Duality of measures of non- \mathcal{A}-compactness

by
Juan Manuel Delgado (Seville) and Cándido Piñeiro (Huelva)

Abstract

Let \mathcal{A} be a Banach operator ideal. Based on the notion of \mathcal{A}-compactness in a Banach space due to Carl and Stephani, we deal with the notion of measure of non- \mathcal{A}-compactness of an operator. We consider a map $\chi_{\mathcal{A}}$ (respectively, $n_{\mathcal{A}}$) acting on the operators of the surjective (respectively, injective) hull of \mathcal{A} such that $\chi_{\mathcal{A}}(T)=0$ (respectively, $n_{\mathcal{A}}(T)=0$) if and only if the operator T is \mathcal{A}-compact (respectively, injectively \mathcal{A}-compact). Under certain conditions on the ideal \mathcal{A}, we prove an equivalence inequality involving $\chi_{\mathcal{A}}\left(T^{*}\right)$ and $n_{\mathcal{A}^{d}}(T)$. This inequality provides an extension of a previous result stating that an operator is quasi p-nuclear if and only if its adjoint is p-compact in the sense of Sinha and Karn.

1. Introduction. It is well known that if a bounded subset A of a Banach space X is not relatively compact, then there exists $\varepsilon>0$ such that A cannot be covered by finitely many balls with radii smaller than (or equal to) ε. In this setting, the Hausdorff measure of noncompactness (or the ball measure of noncompactness), χ, is defined for every bounded set A as follows:

$$
\chi(A)=\inf \left\{\varepsilon>0: A \subset \bigcup_{i=1}^{n} x_{i}+\varepsilon B_{X}\right\},
$$

where B_{X} denotes the closed unit ball of X and the infimum is taken over all possible sets of finitely many vectors $x_{1}, \ldots, x_{n} \in X$ [11]. Of course, $\chi(A)$ vanishes if and only if A is relatively compact.

If T is a (bounded) linear operator from the Banach space X to the Banach space Y, the measure of noncompactness of T can be defined in a natural way by setting $\chi(T)=\chi\left(T\left(B_{X}\right)\right)$. Then χ is a seminorm on $\mathcal{L}(X, Y)$, the space of all bounded linear operators from X to Y, and χ vanishes exactly on $\mathcal{K}(X, Y)$, the subspace of $\mathcal{L}(X, Y)$ consisting of all compact opera-

[^0]tors. According to Schauder's classical theorem, an operator $T \in \mathcal{L}(X, Y)$ is compact if and only if its adjoint operator T^{*} is. In 1965, Gol'denšteĭn and Markus [12] proved the inequalities
$$
\frac{1}{2} \chi(T) \leq \chi\left(T^{*}\right) \leq 2 \chi(T)
$$
which, in some sense, may be considered as an extension of Schauder's theorem. Another extension is obtained if, for instance, the Kuratowski measure of noncompactness, γ, is considered [15]. The definition of γ is similar to that of χ with "balls with radii" replaced by "bounded subsets with diameter". In this case, Astala [2] showed
\[

$$
\begin{equation*}
\gamma(T)=\gamma\left(T^{*}\right) \tag{1.1}
\end{equation*}
$$

\]

for every $T \in \mathcal{L}(X, Y)$.
Based on Grothendieck's characterization of relatively compact sets as those sitting inside the convex hull of the norm null sequences, Sinha and Karn 21 introduced a strengthened form of compactness in Banach spaces. Let $1 \leq p<\infty$ and let p^{\prime} be the conjugate index of p (i.e., $1 / p+1 / p^{\prime}=1$). A set $K \subset X$ is said to be relatively p-compact if there exists a p-summable sequence $\left(x_{n}\right)$ in X such that $A \subset\left\{\sum_{n} \alpha_{n} x_{n}:\left(\alpha_{n}\right) \in B_{\ell_{p^{\prime}}}\right\} \quad\left(\left(\alpha_{n}\right) \in B_{c_{0}}\right.$ if $p=1$). The notion of p-compact operator is defined in the obvious way: an operator $T \in \mathcal{L}(X, Y)$ is said to be p-compact if $T\left(B_{X}\right)$ is relatively p-compact in Y. Serrano and the present authors have recently proved the following: T (respectively, T^{*}) is p-compact if and only if $T^{*}($ respectively, T) is quasi p-nuclear [9, Corollary 3.4 and Proposition 3.8].

The main purpose of this paper is to obtain an extension of that result using a sort of measures of noncompactness. Indeed, we consider a positive map $\chi_{\Pi_{p}^{d}}$ (respectively, $n_{\Pi_{p}}$) acting on Π_{p}^{d}, the ideal of operators with p-summing adjoints (respectively, Π_{p}, the ideal of p-summing operators) vanishing precisely on the class of p-compact operators (respectively, quasi p-nuclear operators). With these maps in hand, an equality like (1.1) relating $\chi_{\Pi_{p}^{d}}$ and $n_{\Pi_{p}}$ is obtained (Corollary 3.13), which provides the desired generalization.

Our study is carried out in a more general setting. Given an operator ideal \mathcal{A}, the notions of surjective (respectively, injective) \mathcal{A}-compactness introduced in [4] (respectively, [23]) are basic to this paper. Section 2 is devoted to the study of the map $\chi_{\mathcal{A}}$, defined on a certain class of bounded subsets of a Banach space (the so called \mathcal{A}-bounded sets), which gives information about the degree of non- \mathcal{A}-compactness of these sets in such a way that $\chi_{\mathcal{A}}$ vanishes precisely on the class of (surjectively) \mathcal{A}-compact sets. In Section 3 , the notion of measure of non- \mathcal{A}-compactness is extended to the operator setting using two different (but related) approaches. Indeed, the map $\chi_{\mathcal{A}}$ (respec-
tively, $n_{\mathcal{A}}$) gives information about the degree of non- \mathcal{A}-compactness of an operator, and it vanishes precisely on the class of surjectively (respectively, injectively) \mathcal{A}-compact operators. Under certain conditions on the ideal \mathcal{A}, we obtain several inequalities involving $\chi_{\mathcal{A}}$ and $n_{\mathcal{A}}$ acting on an operator and its adjoint. We show that this approach is different from that appearing in [2] and [24], where the notion of (outer and inner) \mathcal{A}-variation of an operator is defined and studied. Finally, we introduce the notion of \mathcal{A}-essential norm $\rho_{\mathcal{A}}$ of an operator in Section 4 and we study the equivalence between $\chi_{\mathcal{A}}$ and $\rho_{\mathcal{A}}$ under certain conditions on X or Y.

Our notation is standard. X, Y and Z are always reserved for Banach spaces. A Banach space X will be regarded as a subspace of its bidual $X^{* *}$ under the canonical embedding $i_{X}: X \rightarrow X^{* *}$. We denote the closed unit ball of X by B_{X}. The Banach space of all bounded linear operators from X to Y is denoted by $\mathcal{L}(X, Y)$. If \mathcal{A} is an operator ideal, then \mathcal{A}^{d} denotes its dual operator ideal, i.e., the one with components $\mathcal{A}^{d}(X, Y)=\{T \in$ $\left.\mathcal{L}(X, Y): T^{*} \in \mathcal{A}\left(Y^{*}, X^{*}\right)\right\}$.

Recall that an operator ideal \mathcal{A} is surjective if, given $S \in \mathcal{A}(Z, Y)$ and $T \in \mathcal{L}(X, Y)$, the condition $T\left(B_{X}\right) \subset S\left(B_{Z}\right)$ implies that $T \in \mathcal{A}(X, Y)$. For an arbitrary ideal \mathcal{A}, the surjective hull $\mathcal{A}^{\text {sur }}$ of \mathcal{A} is the operator ideal whose components are

$$
\mathcal{A}^{\text {sur }}(X, Y)=\left\{T \in \mathcal{L}(X, Y): T\left(B_{X}\right) \subset S\left(B_{Z}\right), S \in \mathcal{A}(Z, Y)\right\}
$$

that is, $\mathcal{A}^{\text {sur }}$ is the smallest surjective ideal containing \mathcal{A}. If $D \subset X$ is a bounded set and U_{D} denotes the surjection of $\ell_{1}(D)$ onto X defined by $U_{D}(\xi)=\sum_{x \in D} \xi(x) x$, then it is easy to show that an operator T belongs to $\mathcal{A}^{\text {sur }}(X, Y)$ if and only if $T \circ U_{B_{X}} \in \mathcal{A}\left(\ell_{1}\left(B_{X}\right), Y\right)$. In the case of a Banach ideal $[\mathcal{A}, \alpha], \mathcal{A}^{\text {sur }}$ becomes a Banach ideal when equipped with the norm

$$
\begin{aligned}
\alpha^{\operatorname{sur}}(T) & =\inf \left\{\alpha(S): T\left(B_{X}\right) \subset S\left(B_{Z}\right), S \in \mathcal{A}(Z, Y)\right\} \\
& =\alpha\left(T \circ U_{B_{X}}\right)
\end{aligned}
$$

An operator ideal \mathcal{A} is injective if, given $S \in \mathcal{A}(X, Z)$ and $T \in \mathcal{L}(X, Y)$, the inequality $\|T x\| \leq\|S x\|$ for all $x \in X$ implies that $T \in \mathcal{A}(X, Y)$. For an arbitrary ideal \mathcal{A}, the injective hull $\mathcal{A}^{\text {inj }}$ of \mathcal{A} is the operator ideal with components

$$
\mathcal{A}^{\mathrm{inj}}(X, Y)=\{T \in \mathcal{L}(X, Y):\|T x\| \leq\|S x\| \text { for all } x \in X, S \in \mathcal{A}(X, Z)\}
$$

that is, $\mathcal{A}^{\text {inj }}$ is the smallest injective ideal containing \mathcal{A}. If J_{Y} denotes the canonical embedding of Y into $\ell_{\infty}\left(B_{Y^{*}}\right)$, defined by $J_{Y}(y)\left(y^{*}\right)=\left\langle y^{*}, y\right\rangle$, then it is easy to show that an operator T belongs to $\mathcal{A}^{\text {inj }}(X, Y)$ if and only if $J_{Y} \circ T \in \mathcal{A}\left(X, \ell_{\infty}\left(B_{Y^{*}}\right)\right)$. In the case of a Banach ideal $[\mathcal{A}, \alpha], \mathcal{A}^{\text {inj }}$ becomes
a Banach ideal when equipped with the norm

$$
\begin{aligned}
\alpha^{\mathrm{inj}}(T) & =\inf \{\alpha(S):\|T x\| \leq\|S x\| \text { for all } x \in X, S \in \mathcal{A}(X, Z)\} \\
& =\alpha\left(J_{Y} \circ T\right)
\end{aligned}
$$

We denote by $\mathcal{L}, \mathcal{K}, \mathcal{W}$ and \mathcal{F} the operator ideals of bounded, compact, weakly compact and finite rank linear operators, respectively. We also need the following operator ideals: $\mathcal{Q} \mathcal{N}_{p}$ - quasi p-nuclear operators, \mathcal{I}_{p} -p-integral operators and $\Pi_{p}-p$-summing operators. We refer to Pietsch's book [19] for operator ideals (see also Diestel, Jarchow and Tonge [10] for common operator ideals such as \mathcal{I}_{p} and Π_{p}, and Persson and Pietsch [18] for $\mathcal{Q} \mathcal{N}_{p}$).
2. A measure of non- \mathcal{A}-compactness of a set. Let \mathcal{A} be an operator ideal. A subset A of the Banach space X is said to be \mathcal{A}-bounded if there exist a Banach space Z and an operator $S \in \mathcal{A}(Z, X)$ with $A \subset S\left(B_{Z}\right)$ [22]. The class of \mathcal{A}-bounded subsets of X is denoted by $\mathfrak{M}^{\mathcal{A}}(X)$. Note that an operator belongs to $\mathcal{A}^{\text {sur }}(X, Y)$ if and only if it maps bounded subsets of X to \mathcal{A}-bounded subsets of Y. The first examples rely on the following fact.

Proposition 2.1. A set $A \subset X$ is \mathcal{A}-bounded if and only if

$$
U_{A} \in \mathcal{A}\left(\ell_{1}(A), X\right)
$$

Proof. If $A \subset X$ is \mathcal{A}-bounded and $S \in \mathcal{A}(Z, X)$ is such that $A \subset S\left(B_{Z}\right)$, then

$$
\begin{aligned}
U_{A}\left(B_{\ell_{1}(A)}\right) & =\left\{\sum_{n} \alpha_{n} x_{n}: x_{n} \in A,\left(\alpha_{n}\right) \in B_{\ell_{1}}\right\} \\
& \subset\left\{\sum_{n} \alpha_{n} x_{n}: x_{n} \in S\left(B_{Z}\right),\left(\alpha_{n}\right) \in B_{\ell_{1}}\right\}=S\left(B_{Z}\right)
\end{aligned}
$$

and it follows that $U_{A}\left(B_{\ell_{1}(A)}\right)$ is \mathcal{A}-bounded. Thus, $U_{A} \in \mathcal{A}^{\text {sur }}\left(\ell_{1}(A), X\right)=$ $\mathcal{A}\left(\ell_{1}(A), X\right)$ [19, Lemma 4.7.3].

The converse is a direct consequence of the inclusion $A \subset U_{A}\left(B_{\ell_{1}(A)}\right)$.
Example 2.2. (1) The class of all \mathcal{L}-bounded sets in X coincides with that of all bounded sets.
(2) The class of all \mathcal{K}-bounded sets in X coincides with that of all relatively compact sets.
(3) Let $p \in[1, \infty)$. A bounded set $A \subset X$ is said to be p-limited if for every weakly p-summable sequence $\left(x_{n}^{*}\right)$ in X^{*} there exists $\left(\alpha_{n}\right) \in \ell_{p}$ such that $\left|\left\langle x_{n}^{*}, x\right\rangle\right| \leq \alpha_{n}$ for all $x \in A$ and $n \in \mathbb{N}$ [14]. By [8, Proposition 2.1], $A \subset X$ is p-limited if and only if U_{A}^{*} is p-summing. So the class of all Π_{p}^{d}-bounded sets in X is precisely that of all p-limited sets.
(4) Let $1 \leq p<\infty$ and let p^{\prime} be the conjugate index of p. Denote by \mathcal{K}_{p} the ideal consisting of all p-compact operators in the sense of Sinha and

Karn. Since $A \subset X$ is relatively p-compact if and only if $U_{A} \in \mathcal{K}_{p}\left(\ell_{1}(A), X\right)$ [9, Proposition 3.5], we deduce that the class of all \mathcal{K}_{p}-bounded sets in X is precisely that of all relatively p-compact sets.

In [4], a special type of \mathcal{A}-bounded sets was introduced by Carl and Stephani as a refinement of compactness related to a given operator ideal. A set $A \subset X$ is said to be \mathcal{A}-compact if there exist a Banach space Z, a compact set $K \subset Z$ and an operator $S \in \mathcal{A}(Z, X)$ such that $A \subset S(K)$ (actually, this is the characterization of \mathcal{A}-compact sets appearing in [4, Theorem 1.2]). We denote by $\mathfrak{M}_{c}^{\mathcal{A}}(X)$ the class of \mathcal{A}-compact subsets of X.

Relying on the notion of \mathcal{A}-compactness, the notion of \mathcal{A}-compact operator is defined in the obvious way: $T \in \mathcal{L}(X, Y)$ is said to be \mathcal{A}-compact if T maps bounded sets in X to relatively \mathcal{A}-compact sets in Y. If $\mathcal{K}^{\mathcal{A}}$ denotes the class of \mathcal{A}-compact operators, then $\mathcal{K}^{\mathcal{A}}$ is a surjective operator ideal and $\mathcal{K}^{\mathcal{A}}=\mathcal{A}^{\text {sur }} \circ \mathcal{K}=\mathcal{K}^{\mathcal{A}} \circ \mathcal{K}$ [4, Theorem 2.1]. From this, it is easy to deduce that $A \subset X$ is \mathcal{A}-compact if and only if $U_{A} \in \mathcal{K}^{\mathcal{A}}\left(\ell_{1}(A), X\right)$ and that $\mathfrak{M}_{c}^{\mathcal{A}}(X)=\mathfrak{M}_{c}^{\mathcal{A}^{\text {sur }}}(X)=\mathfrak{M}_{c}^{\mathcal{A} \circ \mathcal{K}}(X)$.

Example 2.3. (1) If $\mathcal{A}=\mathcal{L}$ or $\mathcal{A}=\mathcal{K}$, the class of all \mathcal{A}-compact sets in X coincides with that of all relatively compact sets.
(2) Having in mind the equality $\mathcal{K}_{p}=\Pi_{p}^{d} \circ \mathcal{K}$ (see, for instance, [1, Corollary 4.9]) and the surjectivity of the ideal Π_{p}^{d} (being the dual of an injective ideal), it follows that $\mathcal{K}^{\Pi_{p}^{d}}=\mathcal{K}_{p}$. So $A \subset X$ is Π_{p}^{d}-compact if and only if U_{A} is p-compact. By [9, Proposition 3.5], we deduce that the class of all Π_{p}^{d}-compact sets in X is precisely that of all relatively p-compact sets.
(3) Using the above properties, we have

$$
\mathfrak{M}_{c}^{\Pi_{p}^{d}}(X)=\mathfrak{M}_{c}^{\Pi_{p}^{d} \circ \mathcal{K}}(X)=\mathfrak{M}_{c}^{\mathcal{K}_{p}}(X),
$$

that is, the class of all \mathcal{K}_{p}-compact sets in X is precisely that of all relatively p-compact sets.

The notion of \mathcal{A}-compactness may be expressed in a similar way to the notion of precompactness in a Banach space.

Theorem ([4, Theorem 3.1]). Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal, X a Banach space and $A \in \mathfrak{M}^{\mathcal{A}}(X)$. The following statements are equivalent:
(a) A is \mathcal{A}-compact.
(b) For every $\varepsilon>0$, there are finitely many elements $x_{1}, \ldots, x_{n} \in X$, a Banach space Z and an operator $S \in \mathcal{A}(Z, X)$ with $\alpha(S) \leq \varepsilon$ such that

$$
A \subset \bigcup_{i=1}^{n} x_{i}+S\left(B_{Z}\right)
$$

The above result is a basis for the following definition of measure of noncompactness referring to a given Banach operator ideal \mathcal{A}.

Definition 2.4. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal, X a Banach space and $A \in \mathfrak{M}^{\mathcal{A}}(X)$. The (outer) measure of non- \mathcal{A}-compactness of A is

$$
\chi_{\mathcal{A}}(A)=\inf \left\{\varepsilon>0: A \subset \bigcup_{i=1}^{n} x_{i}+S\left(B_{Z}\right)\right\},
$$

the infimum taken over all possible $x_{1}, \ldots, x_{n} \in X$, Banach spaces Z and operators $S \in \mathcal{A}(Z, X)$ with $\alpha(S) \leq \varepsilon$.

The condition $A \in \mathfrak{M}^{\mathcal{A}}(X)$ ensures that in the above definition we take the infimum of a nonempty set of positive numbers. Of course, if $\mathcal{A} \subset \mathcal{B}$, then $\chi_{\mathcal{B}}(\cdot) \leq \chi_{\mathcal{A}}(\cdot)$ and $\chi_{\mathcal{L}} \equiv \chi$.

In this section, we omit the word "outer" when referring to "outer measures of non- \mathcal{A}-compactness".

Remark 2.5. It is clear that

$$
\chi_{\mathcal{A}}(A)=\inf \left\{\alpha(S): A \subset \bigcup_{i=1}^{n} x_{i}+S\left(B_{Z}\right)\right\},
$$

the infimum taken over all possible $x_{1}, \ldots, x_{n} \in X$, Banach spaces Z and operators $S \in \mathcal{A}(Z, X)$. From this, it follows that $\chi_{\mathcal{A}}(A)=\lim _{n} e_{n}(A, \mathcal{A})$, where $\left(e_{n}(A, \mathcal{A})\right)$ is the sequence of generalized (outer) entropy numbers of the set A with respect to \mathcal{A} introduced in [4, Definition 3]. Theorem 3.2 in [4] may be used to obtain the equality $\chi_{\mathcal{A}}(A)=\chi_{\mathcal{A}} \operatorname{sur}(A)$ for every $A \in$ $\mathfrak{M}^{\mathcal{A}}(X)=\mathfrak{M}^{\mathcal{A}^{\text {sur }}}(X)$.

On the other hand, [7, Proposition 5] shows that

$$
\chi_{\mathcal{A}}(A)=\inf \left\{\alpha(S): A \subset T\left(B_{E}\right)+S\left(B_{Z}\right)\right\}
$$

where the infimum is taken over all Banach spaces E and Z and operators $T \in \mathcal{K}^{\mathcal{A}}(E, X)$ and $S \in \mathcal{A}(Z, X)$.

Remark 2.6. Taking a glance at Proposition 2.1, it is also possible to conclude that

$$
\chi_{\mathcal{A}}(A)=\inf \left\{\varepsilon>0: A \subset \bigcup_{i=1}^{n} x_{i}+B\right\},
$$

the infimum taken over all possible $x_{1}, \ldots, x_{n} \in X$ and \mathcal{A}-bounded subsets B of X with $\alpha\left(U_{B}\right) \leq \varepsilon$.

Remark 2.7. In [16], a way to measure the "size" of \mathcal{A}-compact sets is introduced as follows. If $A \subset X$ is \mathcal{A}-compact, then one can define $m_{\mathcal{A}}(A)=$ $\inf \left\{\alpha(S): A \subset S(K), S \in \mathcal{A}(Z, X), K \subset B_{Z}\right.$ compact $\}$, where the infimum is taken over all Banach spaces Z. It must be pointed out that this notion
is different from that in Definition 2.4 in fact, a bounded set is \mathcal{A}-compact if and only if its $m_{\mathcal{A}}$-measure is finite.

Most of the proofs of the following properties are routine, so they are omitted.

Proposition 2.8. Assume \mathcal{A} is a Banach operator ideal and A, A_{1}, A_{2} $\subset X$ are \mathcal{A}-bounded. Then:
(1) $\chi_{\mathcal{A}}(A)=0$ if and only if A is \mathcal{A}-compact.
(2) If $A_{1} \subset A_{2}$, then $\chi_{\mathcal{A}}\left(A_{1}\right) \leq \chi_{\mathcal{A}}\left(A_{2}\right)$. Thus,

$$
\chi_{\mathcal{A}}\left(A_{1} \cap A_{2}\right) \leq \min \left\{\chi_{\mathcal{A}}\left(A_{1}\right), \chi_{\mathcal{A}}\left(A_{2}\right)\right\}
$$

(3) $\chi_{\mathcal{A}}\left(A_{1}+A_{2}\right) \leq \chi_{\mathcal{A}}\left(A_{1}\right)+\chi_{\mathcal{A}}\left(A_{2}\right)$. As a consequence,

$$
\chi_{\mathcal{A}}(\Delta+A)=\chi_{\mathcal{A}}(A)
$$

whenever $\Delta \subset X$ is finite.
(4) $\chi_{\mathcal{A}}(\lambda A)=|\lambda| \chi_{\mathcal{A}}(A)$ for every $\lambda \in \mathbb{R}$.
(5) If $T \in \mathcal{L}(X, Y)$, then $\chi_{\mathcal{A}}(T(A)) \leq\|T\| \chi_{\mathcal{A}}(A)$.
(6) If $D \subset X$ is bounded and $T \in \mathcal{A}^{\text {sur }}(X, Y)$, then

$$
\chi_{\mathcal{A}}(T(D)) \leq \alpha^{\mathrm{sur}}(T) \chi(D)
$$

where $\chi(D)$ denotes the Hausdorff measure of noncompactness of D.
(7) If A_{2} is \mathcal{A}-compact, then $\chi_{\mathcal{A}}\left(A_{1} \cup A_{2}\right)=\chi_{\mathcal{A}}\left(A_{1}\right)$.
(8) $\chi_{\mathcal{A}}\left(U_{A}\left(B_{\ell_{1}(A)}\right)\right)=\chi_{\mathcal{A}}(A)$.

Proof. (3) Although the idea of the proof is included in [4, Section 4], we give a sketch for completeness. By [4, p. 89, property A], it can be deduced that

$$
e_{2 n-1}\left(A_{1}+A_{2}, \mathcal{A}\right) \leq e_{n}\left(A_{1}, \mathcal{A}\right)+e_{n}\left(A_{2}, \mathcal{A}\right)
$$

hence

$$
\begin{aligned}
\chi_{\mathcal{A}}\left(A_{1}+A_{2}\right) & =\lim _{n} e_{2 n-1}\left(A_{1}+A_{2}, \mathcal{A}\right) \\
& \leq \lim _{n}\left(e_{n}\left(A_{1}, \mathcal{A}\right)+e_{n}\left(A_{2}, \mathcal{A}\right)\right)=\chi_{\mathcal{A}}\left(A_{1}\right)+\chi_{\mathcal{A}}\left(A_{2}\right)
\end{aligned}
$$

(6) If $D \subset X$ is bounded and $T \in \mathcal{A}^{\text {sur }}(X, Y)$, it is clear that $T(D)$ is $\mathcal{A}^{\text {sur }}$-bounded. Let $\varepsilon>\chi(D)$ and choose $x_{1}, \ldots, x_{n} \in X$ so that $D \subset$ $\bigcup_{i=1}^{n} x_{i}+\varepsilon B_{X}$. Then $T(D) \subset \bigcup_{i=1}^{n} T\left(x_{i}\right)+\varepsilon T\left(B_{X}\right)$, so in view of Remark 2.5 we have

$$
\chi_{\mathcal{A}^{\text {sur }}}(T(D)) \leq \alpha^{\text {sur }}(\varepsilon T)=\alpha^{\text {sur }}(T) \varepsilon
$$

Letting $\varepsilon \searrow \chi(D)$, we obtain $\chi_{\mathcal{A}^{\text {sur }}}(T(D)) \leq \alpha^{\text {sur }}(T) \chi(D)$, and the property follows since $\chi_{\mathcal{A}} \equiv \chi_{\mathcal{A}^{\text {sur }}}$ [4, Theorem 3.2].
(7) By monotonicity, $\chi_{\mathcal{A}}\left(A_{1}\right) \leq \chi_{\mathcal{A}}\left(A_{1} \cup A_{2}\right)$. For the converse inequality, fix $\varepsilon>\chi_{\mathcal{A}}\left(A_{1}\right)$ so that $A_{1} \subset \bigcup_{i=1}^{n} x_{i}+S_{1}\left(B_{Z_{1}}\right)$ with $\alpha\left(S_{1}\right) \leq \varepsilon$. Now, for a given $\delta>0$, the \mathcal{A}-compactness of A_{2} ensures the existence of
$u_{1}, \ldots, u_{m} \in X$ as well as a Banach space Z_{2} and $S_{2} \in \mathcal{A}\left(Z_{2}, X\right)$ with $\alpha\left(S_{2}\right) \leq \delta$ satisfying $A_{2} \subset \bigcup_{j=1}^{m} u_{j}+S_{2}\left(B_{Z_{2}}\right)$. Setting $\Delta_{1}=\left\{x_{1}, \ldots, x_{n}\right\}$ and $\Delta_{2}=\left\{u_{1}, \ldots, u_{m}\right\}$, it is clear that $A_{1} \cup A_{2} \subset\left(\Delta_{1} \cup \Delta_{2}\right)+S_{1}\left(B_{Z_{1}}\right)+S_{2}\left(B_{Z_{2}}\right)$. So, in view of $(2),(3)$ and (6), and having in mind that $\chi\left(B_{E}\right)=1$ whenever E is infinite-dimensional [3, Theorem 2.5], we conclude that

$$
\begin{aligned}
\chi_{\mathcal{A}}\left(A_{1} \cup A_{2}\right) & \leq \chi_{\mathcal{A}}\left(S_{1}\left(B_{Z_{1}}\right)\right)+\chi_{\mathcal{A}}\left(S_{2}\left(B_{Z_{2}}\right)\right) \\
& \leq \alpha\left(S_{1}\right) \chi\left(B_{Z_{1}}\right)+\alpha\left(S_{2}\right) \chi\left(B_{Z_{2}}\right) \\
& \leq \varepsilon+\delta .
\end{aligned}
$$

Letting $\delta \searrow 0$ and $\varepsilon \searrow \chi_{\mathcal{A}}\left(A_{1}\right)$ yields the desired inequality.
Remark 2.9. As a consequence of Proposition 2.8(6), every T in $\mathcal{A}^{\text {sur }}(X, Y)$ maps relatively compact subsets of X to \mathcal{A}-compact subsets of Y. For $\mathcal{A}=\Pi_{p}^{d}$, this means that every operator with p-summing adjoint maps relatively compact subsets to p-compact subsets (as already proved in [9, Theorem 3.14]).

It is easy to show that the Hausdorff measure of noncompactness is semiadditive, that is, $\chi\left(D_{1} \cup D_{2}\right)=\max \left\{\chi\left(D_{1}\right), \chi\left(D_{2}\right)\right\}$. Apart from the case stated in Proposition 2.8 7), we have not been able to establish whether this property remains true for measures of non- \mathcal{A}-compactness with \mathcal{A} different from \mathcal{L}. In this connection, we have the following result.

Proposition 2.10. Let $p \geq 1$ and let $A_{1}, A_{2} \subset X$ be Π_{p}^{d}-bounded sets. Then

$$
\chi_{\Pi_{p}^{d}}\left(A_{1} \cup A_{2}\right) \leq 2^{1 / p} \max \left\{\chi_{\Pi_{p}^{d}}\left(A_{1}\right), \chi_{\Pi_{p}^{d}}\left(A_{2}\right)\right\}
$$

Proof. Suppose $\varepsilon>\chi_{\Pi_{p}^{d}}\left(A_{1}\right) \geq \chi_{\Pi_{p}^{d}}\left(A_{2}\right)$ and consider coverings $A_{j} \subset$ $\bigcup_{i=1}^{n_{j}} x_{i}^{j}+B_{j}$ with $\pi_{p}\left(U_{B_{j}}\right) \leq \varepsilon, j=1,2$ (Remark 2.6). Then

$$
A_{1} \cup A_{2} \subset \bigcup_{x \in \Delta} x+B
$$

where $\Delta=\left\{x_{i}^{j}: i=1, \ldots, n_{1}, j=1, \ldots, n_{2}\right\}$ and $B=B_{1} \cup B_{2}$. It suffices to see that $\pi_{p}\left(U_{B}^{*}\right) \leq 2^{1 / p} \varepsilon$. For any fixed weakly p-summable sequence $\left(x_{n}^{*}\right)$ in X^{*}, it is possible to find a partition of \mathbb{N} into two sets G_{1} and G_{2} such that

$$
\sum_{n}\left\|U_{B}^{*} x_{n}^{*}\right\|^{p} \leq \sum_{n \in G_{1}}\left\|U_{B_{1}}^{*} x_{n}^{*}\right\|^{p}+\sum_{n \in G_{2}}\left\|U_{B_{2}}^{*} x_{n}^{*}\right\|^{p}
$$

Hence,

$$
\pi_{p}\left(U_{B}^{*}\right) \leq\left(\pi_{p}\left(U_{B_{1}}^{*}\right)^{p}+\pi_{p}\left(U_{B_{1}}^{*}\right)^{p}\right)^{1 / p} \leq 2^{1 / p} \varepsilon
$$

Remark 2.11. If $D \subset X$ is bounded then $\chi(D)=\chi(\bar{D})$. For an arbitrary Banach operator ideal \mathcal{A}, we cannot even ensure that \bar{A} is \mathcal{A}-bounded
whenever $A \subset X$ is. Much more can be said if \mathcal{A} enjoys the following property:

Property (P). There exists a positive constant C such that, for any Banach spaces X and Y and $T \in \mathcal{A}(X, Y)$, we have:
(i) $T^{* *}\left(B_{X^{* *}}\right) \subset Y_{\sim}$ (that is, $\left.\mathcal{A} \subset \mathcal{W}\right)$.
(ii) The operator $\widetilde{T}: B_{X^{* *}} \ni x^{* *} \mapsto T^{* *} x^{* *} \in Y$ belongs to $\mathcal{A}\left(X^{* *}, Y\right)$.
(iii) $\alpha(\widetilde{T}) \leq C \alpha(T)$.

Proposition 2.12. Suppose \mathcal{A} is a Banach operator ideal with property (P) and X is a Banach space. Then:
(1) $A \subset X$ is \mathcal{A}-bounded if and only if \bar{A} is.
(2) $\chi_{\mathcal{A}}(A) \leq \chi_{\mathcal{A}}(\bar{A}) \leq C \chi_{\mathcal{A}}(A)$.

Proof. Let $S \in \mathcal{A}(Z, X)$ with $A \subset S\left(B_{Z}\right)$. Then $A \subset \widetilde{S}\left(B_{Z^{* *}}\right)$. By hypothesis, S is weakly compact, so it factors through a reflexive Banach space. Thus, \widetilde{S} is weak*-weak continuous. From this, $\widetilde{S}\left(B_{Z^{* *}}\right)$ is a weakly compact set in Y and, being absolutely convex, it is norm closed. So we have $\bar{A} \subset \widetilde{S}\left(B_{Z^{* *}}\right)$, and this shows that \bar{A} is \mathcal{A}-bounded.

Finally, (2) is obtained using a standard argument.
If a Banach operator ideal $\mathcal{A} \subset \mathcal{W}$ is regular and satisfies $\mathcal{A}=\mathcal{A}^{d d}$, then it enjoys property (P). This is the case of operator ideals $\mathcal{A} \subset \mathcal{W}$ and $\mathcal{A}=\mathcal{A}^{\max }$ [6, pp. 206-207]. Hence, Π_{p}^{d} satisfies property (P) (in fact, $\Pi_{p}^{d}=\mathcal{K}_{p}^{\max }$ [20, Theorem 12]).

Corollary 2.13. If $A \subset X$ is Π_{p}^{d}-bounded, then $\chi_{\Pi_{p}^{d}}(A)=\chi_{\Pi_{p}^{d}}(\bar{A})$.
3. Measures of non- \mathcal{A}-compactness of an operator. If an operator $T: X \rightarrow Y$ fails to be \mathcal{A}-compact, it seems natural to quantify the distance between T and $\mathcal{K}^{\mathcal{A}}(X, Y)$ by evaluating $\chi_{\mathcal{A}}\left(T\left(B_{X}\right)\right)$ when this expression makes sense.

Definition 3.1. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal and let T be in $\mathcal{A}^{\text {sur }}(X, Y)$. The (outer) measure of non- \mathcal{A}-compactness of T is

$$
\chi_{\mathcal{A}}(T)=\chi_{\mathcal{A}}\left(T\left(B_{X}\right)\right)
$$

Note that $\chi_{\mathcal{A}}(T)=\lim _{n} e_{n}(T, \mathcal{A})$ (see [4, Section 4]). When $\mathcal{A}=\mathcal{L}$, we are dealing with the so called ball measure of noncompactness.

Example 3.2. Let $A=\left\{e_{n}: n \in \mathbb{N}\right\} \subset c_{0}$, where $\left(e_{n}\right)$ is the unit vector basis in c_{0}. Let us check that $\chi_{\mathcal{A}}(A)=1$ if $\mathcal{A}=\Pi_{p}$ or $\mathcal{A}=\Pi_{p}^{d}$. If I denotes the embedding map from ℓ_{1} into c_{0}, then $\iota_{1}\left(I^{*}\right)=1$ (see, for instance, [19, Proposition 6.4.4]), so $\chi_{\mathcal{I}_{1}^{d}}(A) \leq 1$. In view of [10, Corollary 5.7],

$$
\chi_{\Pi_{p}^{d}}(A) \leq \chi_{\Pi_{1}^{d}}(A)=\chi_{\mathcal{I}_{1}^{d}}(A) \leq 1
$$

From this and the equality $\chi_{\mathcal{L}}(A)=\chi(A)=1$ [3, p. 24], it follows that $\chi_{\Pi_{p}^{d}}(A)=1$. On the other hand, I is 1-integral and $\iota_{1}(I)=1$ [10, Theorem 5.15], so arguing as above shows that $\chi_{\Pi_{p}}(A)=1$. Now, notice that I is precisely the operator U_{A}, so according to Proposition 2.8(8) we conclude that $\chi_{\Pi_{p}}(I)=\chi_{\Pi_{p}^{d}}(I)=1$.

Remark 3.3. Given a Banach ideal \mathcal{A}, the (outer) \mathcal{A}-variation of an operator $T \in \mathcal{L}(X, Y)$ is defined by

$$
\gamma_{\mathcal{A}}(T)=\inf \left\{\varepsilon>0: T\left(B_{X}\right) \subset \varepsilon B_{Y}+S\left(B_{Z}\right)\right\}
$$

where the infimum is taken over all Banach spaces Z and operators $S \in$ $\mathcal{A}(Z, X)$ [2, Definition 3.1]. Example 3.2 makes it clear that this is a different notion from that appearing in Definition 3.1, in fact, by [2, Theorem 3.8],

$$
\gamma_{\Pi_{p}}(I)=\inf \left\{\|I-S\|: S \in \Pi_{p}\left(\ell_{1}, c_{0}\right)\right\}=0
$$

The following result shows an alternative way to describe $\chi_{\mathcal{A}}(T)$:
Proposition 3.4. Let \mathcal{A} be a Banach operator ideal and $T \in \mathcal{A}^{\text {sur }}(X, Y)$. Then

$$
\chi_{\mathcal{A}}(T)=\inf \left\{k>0: \chi_{\mathcal{A}}(T(D)) \leq k \chi(D) \text { for all } D \subset X \text { bounded }\right\}
$$

If X is infinite-dimensional, then

$$
\chi_{\mathcal{A}}(T)=\sup \left\{\chi_{\mathcal{A}}(T(D)): D \subset X \text { bounded with } \chi(D)=1\right\}
$$

Proof. We prove the first equality (the second follows by a standard argument). The assertion is clear if X is finite-dimensional. Suppose X is infinite-dimensional and set

$$
G=\left\{k>0: \chi_{\mathcal{A}}(T(D)) \leq k \chi(D) \text { for all } D \subset X \text { bounded }\right\}
$$

Notice that Proposition 2.8, 6) ensures that $G \neq \emptyset$. Since $\chi\left(B_{X}\right)=1$, we have $\chi_{\mathcal{A}}\left(T\left(B_{X}\right)\right) \leq k$ whenever $k \in G$, and this yields $\chi_{\mathcal{A}}(T) \leq \inf G$.

For the opposite inequality, it suffices to show $\chi_{\mathcal{A}}(T(D)) \leq \chi_{\mathcal{A}}\left(T\left(B_{X}\right)\right)$ for every bounded set $D \subset X$ satisfying $\chi(D)=1$. Fix D with those properties and $\delta>1$. There exist $x_{1}, \ldots, x_{m} \in X$ such that

$$
\begin{equation*}
D \subset \bigcup_{i=1}^{m} x_{i}+\delta B_{X} \tag{3.1}
\end{equation*}
$$

On the other hand, if $\varepsilon>\chi_{\mathcal{A}}\left(T\left(B_{X}\right)\right)$, one can find $y_{1}, \ldots, y_{n} \in Y$, a Banach space Z and $S \in \mathcal{A}(Z, Y)$ satisfying $\alpha(S) \leq \varepsilon$ so that

$$
\begin{equation*}
T\left(B_{X}\right) \subset \bigcup_{j=1}^{n} y_{j}+S\left(B_{Z}\right) \tag{3.2}
\end{equation*}
$$

From (3.1) and (3.2), we have a covering $T(D) \subset \bigcup_{y \in \Delta} y+\delta S\left(B_{Z}\right), \Delta \subset Y$ being a finite set. Therefore, $\chi_{\mathcal{A}}(T(D)) \leq \alpha(\delta S) \leq \delta \varepsilon$, and the proof finishes by just taking the infimum over δ and ε.

The next proposition lists some basic properties of the outer measure of non- \mathcal{A}-compactness of an operator; they can be easily obtained from the definition and Propositions 2.8 and 3.4 .

Proposition 3.5. Let \mathcal{A} be a Banach operator ideal and $T \in \mathcal{A}^{\text {sur }}(X, Y)$. Then:
(1) $\chi_{\mathcal{A}}(\cdot)$ is a seminorm on $\mathcal{A}^{\text {sur }}(X, Y)$.
(2) $\chi_{\mathcal{A}}(T)=0$ if and only if $T \in \mathcal{K}^{\mathcal{A}}(X, Y)$.
(3) If $S \in \mathcal{K}^{\mathcal{A}}(X, Y)$, then $\chi_{\mathcal{A}}(T+S)=\chi_{\mathcal{A}}(T)$.
(4) If X_{0} and Y_{0} are Banach spaces, $R \in \mathcal{L}\left(Y, Y_{0}\right)$ and $S \in \mathcal{L}\left(X_{0}, X\right)$, then $\chi_{\mathcal{A}}(R \circ T \circ S) \leq\|R\| \chi_{\mathcal{A}}(T)\|S\|$.
(5) If $D \subset X$ is bounded, then $\chi_{\mathcal{A}}(T(D)) \leq \chi_{\mathcal{A}}(T) \chi(D)$.
(6) If $S \in \mathcal{A}^{\text {sur }}(Y, Z)$, then $\chi_{\mathcal{A}}(S \circ T) \leq \chi_{\mathcal{A}}(S) \chi_{\mathcal{A}}(T)$.
(7) If $\operatorname{Id}_{X} \in \mathcal{A}^{\text {sur }}(X, X)$, then $\chi_{\mathcal{A}}\left(\operatorname{Id}_{X}\right)=0$ if and only if X is finitedimensional (otherwise, $\left.\chi_{\mathcal{A}}\left(\operatorname{Id}_{X}\right) \geq 1\right)$.

Given a Banach operator ideal \mathcal{A}, the outer measure of non- \mathcal{A}-compactness of an operator may be considered as a tool to evaluate the degree of non- \mathcal{A}-compactness of an operator belonging the surjective hull $\mathcal{A}^{\text {sur }}$. To obtain an extension of the equality $\mathcal{\mathcal { Q }} \mathcal{N}_{p}=\mathcal{K}_{p}^{d}$, we are going to consider another type of measure quantifying the degree of noncompactness (with respect to \mathcal{A}) of operators belonging to the injective hull $\mathcal{A}^{\mathrm{inj}}$. The following concept was introduced and studied by Stephani [23, Section 1].

Definition 3.6. Let \mathcal{A} be an operator ideal. An operator $T \in \mathcal{L}(X, Y)$ is said to be injectively \mathcal{A}-compact if there exist a Banach space Z, a sequence $\left(z_{n}^{*}\right) \in c_{0}\left(Z^{*}\right)$ and an operator $S \in \mathcal{A}^{\operatorname{inj}}(X, Z)$ such that $\|T x\| \leq$ $\sup _{n}\left|\left\langle z_{n}^{*}, S x\right\rangle\right|$ for all $x \in X$.

Remark 3.7. It is well known that $T \in \mathcal{L}(X, Y)$ is compact if there exists $\left(x_{n}^{*}\right) \in c_{0}\left(X^{*}\right)$ such that $\|T x\| \leq \sup _{n}\left|\left\langle x_{n}^{*}, x\right\rangle\right|$ for all $x \in X$. Thus, for $\mathcal{A}=\mathcal{L}$ the preceding notion coincides with the notion of compact operator.

If $\mathcal{H}^{\mathcal{A}}$ denotes the class of injectively \mathcal{A}-compact operators, then $\mathcal{H}^{\mathcal{A}}$ is an injective operator ideal and $\mathcal{H}^{\mathcal{A}}=\mathcal{K} \circ A^{\text {inj }}$ [23, Theorem 1.1]. For example, $\mathcal{H}^{\Pi_{p}}=\mathcal{K} \circ \Pi_{p}=\mathcal{Q N}_{p}[23, ~ p .255]$.

Remark 3.8. Since $\mathcal{H}^{\mathcal{A}}=\mathcal{K} \circ A^{\mathrm{inj}}$ [23, Theorem 1.1], $\mathcal{A}^{\mathrm{inj}}(X, Z)$ may be replaced with $\mathcal{A}(X, Z)$ in the preceding definition.

When dealing with a Banach operator ideal $[\mathcal{A}, \alpha]$, the following characterization of injectively \mathcal{A}-compact operators may be deduced from [23, Theorem 1.1].

Theorem 3.9. Let \mathcal{A} be a Banach operator ideal and $T \in \mathcal{L}(X, Y)$. The following statements are equivalent:
(1) T is injectively \mathcal{A}-compact.
(2) For every $\varepsilon>0$, there are finitely many functionals $x_{1}^{*}, \ldots, x_{n}^{*} \in X^{*}$, a Banach space Z and an operator $S \in \mathcal{A}(X, Z)$ with $\alpha(S) \leq \varepsilon$ such that

$$
\|T x\| \leq \sup _{1 \leq i \leq n}\left|\left\langle x_{i}^{*}, x\right\rangle\right|+\|S x\|
$$

for all $x \in X$.
Definition 3.10. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal and let T be in $\mathcal{A}^{\mathrm{inj}}(X, Y)$. The (inner) measure of non- \mathcal{A}-compactness of T is

$$
n_{\mathcal{A}}(T)=\inf \left\{\varepsilon>0:\|T x\| \leq \sup _{1 \leq i \leq n}\left|\left\langle x_{i}^{*}, x\right\rangle\right|+\|S x\| \text { for all } x \in X\right\}
$$

the infimum taken over all $x_{1}^{*}, \ldots, x_{n}^{*} \in X^{*}$, Banach spaces Z and operators $S \in \mathcal{A}(X, Z)$ with $\alpha(S) \leq \varepsilon$.

The condition $T \in \mathcal{A}^{\text {inj }}(X, Y)$ ensures that in the above definition we take the infimum of a nonempty set of positive numbers. In fact, $n_{\mathcal{A}}(T) \leq$ $\alpha^{\text {inj }}(T)$. In this case, $n_{\mathcal{A}}$ vanishes precisely on operators belonging to $\mathcal{H}^{\mathcal{A}}$.

Remark 3.11. Given a Banach ideal \mathcal{A}, the (inner) \mathcal{A}-variation of an operator $T \in \mathcal{L}(X, Y)$ is defined by

$$
\beta_{\mathcal{A}}(T)=\inf \{\varepsilon>0:\|T x\| \leq \varepsilon\|x\|+\|S x\| \text { for all } x \in X\}
$$

where the infimum is taken over all Banach spaces Z and operators $S \in$ $\mathcal{A}(X, Z)$ [24]. Since $\beta_{\mathcal{A}}(T)=0$ if and only if $J_{Y} \circ T$ is in the uniform closure of $\mathcal{A}\left(X, \ell_{\infty}\left(B_{Y^{*}}\right)\right)$ [13, Theorem 20.7.3], the (inner) \mathcal{A}-variation is a different notion from that appearing in Definition 3.10 .

Theorem 3.12. Let \mathcal{A} be a Banach operator ideal with property (P) (see Remark 2.11. Then

$$
\frac{1}{C} \chi_{\mathcal{A}}\left(T^{*}\right) \leq n_{\mathcal{A}^{d}}(T) \leq C \chi_{\mathcal{A}}\left(T^{*}\right)
$$

for every $T \in\left(\mathcal{A}^{d}\right)^{\operatorname{inj}}(X, Y)$.
Proof. Notice that $\chi_{\mathcal{A}}\left(T^{*}\right)$ makes sense if $T \in\left(\mathcal{A}^{d}\right)^{\text {inj }}(X, Y)$ since $\left(\mathcal{A}^{d}\right)^{\text {inj }}$ $\subset\left(\mathcal{A}^{\text {sur }}\right)^{d}$ [19, Theorem 8.5.9]. To prove $n_{\mathcal{A}^{d}}(T) \leq C \chi_{\mathcal{A}}\left(T^{*}\right)$, we fix $\varepsilon>$ $\chi_{\mathcal{A}}\left(T^{*}\left(B_{Y^{*}}\right)\right)$ and consider functionals $x_{1}^{*}, \ldots, x_{n}^{*} \in X^{*}$, a Banach space Z and $S \in \mathcal{A}\left(Z, X^{*}\right)$ satisfying $\alpha(S) \leq \varepsilon$ and

$$
T^{*}\left(B_{Y^{*}}\right) \subset \bigcup_{i=1}^{n} x_{i}^{*}+S\left(B_{Z}\right)
$$

This covering of $T^{*}\left(B_{Y^{*}}\right)$ yields

$$
\begin{equation*}
\left|\left\langle T^{*} y^{*}, x\right\rangle\right| \leq \sup _{1 \leq i \leq n}\left|\left\langle x_{i}^{*}, x\right\rangle\right|+\sup _{z \in B_{Z}}|\langle S z, x\rangle| \tag{3.3}
\end{equation*}
$$

for all $y^{*} \in B_{Y^{*}}$ and $x \in X$. If we set $S_{0}:=S^{*} \circ i_{X}$, it follows that

$$
\|T x\| \leq \sup _{1 \leq i \leq n}\left|\left\langle x_{i}^{*}, x\right\rangle\right|+\left\|S_{0} x\right\|
$$

for all $x \in X$. Hence, as \mathcal{A} enjoys property (P), we have $S_{0} \in \mathcal{A}^{d}\left(X, Z^{*}\right)$ and

$$
n_{\mathcal{A}^{d}}(T) \leq \alpha^{d}\left(S_{0}\right) \leq \alpha^{d}\left(S^{*}\right)=\alpha\left(S^{* *}\right)=\alpha\left(i_{Y} \circ \widetilde{S}\right) \leq C \varepsilon,
$$

so that $n_{\mathcal{A}^{d}}(T) \leq C \chi_{\mathcal{A}}\left(T^{*}\right)$ by taking the infimum over ε.
For the reverse inequality, fix $\varepsilon>n_{\mathcal{A}^{d}}(T)$ and consider $x_{1}^{*}, \ldots, x_{n}^{*} \in X^{*}$, a Banach space Z and $S \in \mathcal{A}^{d}(X, Z)$ satisfying $\alpha^{d}(S) \leq \varepsilon$ and

$$
\|T x\| \leq \sup _{1 \leq i \leq n}\left|\left\langle x_{i}^{*}, x\right\rangle\right|+\|S x\|
$$

for all $x \in X$. Set

$$
A:=\overline{\operatorname{aco}}\left(\bigcup_{i=1}^{n} \pm x_{i}^{*}+S^{*}\left(B_{Z^{*}}\right)\right)
$$

We are going to see that $T^{*}\left(B_{Y^{*}}\right) \subset A$. For contradiction, suppose there exists $x_{0}^{*} \in T^{*}\left(B_{Y^{*}}\right) \backslash A$. According to the Hahn-Banach separation theorem, we can separate x_{0}^{*} and A in X^{*} endowed with the weak topology: there are $r>0$ and $x_{0} \in X$ such that $\left|\left\langle x_{0}^{*}, x_{0}\right\rangle\right|>r$ and $\left|\left\langle \pm x_{i}^{*}+S^{*} z^{*}, x_{0}\right\rangle\right|<r$ for all $z^{*} \in B_{Z^{*}}$ and $i=1, \ldots, n$. In particular, if $z_{0}^{*} \in B_{Z^{*}}$ with $\left\|S x_{0}\right\|=\left\langle z_{0}^{*}, S x_{0}\right\rangle$, we can select $\bar{x}^{*} \in\left\{ \pm x_{i}^{*}: i=1, \ldots, n\right\}$ such that

$$
\begin{equation*}
\sup _{1 \leq i \leq n}\left|\left\langle x_{i}^{*}, x_{0}\right\rangle\right|+\left\|S x_{0}\right\|=\left|\left\langle\bar{x}^{*}+S^{*} z_{0}^{*}, x_{0}\right\rangle\right|<r . \tag{3.4}
\end{equation*}
$$

Now, choose $y_{0}^{*} \in B_{Y^{*}}$ with $T^{*} y_{0}^{*}=x_{0}^{*}$; then

$$
r<\left|\left\langle x_{0}^{*}, x_{0}\right\rangle\right| \leq\left\|T x_{0}\right\| \leq \sup _{1 \leq i \leq n}\left|\left\langle x_{i}^{*}, x_{0}\right\rangle\right|+\left\|S x_{0}\right\|<r,
$$

a contradiction that proves $T^{*}\left(B_{Y^{*}}\right) \subset A$.
According to properties (2), (3) and (8) in Proposition 2.8, and Proposition 2.12, we have

$$
\chi_{\mathcal{A}}\left(T^{*}\left(B_{Y^{*}}\right)\right) \leq C \chi_{\mathcal{A}}\left(S^{*}\left(B_{Z^{*}}\right)\right) \leq C \alpha\left(S^{*}\right) \leq C \varepsilon .
$$

Taking the infimum over ε yields $\chi_{\mathcal{A}}\left(T^{*}\right) \leq C n_{\mathcal{A}^{d}}(T)$.
Setting $\mathcal{A}=\Pi_{p}^{d}$ in the previous theorem, we obtain the following extension of the equality $\mathcal{Q} \mathcal{N}_{p}=\mathcal{K}_{p}^{d}[9$, Corollary 3.4].

Corollary 3.13. For every $T \in \Pi_{p}(X, Y), n_{\Pi_{p}}(T)=\chi_{\Pi_{p}^{d}}\left(T^{*}\right)$.
Remark 3.14. For every Banach operator ideal \mathcal{A}, a direct proof yields $n_{\mathcal{A}}\left(T^{*}\right) \leq \chi_{\mathcal{A}^{d}}(T)$ for every $T \in\left(\mathcal{A}^{d}\right)^{\text {sur }}(X, Y)$ (notice that $n_{\mathcal{A}}\left(T^{*}\right)$ makes sense if $T \in\left(\mathcal{A}^{d}\right)^{\text {sur }}(X, Y)$ since $\left(\mathcal{A}^{d}\right)^{\text {sur }}=\left(\mathcal{A}^{\text {inj }}\right)^{d}$ [19, Theorem 8.5.9]). Thus, for $\mathcal{A}=\Pi_{p}$, we have $n_{\Pi_{p}}\left(T^{*}\right) \leq \chi_{\Pi_{p}^{d}}(T)$ for every $T \in \Pi_{p}^{d}(X, Y)$,
which may be considered as an extension of the inclusion $\mathcal{K}_{p} \subset \mathcal{Q} \mathcal{N}_{p}^{d}$, 9 , Corollary 3.4].

From Corollary 3.13, it is clear that $n_{\Pi_{p}}\left(T^{*}\right)=\chi_{\Pi_{p}^{d}}\left(T^{* *}\right)$ for every T in $\Pi_{p}^{d}(X, Y)$. Nevertheless, we do not know if there exists a positive constant C satisfying $n_{\Pi_{p}}\left(T^{*}\right) \geq C \chi_{\Pi_{p}^{d}}(T)$ for every $T \in \Pi_{p}^{d}(X, Y)$. The main problem is that the measure of non- \mathcal{A}-compactness of a set depends on the ambient space. This implies that the equality $\chi_{\mathcal{A}}(T)=\chi_{\mathcal{A}}\left(T^{* *}\right)$ does not hold in general. Indeed, taking a glance at Example 3.2, we have

$$
\chi_{\mathcal{L}}(I)=\chi_{\mathcal{L}}\left(U_{A}\left(B_{\ell_{1}}\right)\right)=\chi_{\mathcal{L}}(A)=1
$$

On the other hand, notice that $A \subset \frac{1}{2} e+\frac{1}{2} B_{\ell_{\infty}}$, where $e=(1,1, \ldots) \in \ell_{\infty}$. Thus,

$$
I^{* *}\left(B_{\ell_{1}^{* *}}\right)=I^{* *}\left({\overline{B_{\ell_{1}}}}^{w^{*}}\right) \subset{\overline{I\left(B_{\ell_{1}}\right)}}^{w}=\overline{I\left(B_{\ell_{1}}\right)} \|^{\|\cdot\|_{\infty} \subset \operatorname{aco}\left(\frac{1}{2} e\right)+\frac{1}{2} B_{\ell_{\infty}}}
$$

From this and [3, Theorem 2.5], it follows that

$$
\chi_{\mathcal{L}}\left(I^{* *}\right) \leq \chi_{\mathcal{L}}\left(\operatorname{aco}\left(\frac{1}{2} e\right)\right)+\chi_{\mathcal{L}}\left(\frac{1}{2} B_{\ell_{\infty}}\right)=\frac{1}{2} \chi_{\mathcal{L}}\left(B_{\ell_{\infty}}\right)=\frac{1}{2}
$$

Thus, if $A \subset \ell_{\infty}$, then $\chi_{\mathcal{L}}(A) \leq 1 / 2$.
4. The \mathcal{A}-essential norm. Another way to measure the degree of noncompactness of an operator $T \in \mathcal{L}(X, Y)$ is provided by its essential norm, defined by $\|T\|_{\mathcal{K}}=\inf \{\|T-S\|: S \in \mathcal{K}(X, Y)\}$. Of course, $\chi_{\mathcal{L}}(\cdot) \leq\|\cdot\|_{\mathcal{K}}$, so it is natural to ask whether those seminorms are or are not equivalent. Several authors have dealt with this problem using different approaches (see for instance [12] and [24]).

Given a Banach ideal $[\mathcal{A}, \alpha]$, Theorem 4.1 in [4] states that the ideal $\mathcal{K}^{\mathcal{A}}$ is complete with respect to the ideal norm $\alpha^{\text {sur }}$ on $\mathcal{A}^{\text {sur }}$. This allows one to define the \mathcal{A}-essential norm of an operator in $\mathcal{A}^{\text {sur }}(X, Y)$ in a similar way to the classical essential norm, namely, the quotient ideal norm in $\mathcal{A}^{\text {sur }}(X, Y)$ modulo the \mathcal{A}-compact operators:

$$
\rho_{\mathcal{A}}(T)=\inf \left\{\alpha^{\text {sur }}(T-S): S \in \mathcal{K}^{\mathcal{A}}(X, Y)\right\}
$$

This is a seminorm on $\mathcal{A}^{\text {sur }}(X, Y)$ that vanishes precisely on \mathcal{A}-compact operators. A straightforward argument shows that $\chi_{\mathcal{A}}(T) \leq \rho_{\mathcal{A}}(T)$ for every $T \in \mathcal{A}^{\text {sur }}(X, Y)$.

The aim of this section is to obtain several results showing the equivalence between $\chi_{\mathcal{A}}$ and $\rho_{\mathcal{A}}$ under certain conditions on X, Y or \mathcal{A}.

Recall that a Banach space X is said to have the π_{λ}-approximation property if there exists a sequence $\left(P_{k}\right)$ of linear projections on X with finite rank satisfying $\lim _{k} P_{k} x=x$ for every $x \in X$ and $\sup _{k}\left\|P_{k}\right\| \leq \lambda$ [5, p. 295]. The arguments in the following proof are an adaptation of a result due to

Gol'denštĕ̆n and Markus which connects the essential norm $\|\cdot\|_{\mathcal{K}}$ and the ball measure of noncompactness $\chi_{\mathcal{L}}$ of an operator (see [12] or [17]).

Theorem 4.1. Let X and Y be Banach spaces and $1 \leq p<\infty$. Suppose that Y has the π_{λ}-approximation property. Then $\rho_{\Pi_{p}^{d}}(T) \leq(1+\lambda) \chi_{\Pi_{p}^{d}}(T)$ for every $T \in \Pi_{p}^{d}(X, Y)$.

Proof. Let $T \in \Pi_{p}^{d}(X, Y)$. Given $\varepsilon>0$, there exist $y_{1}, \ldots, y_{n} \in Y$, a Banach space Z and $S \in \Pi_{p}^{d}(Z, Y)$ with $\Pi_{p}^{d}(S) \leq \chi_{\Pi_{p}^{d}}(T)+\varepsilon / 2$ satisfying

$$
\begin{equation*}
T\left(B_{X}\right) \subset \bigcup_{i=1}^{n} y_{i}+S\left(B_{Z}\right) \tag{4.1}
\end{equation*}
$$

Choose $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\left\|P_{N} y_{i}-y_{i}\right\| \leq \frac{\varepsilon}{2 n^{1 / p}} \tag{4.2}
\end{equation*}
$$

for all $i \in\{1, \ldots, n\}$. We are going to show that

$$
\begin{equation*}
\pi_{p}^{d}\left(T-P_{N} \circ T\right) \leq(1+\lambda)\left(\chi_{\Pi_{p}^{d}}(T)+\varepsilon\right) \tag{4.3}
\end{equation*}
$$

which yields $\rho_{\Pi_{p}^{d}}(T) \leq(1+\lambda)\left(\chi_{\Pi_{p}^{d}}(T)+\varepsilon\right)$, so the proof will be concluded by letting $\varepsilon \searrow 0$.

To see 4.3), let $\left(y_{k}^{*}\right) \in \ell_{p}^{w}\left(Y^{*}\right)$. If $\left(x_{k}\right)$ is a sequence in B_{X}, inclusion (4.1) provides a sequence $\left(z_{k}\right)$ in B_{Z} such that $T x_{k}=y_{i_{k}}+S z_{k}$, where $y_{i_{k}} \in\left\{y_{1}, \ldots, y_{n}\right\}$. Thus,

$$
\begin{aligned}
& \left(\sum_{k}\left|\left\langle\left(T-P_{N} \circ T\right)^{*} y_{k}^{*}, x_{k}\right\rangle\right|^{p}\right)^{1 / p}=\left(\sum_{k}\left|\left\langle y_{k}^{*},\left(T-P_{N} \circ T\right) x_{k}\right\rangle\right|^{p}\right)^{1 / p} \\
& \leq\left(\sum_{k}\left|\left\langle y_{k}^{*},\left(\operatorname{Id}_{Y}-P_{N}\right)\left(T x_{k}-y_{i_{k}}\right)\right\rangle\right|^{p}\right)^{1 / p}+\left(\sum_{k}\left|\left\langle y_{k}^{*},\left(\operatorname{Id}_{Y}-P_{N}\right) y_{i_{k}}\right\rangle\right|^{p}\right)^{1 / p}
\end{aligned}
$$

On the one hand,

$$
\begin{aligned}
\left(\sum_{k}\left|\left\langle y_{k}^{*},\left(\operatorname{Id}_{Y}-P_{N}\right)\left(T x_{k}-y_{i_{k}}\right)\right\rangle\right|^{p}\right)^{1 / p} & =\left(\sum_{k}\left|\left\langle y_{k}^{*},\left(\operatorname{Id}_{Y}-P_{N}\right) S z_{k}\right\rangle\right|^{p}\right)^{1 / p} \\
& \leq\left(\sum_{k}\left|\left\langle S^{*}\left(\operatorname{Id}_{Y}-P_{N}\right)^{*} y_{k}^{*}, z_{k}\right\rangle\right|^{p}\right)^{1 / p} \\
& \leq \pi_{p}\left(S^{*}\left(\operatorname{Id}_{Y}-P_{N}\right)^{*}\right)\left\|\left(y_{k}^{*}\right)\right\|_{p}^{w} \\
& \leq\left(\chi_{\Pi_{p}^{d}}(T)+\frac{\varepsilon}{2}\right)(1+\lambda)\left\|\left(y_{k}^{*}\right)\right\|_{p}^{w}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
&\left(\sum_{k}\left|\left\langle y_{k}^{*},\left(\operatorname{Id}_{Y}-P_{N}\right) y_{i_{k}}\right\rangle\right|^{p}\right)^{1 / p} \\
&=\left(\sum_{k}\left|\left\langle\left(\operatorname{Id}_{Y}-P_{N}\right)^{*} y_{k}^{*},\left(\operatorname{Id}_{Y}-P_{N}\right) y_{i_{k}}\right\rangle\right|^{p}\right)^{1 / p} \\
& \leq\left(\sum_{k}\left(\sum_{i=1}^{n}\left|\left\langle\left(\operatorname{Id}_{Y}-P_{N}\right)^{*} y_{k}^{*},\left(\operatorname{Id}_{Y}-P_{N}\right) y_{i}\right\rangle\right|^{p}\right)\right)^{1 / p} \\
& \leq\left(\sum_{i=1}^{n} \frac{\varepsilon^{p}}{2^{p} n}\right)^{1 / p}\left\|\left(\left(\operatorname{Id}_{Y}-P_{N}\right)^{*} y_{k}^{*}\right)\right\|_{p}^{w} \\
& \leq \frac{\varepsilon}{2}(1+\lambda)\left\|\left(y_{k}^{*}\right)\right\|_{p}^{w}
\end{aligned}
$$

Summing up, we have

$$
\left(\sum_{k}\left|\left\langle\left(T-P_{N} \circ T\right)^{*} y_{k}^{*}, x_{k}\right\rangle\right|^{p}\right)^{1 / p} \leq(1+\lambda)\left(\chi_{\Pi_{p}^{d}}(T)+\varepsilon\right)\left\|\left(y_{k}^{*}\right)\right\|_{p}^{w}
$$

which leads to 4.3).
With suitable changes in the preceding result, it is possible to obtain an inequality involving $\rho_{\Pi_{p}}(T)$ and $\chi_{\Pi_{p}^{d}}\left(T^{*}\right)$:

Theorem 4.2. Let X and Y be Banach spaces and $1 \leq p<\infty$. Suppose that X^{*} has the π_{λ}-approximation property. Then $\rho_{\Pi_{p}}(T) \leq(1+\lambda) m_{\Pi_{p}^{d}}\left(T^{*}\right)$ for every $T \in \Pi_{p}(X, Y)$.

We finish with a general version of Theorem 4.1.
Theorem 4.3. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal. Let Y be a Banach space for which there exists a positive constant L such that if $E \subset Y$ is a finite-dimensional space, there exists a finite-dimensional subspace $E \subset F \subset$ Y and a projection $P: Y \rightarrow F$ with $\|P\| \leq L$. Then $\rho_{\mathcal{A}}(T) \leq(1+L) \chi_{\mathcal{A}}(T)$ for every $T \in \mathcal{A}^{\text {sur }}(X, Y)$.

Proof. Starting as in the proof of Theorem 4.1, set $E=\operatorname{span}\left\{y_{i}: i=\right.$ $1, \ldots, n\}$ and consider the corresponding subspace F and the projection P given by the hypothesis. Then the conclusion is a consequence of

$$
(T-P \circ T)\left(B_{X}\right) \subset\left(\operatorname{Id}_{Y}-P\right)\left(S\left(B_{Z}\right)\right)
$$

Acknowledgements. The authors would like to thank Professor T. Do-mínguez-Benavides for his useful ideas and comments while this research was in process. They are also grateful to the referee for valuable suggestions that improved the paper substantially.

References

[1] K. Ain, R. Lillemets and E. Oja, Compact operators which are defined by ℓ_{p}-spaces, Quaest. Math. 35 (2012), 145-159.
[2] K. Astala, On measures of noncompactness and ideal variations in Banach spaces, Ann. Acad. Sci. Fenn. Ser. AI Math. Dissertationes 29 (1980), 42 pp.
[3] J. M. Ayerbe-Toledano, T. Domínguez Benavides and G. López Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Oper. Theory Adv. Appl. 99, Birkhäuser, Basel, 1997.
[4] B. Carl and I. Stephani, On A-compact operators, generalized entropy numbers and entropy ideals, Math. Nachr. 119 (1984), 77-95.
[5] P. G. Casazza, Approximation properties, in: Handbook of the Geometry of Banach Spaces, Vol. 1, North-Holland, Amsterdam, 2001, 271-316.
[6] A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Math. Stud. 176, North-Holland, Amsterdam, 1993.
[7] A. Defant and M. S. Ramanujan, Surjective \mathcal{A}-compactness and generalized Kolmogorov numbers, Note Mat. 11 (1991), 109-117.
[8] J. M. Delgado and C. Piñeiro, A note on p-limited sets, J. Math. Anal. Appl. 410 (2014), 713-718.
[9] J. M. Delgado, C. Piñeiro and E. Serrano, Operators whose adjoints are quasi p-nuclear, Studia Math. 197 (2010), 291-304.
[10] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Univ. Press, Cambridge, 1995.
[11] I. Gokhberg, L. S. Gol'denštĕ̌n and A. S. Markus, Investigation of some properties of bounded linear operators in connection with their q-norms, Uch. Zap. Kishinevsk. Gos. Univ. 29 (1957), 29-36 (in Russian).
[12] L. S. Gol'denštel̆n and A. S. Markus, On a measure of noncompactness of bounded sets and linear operators, in: Studies in Algebra and Mathematical Analysis, Kishinev, 1965, 45-54 (in Russian).
[13] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981.
[14] A. K. Karn and D. P. Sinha, An operator summability in sequences in Banach spaces, Glasgow Math. J. 56 (2014), 427-437.
[15] K. Kuratowski, Sur les espaces complets, Fund. Math. 15 (1930), 301-309.
[16] S. Lassalle and P. Turco, The Banach ideal of \mathcal{A}-compact operators and related approximation properties, J. Funct. Anal. 265 (2013), 2452-2464.
[17] R. D. Nussbaum, The radius of the essential spectrum, Duke Math. J. 37 (1970), 473-478.
[18] A. Persson und A. Pietsch, p-nukleare und p-integrale Abbildungen in Banachräumen, Studia Math. 33 (1969), 19-62.
[19] A. Pietsch, Operator Ideals, North-Holland Math. Library 20, North-Holland, Amsterdam, 1980.
[20] A. Pietsch, The ideal of p-compact operators and its maximall hull, Proc. Amer. Math. Soc. 142 (2014), 519-530.
[21] D. P. Sinha and A. K. Karn, Compact operators whose adjoints factor through subspaces of ℓ_{p}, Studia Math. 150 (2002), 17-33.
[22] I. Stephani, Generating systems of sets and quotients of sujective operator ideals, Math. Nachr. 99 (1980), 13-27.
[23] I. Stephani, Injectively A-compact operators, generalized inner entropy numbers and Gelfand numbers, Math. Nachr. 133 (1987), 247-272.
[24] H.-O. Tylli, The essential norm of an operator is not self-dual, Israel J. Math. 91 (1995), 93-110.

Juan Manuel Delgado
Departamento de Matemática Aplicada I Escuela Técnica Superior de Arquitectura
Avenida Reina Mercedes, 2 41012 Seville, Spain
E-mail: jmdelga@us.es

Cándido Piñeiro
Departamento de Matemáticas Facultad de Ciencias Experimentales Campus Universitario de El Carmen

21071 Huelva, Spain
E-mail: candido@uhu.es

[^0]: 2010 Mathematics Subject Classification: Primary 47L20, 47B10; Secondary 47H08.
 Key words and phrases: measure of noncompactness, compact set, operator ideal, p-summing operator, p-compact operator, essential norm.
 Received 11 June 2014; revised 23 November 2015.
 Published online 4 January 2016.

