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Low-temperature relaxation in the one-dimensional Ising model
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The decay of the spin-spin time correlation functions in a one-dimensional Ising model with
Glauber dynamics is studied. In the low-temperature limit, an asymptotically valid continuous space
equation is derived. It is a modified diffusion equation with a purely exponential relaxation term.
Its solution leads to an exact Cole-Davison behavior of the spin autocorrelation in the frequency
domain, while in the time description a Kohlrausch-Williams-Watts (KWW) function followed by
an exponential decay is obtained. The exponent of the KWW function, analytically derived, is 1/2,
and not 0.63, as has been reported in the literature.

PACS number(s): 02.50.Ey, 05.50.+q, 77.22.Ch

I. INTRODUCTION

Nonexponential relaxation has atracted a lot of atten-
tion recently, in part motivated by the interest in explain-
ing the origin of the slow relaxation observed in glasses
and other complex systems [1]. An important result ob-
tained is that nonexponential relaxation is also shown
by systems with an apparent, very simple dynamics. In
particular, relaxation in kinetic Ising models has been ex-
tensively studied [2,3] and stretched exponential behav-
ior has been found for different choices of the transition
rates. Nevertheless, most of the works are numerical,
and exact analytical results are scarce. This applies even
to the case of one-dimensional systems with Glauber dy-
namics, which seem to be the simplest possibility.

One of the first observations of slow decay in Ising sys-
tems was reported by Anderson [4] and later by Bozdemir
[5], both in the context of dielectric relaxation in poly-
mers, and using Glauber's model [6]. They studied the
frequency behavior of the complex permittivity, which is
expressed in terms of the Fourier transform of the spin
time autocorrelation funtion. By fitting numerically their
results, they conclude that at low temperatures the com-
plex permittivity approaches the Cole-Davidson function
with an exponent PGD = 1/2. The implications in time of
a Cole-Davidson distribution in frequencies had been an-
alyzed a few years before by Lindsey and Patterson, also
using numerical techniques [7]. According to them, the
above distribution is nearly equivalent to a stretched ex-
ponential or a Kohlrausch-Williams-Watts (KWW) func-
tion, and they gave the relationship between PcD and the
exponent PKvvw. PKw~ = 0.63 corresponds to the value

PcD = 1/2. Consequently, this has been the value used
to characterize the relaxation of the spin autocorrelation
function in the one-dimensional Ising model with Glauber
dynamics [8—10].

The fact that dielectric relaxation and depolarized
light scattering experiments in polymers lead, in general,
to values of PKwvv smaller than 0.63 has stimulated the
search of other dynamics for the Ising model that give
smaller values of PKww [8,9,11]. In some cases, the in-
teractions have been substituted by local constraints on

the dynamical events [12]. The objective was to try to
make the dynamics of the system more cooperative, at
least in the low-temperature limit. In this way, the value

PKww = 0.5, or very close to it, has been repeatedly
obtained.

In this work we consider once again the relaxation
of the spin time autocorrelation function in the one-
dimensional Glauber model. There are several reasons for
it. First, it is important to derive analytically as many
results as possible in order to understand the physical
mechanisms that are responsible for the relaxation of the
system. For instance, we derive an evolution equation
with two easily identifiable terms: one associated with
diffusion and the other one with the creation of defects.
Similar equations have been introduced as approxima-
tions to describe the evolution of some of the models
mentioned above. Second, we wanted to verify the value

PKww = 0.63 and see how the KWW function emerges
from the equations. Our calculations show that the Cole-
Davidson distribution is asymptotically exact in the low-
temperature limit, with PGD = 1/2. Nevertheless, in the
time domain one does not obtain a single KWW func-
tion, but an exponential behavior appears in a time win-
dow where the relaxation is still relevant. Besides, the
exponent of the KWW function describing most of the
relaxation is PKww = 1/2, showing that the introduction
of local constraints does not always increase the degree
of cooperativity of the dynamics. Finally, we have pre-
viously studied the relaxation of the energy for the same
model [10] and found it interesting to compare it with
that of a different property.

The plan of the paper is as follows. The model is
reviewed in Sec. II, where a general expression for the
spin-spin time correlation functions is given. Section III
contains the most relevant results. The low-temperature
limit is analyzed and a continuous space equation for the
time evolution of correlations is derived. From this equa-
tion the Cole-Davidson distribution is easily obtained.
Then, relaxation in time domain is considered, leading
to the identification of a KWW region at intermediate
times. The initial part of the relaxation is the subject of
Sec. IV. It is shown that, even though the decay taking
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place in it is negligible at low temperatures, it contains
enough information to determine the value of the expo-
nent PKwv(r. Section V is devoted to some final remarks. A,, (0) = (, ,)., = &~'-'~, (8)

This hierarchy is to be solved with the initial condition

II. SPIN-SPIN TIME CORRELATION
FUNCTIONS

We consider an infinite one-dimensional Ising model.
The state of the system is specified by the spin vector
cr = (o,), where o; = +1 is the spin at site i. The energy
of the system for a configuration 0 is

where we have introduced

J
g = tanh

+T

Upon deriving Eq. (8) we have used that pii (o, tlo', 0) =
b . The form of Eq. (7) and the initial conditions given
in Eq. (8) imply that A,i is a function of li —jl. Thus
we define functions f„(t) by

'R((r) = —J) (r;o.;+i,

with J a positive constant. The evolution of the system is
described by a Markov process with Glauber dynamics.
Therefore, the conditional probability pi~i((r, tl(r', t') of
finding the system in the state o at time t, given it was in
the state 0' at time t', t' ( t, obeys the master equation

f-(t) = A'. (t) = ( .+-(t) '(o))"
with n = i —j. These functions obey the equations

t9 0!p
~ f = ~f + (f+i+f -i)
Ot 2

where n is an integer in the range —oo & n ( +oo. The
above hierarchy, with the initial condition f (0) = rj~

can be easily solved by standard procedures, for instance,
using the eigenfunctions method [13],and the result can
be expressed as

where R, (r is the configuration obtained from o by flip-
ping the ith spin, i.e., by changing cr; into —o;, and (s(;(o )
is the transition rate for the Hip. The expression of this
latter quantity is

~;(o.) = — 1 ——o'(o' —i + o'+i)

2 1r1 1 —rj cos rzg (i )t
7l 1 +'g p 1 Qcosg

The one-dimensional Ising model we are dealing with has
been used as a model for dielectric polarization [5]. Under
certain simplifying hypotheses, the complex permittivity
e was shown to be related to fo(t) through the relation

Here o. is another positive constant defining the time scale
of the evolution of the system and p is a function of the
temperature T of the heat bath given by (k~ is Boltz-
mann's constant)

= 1 —iu) dte '~'
p t, (13)

2J
p = tanh

QT

where ep and e are the limiting low- and high-&equency
permittivities, respectively. Prom Eq. (12) we have

Our aim is to study the equilibrium time correlation func-
tion (cr;(0)o;(t)),~. It is convenient to introduce the set
of functions

(t)
7 d

—m(1 —P cos q)t
Dt m 1+g2

1 7f -t= a e 'Io(apt).1+92 (14)

A' (t) = ( *(t) '(0))
= ) ) (r;o,'pi~, (o, tl(r', 0)p.,~((r'),

Here Ip is the zeroth-order modified Bessel function. Sub-
stitution into Eq. (13) yields

where the equilibrium distribution function of the system
is

1 1
E (La)) = Cz

1 + r12 [(z~ + o)2 o,2~2]1/2

Bozdemir [5] has also shown numerically that this expres-
sion approaches at low temperatures the Cole-Davidson
distribution

Time derivative of Eq. (5) yields
1

e ((d)
(1 + zuz~D)PRD '

—A;i(t) = —nA;i(t) + [A, i, (t) + A;+i~(t)]. (7) where 7'CD is a constant and PcD = 1/2. It must be
pointed out that Anderson [4] had previously observed
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the same behavior in an equivalent model, although in
neither of the two references is a detailed analytical
derivation of Eq. (16) presented.

Lindsey and Patterson have carried out an extensive
numerical study about the relation between the two func-
tions fo(t) and e'(tv) and concluded that corresponding
approximately to a Cole-Davidson function in the &e-
quency domain is a KWW or stretched exponential func-
tion for fo(t) [7], i.e. ,

the relaxation spectrum is de6ned as

Ag

p, = dA (A —AM) g(A).
A1

(22)

For the long time limit, the asymptotic behavior of Eq.
(18) is

i/2 —Apt

(23)

fo(&) = exp[ —(&/7Kww)] "

They also give an expression, obtained by fitting the nu-
merical data, to obtain PKww &om PCD. In particular,
for PCD = 1/2 their expression gives PKww 0.63. This
latter value has been used often in the literature to com-
pare the relaxation spectrum of Ising models with difFer-
ent dynamics [8,9] and also to claim that different prop-
erties of the Ising model with a given dynamics relax with
difFerent values of PKww (in the low-temperature liinit)
[10]. Here it will be shown that, at low temperatures,
the function fo(t) is actually accurately described by a
KWW function over a time window that contains most
of the relevant part of the relaxation, but the value of
the exponent is pKww = 1/2.

E=1 —p (24)

and take the limit e (( 1, which yields

g = 1 —(2e)'i'+ 0(e),

AM - n(2e)'~2,

(25)

(26)

i.e. , again an essentially exponential behavior, but in
this case with a relaxation frequency Ai. In the high-
temperature limit, the relaxation spectrum is very nar-
row p, (( AM and the relaxation is dominated by the
initial exponential Eq. (21).

Consider now the low-temperature limit, in which p(T)
approaches one from below. To study it we introduce the
parameter

III. THE LOW-TEMPERATURE LIMIT and

A2

fo(t) = dAg(A) e
A1

(18)

where the relaxation spectrum g(A) is

To clearly understand what happens at low tempera-
tures it is convenient to establish first some general fea-
tures of the function fo(t). From Eq. (12) and by means
of a simple change of variable we can write

~1 —0!C. (27)

(28)

Therefore, in this limit Ai &( AM and a clear separation
of time scales shows up. As a consequence, there must be
an intermediate time region in which the decay is highly
nonexponential [3]. We can get more information by con-
sidering the average relaxation time (7.) defined as

g(A) =-
7r 1+ g2 [(A —Ai)(A2 —A)] ~2A (19)

and Ai ——n(1 —p) and A2 ——n(1+ p) are the minimum
and maximum relaxation rates, respectively. As a conse-
quence of the inicial condition fo(0) = 1, the distribution
g(A) is normalized to one. The average frequency is

Ag |9 1 —g
AM = dAAg(A) = — —fo(t) =n, . (20)Bt

~ o 1+@

The short time behavior of fo(t) is now easily obtained

Ag

f (t) AM t dA (—A)
—(A —A~)t

A1

A2

= e " ' dAg(A) [1 —(A —AM)t
A1

+-,'(A —AM)'t'+ ]
—wM e [1 + ~( 2t2)]

i.e., the initial relaxation is exponential. The width p of

It is easily seen that this quantity diverges as e for
e —+ 0. Taking into account that the initial relaxation
corresponds to an average relaxation time AM, which
goes as e /', we conclude that the initial exponential
decay becomes irrelevant in the low-temperature limit.

Although it is, of course, possible to study also the
behavior of fo(t) at intermediate times using its explicit
expression given by Eq. (18), we will follow a differ-
ent approach. There are several reasons for this choice.
First, the method we will employ can be useful to study
other models for which the exact expression of the relax-
ation function to be investigated is not known. Second,
through our calculations we will obtain an equation for
the correlations, valid in the low-temperature limit. Sim-
ilar equations have been introduced without a solid justi-
Gcation to describe low-temperature relaxation in other
models. A discussion of such equations in the light of
what happens in our case is clarifying. Finally, our ap-
proach leads to a direct identification of the mechanisms
responsible for the relaxation of the system and to the
reason why most of the relevant part of the relaxation is
nonexponential.
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Consider again Eq. (11), but now written in the form

—f (t) = o—(f —', f-+i —-', f —i) — —(f +i+ f —i)t" " 2" 2" 2

with the initial condition

- In/

f„(0)= 1 —(2~)i/2+ 0(e) (30)

f (0) e
—

I I/(

and comparing with the expression of f (0) we get

A perturbation expansion of the above hierarchy in pow-
ers of e / is singular because f„(t) is bounded by one for
all t, while the terms of the expansion of f (0) diverge
for ~n~

—+ oo. This leads us to scale the variable n, so
that the terms of the expansion of f (0) remain finite,
even in the limit ~n~ m oo. The scaling factor emerges
quite naturally for the following reasons. For t = 0 the
time correlation function becomes the equilibrium space
correlation function. The correlation length is de6ned by

1+ k2 (39)

and thus the spin autocorrelation function is

fp(s) —= f(0, s) = — dk, e '+"2 1

vr 0 1+ k2 (40)

Use of this expression in Eq. (13) gives, for the permit-
tivity in the low-temperature limit,

ditive way. There is a pure relaxation term, describing
an exponential relaxation, and a difFusive term. An ex-
ample of simple processes corresponding to each of the
two mechanisms is given in Fig. 1. Notice that the defi-
nition of the time scale 8 implies that the relevant times
correspond to t (o.e) i. Therefore, Eq. (37) does not
describe the initial exponential relaxation, which, as we
saw, takes place over times of order e /' . Nevertheless,
we also know that at very low temperatures initial decay
is not relevant, in the sense that the correlation function
remains practically constant and equal to its initial value.
The solution of Eq. (37) is

1

/
lnrj/

(32)

1
e (&

(] + t~) 1/2 '

where we have introduced
In the low-temperature limit ( diverges, suggesting that
it defines the relevant length scale. Since

~
lnrI~ (2e) /,

we introduce the scaled length x as

In terms of this variable the hierarchy given by Eq. (29)
reads

0 f (x, t) =——n f (x, t) —'f (x + (2e)-'/, t)

f(x+ (2e)', t) + f(x —(2e)'/ )t)

(34)

where f(x, t) = f„(t). Now we expand the series and
neglect terms of order e . The result is

|9 0
f(x, t) = a—e f(x, t) —nef(x, t)

Ot BX2

(42)

Therefore, we have derived the Cole-Davidson distribu-
tion with PCD = 1/2, in agreement with previous numer-
ical calculations [4,5]. The characteristic relaxation time
is AD = (ne), which is of order unity over the relevant
time scale s. The long time limit of Eq. (40) is

which coincides with the low-temperature limit of Eq.
(23). On the other hand, Eq. (40) does not present an
initial exponential decay for the reasons discussed above.
The limit 8 (& 1 corresponds to an intermediate time
region in which the "slow" time scale s is small, but the
real time t is large. This is precisely the time window
that must be analyzed to look for the nonexponential

or, dehning also a time scale by

8 = Oat, (36)

0 Cjl2

Z, f(x s) = —f(* s) + Z, f(* s) (37)

The initial condition for this equation is

f(x, o) = e-~*~. (38)

In this equation the two mechanisms responsible for the
relaxation at low temperatures show up clearly in an ad-

FIG. 1. Sketch of simple processes corresponding to the two
mechanisms of relaxation at low temperatures described by
Eq. (37): (a) the difFusive term and (b) the purely exponential
relaxation.
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relaxation. To do so, we rewrite Eq. (40) as 4

1
f(0, s) = 1— du u-'/"e —", (44)

which for 8 « 1 can be approximated by
—2

ln [—ln fpl
4

I
ln f(0, s) =—

S

duu e "~— s ~ (45)~1/2

or, returning to the t variable,
4

ln nt
10 12

(46)

This expression holds for nt « e . By putting together
the results we have obtained, we arrive at a descrip-
tion of the relaxation of the spin autocorrelation function
through three well defined time regimes:

'
exp[—(2e) ~ nt] for nt && 1

f(0, t) = & exp[—(4net/vr) ~
] for 1 && nt && e

(7rnet) ~ exp( —net) for nt )) e

(47)

This behavior is similar to the one found in Ref. [10] for
the linear relaxation of the energy following an homoge-
neous temperature perturbation, also for the Ising model
with Glauber dynamics. The only relevant difference is
that the prefactor of the exponential in the long time
regime goes, in the case of the energy, as t / . Moreover,
Shore and Zwanzig [14] have obtained the same three
temporal regimes in a one-dimensional lattice model.

Thus we have shown that at intermediates times fo(t)
is described by a stretched exponential function with
PKww = 1/2. Note that this is an exact result, valid
in the asymptotic limit of low temperatures. An exam-
ple is given in Fig. 2, where fo(t) is plotted for e = 10
The solid line is the KWW function given by Eq. (46).
We can estimate roughly the time interval in which the
KWW function gives an accurate description of fo(t)
by considering that it is bounded by its intersections t-1
and t2 with the initial and the final exponentials. Prom
Eq. (47) one gets ti ——2/nor and t2 0.56/ne. The
correlation function at these two times takes the values
f(O, ti) = exp[ —2 ~ e ~ /m] and f(O, t2) 0.42, respec-
tively. If we consider, for instance, a temperature cor-
responding to e = 10, it is f (0, ti) 0.99, showing
that the initial exponential decay becomes negligible in
the low-temperature limit. On the other hand, the value
of f (0, t2) does not depend on the teinperature and there
is no reason to expect the KWW function to give an ac-
curate description of the relaxation for values of f(0, t)
smaller than 0.4. Between this value and the asymptotic
exponential decay at long times the apparent value of
PKww increases &om 0.5 to 1. Of course, one can force
the complete relaxation to be fitted by a unique KWW
function, then getting a value of PKipvw in the above inter-
val. This is the way in which Lindsey and Petterson ob-
tained numerically the value PKww 0.63. Although it
is clear that this value gives some information about the

FIG. 2. Plot of the equilibrium spin autocorrelation func-
tion for a temperature value corresponding to e = 10 . The
diamonds are the numerical integration of Eq. (18) and the
solid line is the KWW function of Eq. (46). Note that the log-
arithm scale amplifies the discrepancies, especially for short
times where the difference between the exact solution and the
KWW function is in fact negligible, as discussed in the text.

average relaxation of f(0, t), one cannot conclude from
it that the relaxation is less cooperative (the spectrum
narrower) in this model than in other systems for which
a fitting of the data gives PKivw 0.5.

IV. THE INITIAL PART OF THE RELAXATION

q„(t) = f„(t).|9
(48)

They obey the same hierarchy as f, i.e. ,

—q- = —n(q- —
—,q--i ——,q +i) ——(q- —i + q-+i),

(49)

but the initial condition is different. A simple calculation
gives

q„(0) = [
—n(2e)'~ + O(ne)] 8„o, (50)

where b is the Kronecker function. Since the terms in
the expansion of q (0) are bounded for all n, we can now
obtain a series expansion solution of the hierarchy given

Although the results in the preceding section lead to a
complete description of the relaxation of the equilibrium
spin autocorrelation function at low temperatures, it is
interesting to consider an alternative analysis, which is
valid in the short time regime. In fact, the procedure
we will follow here is also appropriate for those models
in which the final exponential relaxation either does not
exist or is irrelevant. This seems to be the case, for in-
stance, if a local constraint allowing only Hips conserving
the energy is introduced in the model we are considering
[8,9,11].

As discussed below Eqs. (29) and (30), they are not
useful, in their present form, to carry out an expansion in
powers of e / . However, the difficulty is easily surpassed
by going to the hierarchy for the time derivatives
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by Eq. (49). We write

q„(t) = —n(2e) i t,'„(t) + O(ne).
0.9—

~o~
*%+

og

+

Substitution into Eq. (49) leads to

~ C = —n(( —
2C -i —

2C +i)
Ot

to be solved with the initial condition

(52)

0.5—

+
o +

+o o ++ 0 + 0
o 0 + 0
+o~ o ++ o

(„(0)= h„p. (5S) —4 —2 0 2 4 6 8 10 12 14
ln o.t

1
g (t) = — dq cos nq e

0
(54)

and introduction of this into Eq. (51) yields

q„(t) = —n(2e) e 'I„(nt) + O(ne), (55)

Thus g obeys a symmetric random walk master equa-
tion with the particle located initially at the origin. The
solution of the equation is [13]

FIG. 3. Plot of the time-dependent parameter P,s, defined
in Eq. (58), for three different values of the temperature,
namely, e = 10 (diamonds), 10 (crosses), and 10 (cir-
cles). For both very short and very long times, P,z -+ 1,
while as the temperature decreases an intermediate time win-
dow develops with P,z = 1/2. The decay from its short time
value to its intermediate one is independent of the tempera-
ture, as discussed in the text.

where I„(t) is the nth-order modified Bessel function.
From this result we have

t

(t) = f, (o) + dt'q, (t')
0

= 1 —(2e) ~ nt e '[Ip(nt) + Ii (at)] + O(net)

(56)

ln fp(t) = —(2e)'~ nt e '[Ip(nt) + Ii(at)]. (57)

This equation can be shown to be equivalent to the one
reported by Budmir and Skinner for the constant energy
Ising model [15]. If we now consider here nt « 1, we
recover once again the initial exponential relaxation of
Eqs. (21) and (26), while for e )& at )& 1, the KWW
decay of Eq. (46) is found.

Although Eq. (57) reproduces both the initial expo-
nential decay and the KWW intermediate function, it is
appropriate to underline that it is not able to describe
most of the relevant part of the relaxation, which takes
place on a time scale for which that expression is not
valid. Of course, a modification of the dynamics of the
system can lead to a change of the relevant time scale in
such a way that the anal exponential decay is negligible.
Then the relaxation is accurately given by Eq. (57). This
may be the case in Refs. [9,11].

The analysis in this section has another interesting
consequence. Let us de6ne an efFective time-dependent
KWW exponent by

t9
P,g (t) = ln [

—ln fp(t)] . (58)

Neglecting O(net) in this expression is not correct for
all times. In particular, the result does not verify
limy~ fp(t) = 0. Only in the limit net && 1 can we
approximate

Use of Eq. (57) yields

p,~(t) = (nt e ' [Ip(at) + Ii(nt)] j . (59)

~(t) = 1 — ~(t) (6o)

where v is a parameter going to zero as T —+ 0. It follows
that

ln [
—ln P(t) ] ln v + ln ((t) (61)

and P,~ will be independent of v.

V. CONCLUSION

We have studied in detail the time evolution of the
equilibrium spin-spin time correlation functions in the
one-dimensional Ising model with Glauber dynamics. In
the low-temperature limit, we have derived a continu-
ous space equation for the evolution of these correlation

The important point is that this expression, valid for
short times and in the low-temperature limit, does not
depend on e. On the other hand, it correctly predicts the
decay of P,@ from its initial value P,s = 1 to the inter-
mediate value P,s = 1/2. This result is confirmed by the
curves plotted in Fig. 3. Note that the time window de-
scribed by the KWW function, which corresponds to the
horizontal part of the curves, increases as the tempera-
ture decreases. A siinilar behavior of p, tr has been found
in other models [16] and for difFerent relaxation proper-
ties [10,17]. The physical origin of the general property
can be roughly explained in the following way. Let P(t)
be a relaxation property verifying P(0) = 1. As the tem-
perature goes to zero, one expects the system to be frozen
and therefore in the low-temperature limit and for short
times we can write
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functions and identified &om it the main mechanisms of
relaxation at low temperatures. For the equilibrium spin
autocorrelation function, an exact Cole-Davidson behav-
ior with PCD = 1/2 is obtained in the frequency picture,
while in the time domain a KWW function, with an expo-
nent PKww = 1/2, followed by an exponential is found.
The value PKww = 0.63 reported previously in the lit-
erature could then be considered as giving some infor-
mation about the average shape of the relaxation curve
of the spin time autocorrelation function, but it cannot
be concluded that the relaxation in Glauber's model is
less cooperative than in other systems with locally con-
strained dynamics.

For the initial part of the relaxation, before the KWW
behavior emerges, we have shown that the spin time au-
tocorrelation function decays very little in this time scale,
for low enough temperatures. Nevertheless, there are two
results concerning this regime that are worth mentioning.
First, the relevant KWW function can be obtained in an
intermediate time window, matching the result given by
the continuous space equation. Second, the parameter
P,tr defined in the text decays over a universal curve in
the sense that is independent of the temperature, Rom
its short time value P,tr = 1 to its intermediate time
value P,s = 1/2. The former corresponds to the initial
exponential relaxation and the latter to the KWW func-
tion. On the other hand, in this time regime we cannot
obtain any information about the final exponential relax-
ation or, consequently, about the range of validity of the

stretched exponential function.
It must also be pointed out that almost any model

based on a master equation formulation leads to expo-
nential relaxation in both the short and the long time
limits, but with di8'erent characteristic time scales. Then,
a KWW function appears in an intermediate time win-
dow [3]. We think that difFerent choices of the transition
rates simply shift the relevant time regimes (initial expo-
nential, KWW function, and final exponential) to greater
or smaller values of the relaxation function under consid-
eration. The same remark remains valid in regard to the
relaxation of diferent properties in the same model. For
instance, the relaxation of the energy after an homoge-
nous temperature perturbation can also be analyzed in
Glauber's model. The continuous space equation gov-
erning the dynamics of the system at low temperatures
is again Eq. (37), but the initial condition is not the one
in Eq. (38), but f(z, 0) = z exp( —z) [17]. The same
three time regimes appearing in Eq. (47) show up in this
case, but the KWW function extends to smaller values
of the relaxation function [10].
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