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Slow logarithmic relaxation in models with hierarchically constrained dynamics
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A general kind of model with hierarchically constrained dynamics is shown to exhibit logarithmic anoma-
lous relaxation similar to a variety of complex strongly interacting materials. The logarithmic behavior de-
scribes most of the decay of the response function.
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In past years, an anomalous slow relaxation that can
accurately described by a logarithmic law has been foun
the time evolution of a variety of complex strongly interac
ing materials. This includes spin-glasses@1,2#, granular ma-
terials @3–6#, structural glasses@7–9#, and protein models
@11,10#. In all the above cases, the decay of some pertu
tion f(t) can be fitted at intermediate times by an express
of the form

f~ t !5C12C2 ln t, ~1!

where C1 and C2 are constants, and may depend on
macroscopic variables~temperature, compactivity, etc.! char-
acterizing the state of the system. The time range in wh
the logarithmic law accurately describes the relaxation c
ers most of the change off(t) from its initial value to the
final one.

Palmer, Stein, Abrahams, and Anderson~PSAA! in a
seminal paper@12# described some dynamical models f
relaxation in complex systems with strong interactions. T
models were based in ahierarchically constrained dynamic
so that the relaxation of the system involves a sequen
series of correlated processes. Although PSAA concentr
on those physical systems showing ‘‘stretched exponent
relaxation, it is clear that the general picture emerging fr
hierarchically constrained dynamics can be translated
very different physical situations. As a consequence,
above models provide a very useful tool to investigate m
kinds of ‘‘anomalous relaxation’’ in complex systems.

In particular, the picture of hierarchical constrained d
namics seems to be physically appropriate to describe m
of the complex systems showing logarithmic relaxation. L
us consider, as a particular example the densification of p
ders and structural glasses at high hydrostatic pressure
ied in Refs.@4,5,7,9#. External pressure causes some selec
mesoscopic regions of the system to reach a more com
state very quickly. The nearest neighbor regions are in
enced by this rearrangement, and can also reorganize th
selves. Of course, these new structural changes will af
the regions outside the nearest neighbors, allowing them
relax, and so on. The above discussion suggests that th
laxation in this kind of system is slow because it consists
a large number of correlated reorganization steps with
increasing characteristic time. In other words, it has a h
archical structure, with the faster degrees of freedom~asso-
ciated with the ‘‘inner’’ regions! controlling the relaxation of
the slower degrees of freedom~associated with the ‘‘outer’’
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regions!. A similar picture has been already suggested
Refs. @4,5#. The aim of this paper is to introduce a qui
general class of hierarchical models, which seem appropr
to describe this kind of system, in order to derive the log
rithmic relaxation of Eq.~1!.

Like PSAA, we will formulate our model in the mos
general way, hoping it characterizes the behavior of a s
cific class of systems. We assume that the state of the sy
can be given by means ofN modes. They do not correspon
to a particle description of the system, but to some mes
copic level of description. In this sense,N does not scale
with the size of the system, but it is assumed to have
definite value, independent of the size, for a large eno
~macroscopic! system. Of course, the specific value depen
on the system and the physical situation we are dealing w

The N modes can be grouped into a discrete series
levels, n50,1,2, . . . . The number of modes belonging t
level n will be denoted byNn , so thatN5(nNn . Moreover,
modes in leveln will be indicated by the variablesSi

(n) , i
51,2, . . . ,Nn . For the densification experiments of Ref
@4,5,7,9#, we can regardSi

(n) as a pseudospin variable, wit
its two possible values corresponding to different volumes
the mesoscopic regions. The dynamics of the system is
fined in a hierarchical way as follows. A mode in leveln
11 can only modify its state if the configuration of modes
level n belongs to a well-defined subset of all the possi
configurations of the modes in that level. Clearly, this slo
down the modes in a given level, as compared with thos
the previous level. More specifically, the average transit
rateWn11 for a mode in leveln11 is assumed to have th
form @12#

Wn115WnPn , ~2!

wherePn is the probability that the modes in leveln are in
any of the configurations allowing us to relax leveln11.
Our choice forPn will be

Pn5exp~2NnDm!, ~3!

with Dm being a dimensionless free energy defining the
tivation barrier per mode. Equation~3! appears quite natu
rally if Pn is evaluated from the equilibrium distribution o
the system under consideration, provided that the subse
configurations of leveln allowing us to relax leveln11
involves all the modes~or an extensive part of them! in level
n. Of course, the free energyDm must be appropriately in-
©2001 The American Physical Society08-1
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terpreted in each particular situation. For instance, in
densification experiments at high pressure@4,5,7,9# it would
be an activation enthalpy divided by the temperature of
sample. On the other hand, in a granular system, it could
understood as an ‘‘effective volume’’ divided by the com
pactivity @13–16#. Thus, the corresponding average rela
ation time of the mode is

tn115tn exp~NnDm!. ~4!

For the sake of simplicity, the barrierDm is assumed to be
independent of the leveln of the mode and also of the num
ber of modes in the levelNn . Iteration of Eq.~4! yields

tn5t0 expS Dm (
m50

n21

NmD . ~5!

The range of variation ofn and the values of the popula
tionsNn characterize the complexity of the time evolution
the system. In principle, there is no need for a maxim
valuenmax of n, i.e.,nmax may be infinite. On the other hand
the systems we are interested in show slow relaxation, wh
requires a large relaxation time. In this way, it is necess
that

tmax5 lim
n→nmax

tn@t0 . ~6!

This condition for slow relaxation was already pointed o
by PSAA @12#.

We are interested in the relaxation of the quantity

Q~ t !5
1

N (
n

(
i 51

Nn

^Si
(n)~ t !&, ~7!

where the angular brackets denote configuration aver
Note that in the context of the densification experimen
@4,5,7,9#, Q(t) would be proportional to the actual volume
the sample at timet, with the physical meaning given abov
to the variablesSi

(n) . The corresponding relaxation functio
is defined in terms of the asymptotic long-time valueQ(`)
as

f~ t !5
Q~ t !2Q~`!

Q~0!2Q~`!
5(

n
vn expS 2

t

tn
D , ~8!

with vn5Nn /N being the fraction of modes in leveln. Com-
bination of Eqs.~5! and ~8! gives

f~ t !5 (
n50

n5nmax

vn expF2
t

t0
expS 2z (

m50

n21

vmD G , ~9!

where

z5NDm. ~10!

Next we will assume thatvn changes very smoothly with
n. This allows us to introduce a continuum limit for the di
tribution of relaxation times, which is expected to be clos
to real systems than the discrete level model considered u
02110
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now. We define a functionṽ(x) by ṽ(ne)5vn , with e
!1, so that the variablexn5ne is almost continuum and the
sum overn can be replaced by integrals. Let us introduce
new variablexmax5nmaxe

u5

E
0

x

dx8ṽ~x8!

E
0

xmax
dx8ṽ~x8!

, ~11!

0<u<1, which measures the fraction of the total number
modesN that are in levels up to a valuen5x/e. It is then a
simple task to transform Eq.~9! into

f~ t !5E
0

1

du expS 2
t

t0
e2zuD , ~12!

showing that the decay off can be characterized by onl
two parameters, namely,t0 andz. The former fixes the time
scale, while the latter determines the actual shape of the
laxation. The elementary relaxation times given by Eq.~5!
are t(u)5t0 exp(zu) and, in particular,tmax5t0 exp(z).
Thus, the condition for slow relaxation, Eq.~6!, implies that
exp(z)@1.

The analysis of Eq.~12! is greatly simplified by realizing
that it is equivalent to

f~ t !5
1

z FE1S t

t0
e2zD2E1S t

t0
D G , ~13!

whereE1(z) is the integral exponential function@17#. There
are two natural time scales in Eq.~13!. One is defined by
t/t0, while the other is a slow time scale defined bys
5(t/t0)e2z!(t/t0). In the following, we will use the
asymptotic expansions of the exponential integral funct
from Ref. @17#. For very short times such thatt/t0!1, Eq.
~13! is equal to

f~ t !512
12e2z

z

t

t0
1OS t

t0
D 2

, ~14!

i.e., f(t) decays very little from its initial unity value in this
region. In the opposite limit of very large times for whic
s@1, it is

f~ t !;
1

z

e2s

s
, ~15!

the response function has already decayed to very small
ues. One main conclusion of the above discussion is that
relevant part of the relaxation, in whichf(t) changes from
values very close to unity to very close to zero, takes pl
between the two asymptotic time regimes we have analyz
In this way, we are led to consider the distinguished lim
t/t0@1, s!1. In this intermediate time window it is found
that
8-2
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f~ t !;12
1

z S g1 ln
t

t0
D . ~16!

This is precisely the logarithmic decay of Eq.~1!. Moreover,
the previous discussion of the short- and large-time lim
clearly indicates that most of relaxation of the system is
pected to be accurately described by Eq.~16!. As an ex-
ample, we present in Fig. 1 the relaxation functionf(t) for
exp(z)5103 and exp(z)5105. The integral expression give
by Eq. ~12! ~circles! is well fitted by the logarithmic
asymptotic form of Eq.~16! ~solid lines!. The agreemen
extends over several decades of intermediate times, m
sured in units of the basic timet0. The fit improves as the
value ofz increases, consistently with the condition for tim
scales separation.

It is also interesting to compute an average relaxat
time t̄, given by

t̄5E
0

`

dt f~ t !5t0

ez21

z
;t0

ez

z
, ~17!

FIG. 1. Relaxation functionf plotted as a function of time
From left to right, the curves correspond to exp(z)5103 and 105.
The integral representation off @Eq. ~13!#, is given by the circles,
while the solid lines are the asymptotic expression for intermed
times @Eq. ~16!#.
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showing an exponential increase withz. Taking into account
the definition ofz @Eq. ~10!# the above result can be unde
stood as corresponding to an activation energy barrier wh
height is proportional to the complexity of the system, me
sured by the total number of modesN actively involved in
the relaxation. As already mentioned, for a given spec
situation, the dimensionless parameterDm might have a
well-defined physical interpretation, being, for instance,
ratio between the Gibbs free energy barrier per mode and
thermal energy. In this way, it is also interesting to note t
the coefficient of lnt in Eq. ~16! is z21, which is then pro-
portional to the temperatureT. This would lead to theT ln t
behavior observed in many physical systems, for instance
Refs.@2,9#.

In summary, we have studied a simple class of mod
that exhibit an anomalous logarithmic relaxation. The d
namics is hierarchically constrained and is adequate to s
slow relaxation because there is a clear separation of t
scales. The slow logarithmic relaxation is similar to what
experimentally observed in a variety of complex system
fitting the data in most of the relevant part of the relaxatio
i.e., the time window where the relaxation function is neith
too small nor too close to its initial value. Perhaps the m
assumption of this work is the ‘‘extensiveness’’ withNn of
the effective barrier for modes in leveln11, as expressed by
Eq. ~3!. This is quite a general condition and, therefore, t
class of hierarchical models presented here may provide
explanation of the appearance of linear logarithmic rel
ation in very different physical situations. In this context, t
role of hierarchically constrained dynamics may also be
evant in order to understand other kinds of anomalous re
ation, as the inverse logarithmic behavior found in comp
tion experiments of granular systems@18,19#. Also, it seems
interesting to investigate the behavior of hierarchical mod
in the temperature cycling experiments usually carried ou
glassy systems@20#.

This research was partially supported by Grant No. PB
1124 from the Direccio´n General de Investigacio´n Cientı́fica
y Técnica ~Spain!.
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