) (solid lineg. The agreement
extends over several decades of intermediate times, me
sured in units of the basic timg,. The fit improves as the
value of{ increases, consistently with the condition for time
scales separation.

It is also interesting to compute an average relaxatio

time 7, given by

el

ef—1
gl

7 17

~ 79

= fo dtp(t)=1o

e
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showing an exponential increase withTaking into account

the definition of{ [Eq. (10)] the above result can be under-
stood as corresponding to an activation energy barrier whose
height is proportional to the complexity of the system, mea-
sured by the total number of modékactively involved in

the relaxation. As already mentioned, for a given specific
situation, the dimensionless parametep. might have a
well-defined physical interpretation, being, for instance, the
ratio between the Gibbs free energy barrier per mode and the
thermal energy. In this way, it is also interesting to note that
the coefficient of Irt in Eq. (16) is {1, which is then pro-
portional to the temperaturé This would lead to thd Int
behavior observed in many physical systems, for instance, in
Refs.[2,9].

In summary, we have studied a simple class of models
that exhibit an anomalous logarithmic relaxation. The dy-
namics is hierarchically constrained and is adequate to study
slow relaxation because there is a clear separation of time
scales. The slow logarithmic relaxation is similar to what is
experimentally observed in a variety of complex systems;
fitting the data in most of the relevant part of the relaxation,
i.e., the time window where the relaxation function is neither
too small nor too close to its initial value. Perhaps the main
assumption of this work is the “extensiveness” with, of
the effective barrier for modes in leveh- 1, as expressed by

g. (3). This is quite a general condition and, therefore, the
class of hierarchical models presented here may provide an
explanation of the appearance of linear logarithmic relax-
ation in very different physical situations. In this context, the
role of hierarchically constrained dynamics may also be rel-
evant in order to understand other kinds of anomalous relax-
ation, as the inverse logarithmic behavior found in compac-
flon experiments of granular systeffis3,19. Also, it seems
interesting to investigate the behavior of hierarchical models
in the temperature cycling experiments usually carried out in

r9Iassy systemp20].
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