Duality of measures of non-A-compactness

by

JUAN MANUEL DELGADO (Seville) and CÁNDIDO PIÑEIRO (Huelva)

Abstract. Let \mathcal{A} be a Banach operator ideal. Based on the notion of \mathcal{A} -compactness in a Banach space due to Carl and Stephani, we deal with the notion of measure of non- \mathcal{A} -compactness of an operator. We consider a map $\chi_{\mathcal{A}}$ (respectively, $n_{\mathcal{A}}$) acting on the operators of the surjective (respectively, injective) hull of \mathcal{A} such that $\chi_{\mathcal{A}}(T) = 0$ (respectively, $n_{\mathcal{A}}(T) = 0$) if and only if the operator T is \mathcal{A} -compact (respectively, injectively \mathcal{A} -compact). Under certain conditions on the ideal \mathcal{A} , we prove an equivalence inequality involving $\chi_{\mathcal{A}}(T^*)$ and $n_{\mathcal{A}^d}(T)$. This inequality provides an extension of a previous result stating that an operator is quasi *p*-nuclear if and only if its adjoint is *p*-compact in the sense of Sinha and Karn.

1. Introduction. It is well known that if a bounded subset A of a Banach space X is not relatively compact, then there exists $\varepsilon > 0$ such that A cannot be covered by finitely many balls with radii smaller than (or equal to) ε . In this setting, the *Hausdorff measure of noncompactness* (or the *ball measure of noncompactness*), χ , is defined for every bounded set A as follows:

$$\chi(A) = \inf \left\{ \varepsilon > 0 \colon A \subset \bigcup_{i=1}^{n} x_i + \varepsilon B_X \right\},$$

where B_X denotes the closed unit ball of X and the infimum is taken over all possible sets of finitely many vectors $x_1, \ldots, x_n \in X$ [11]. Of course, $\chi(A)$ vanishes if and only if A is relatively compact.

If T is a (bounded) linear operator from the Banach space X to the Banach space Y, the measure of noncompactness of T can be defined in a natural way by setting $\chi(T) = \chi(T(B_X))$. Then χ is a seminorm on $\mathcal{L}(X, Y)$, the space of all bounded linear operators from X to Y, and χ vanishes exactly on $\mathcal{K}(X, Y)$, the subspace of $\mathcal{L}(X, Y)$ consisting of all compact opera-

Received 11 June 2014; revised 23 November 2015.

Published online 4 January 2016.

²⁰¹⁰ Mathematics Subject Classification: Primary 47L20, 47B10; Secondary 47H08.

Key words and phrases: measure of noncompactness, compact set, operator ideal, p-summing operator, p-compact operator, essential norm.

tors. According to Schauder's classical theorem, an operator $T \in \mathcal{L}(X, Y)$ is compact if and only if its adjoint operator T^* is. In 1965, Gol'denšteĭn and Markus [12] proved the inequalities

$$\frac{1}{2}\chi(T) \le \chi(T^*) \le 2\chi(T),$$

which, in some sense, may be considered as an extension of Schauder's theorem. Another extension is obtained if, for instance, the Kuratowski measure of noncompactness, γ , is considered [15]. The definition of γ is similar to that of χ with "balls with radii" replaced by "bounded subsets with diameter". In this case, Astala [2] showed

(1.1)
$$\gamma(T) = \gamma(T^*)$$

for every $T \in \mathcal{L}(X, Y)$.

Based on Grothendieck's characterization of relatively compact sets as those sitting inside the convex hull of the norm null sequences, Sinha and Karn [21] introduced a strengthened form of compactness in Banach spaces. Let $1 \leq p < \infty$ and let p' be the conjugate index of p (i.e., 1/p + 1/p' = 1). A set $K \subset X$ is said to be *relatively p-compact* if there exists a *p*-summable sequence (x_n) in X such that $A \subset \{\sum_n \alpha_n x_n : (\alpha_n) \in B_{\ell_{p'}}\}$ ($(\alpha_n) \in B_{c_0}$ if p = 1). The notion of *p*-compact operator is defined in the obvious way: an operator $T \in \mathcal{L}(X,Y)$ is said to be *p-compact* if $T(B_X)$ is relatively *p*-compact in Y. Serrano and the present authors have recently proved the following: T (respectively, T^*) is *p*-compact if and only if T^* (respectively, T) is quasi *p*-nuclear [9, Corollary 3.4 and Proposition 3.8].

The main purpose of this paper is to obtain an extension of that result using a sort of measures of noncompactness. Indeed, we consider a positive map $\chi_{\Pi_p^d}$ (respectively, n_{Π_p}) acting on Π_p^d , the ideal of operators with *p*-summing adjoints (respectively, Π_p , the ideal of *p*-summing operators) vanishing precisely on the class of *p*-compact operators (respectively, quasi *p*-nuclear operators). With these maps in hand, an equality like (1.1) relating $\chi_{\Pi_p^d}$ and n_{Π_p} is obtained (Corollary 3.13), which provides the desired generalization.

Our study is carried out in a more general setting. Given an operator ideal \mathcal{A} , the notions of surjective (respectively, injective) \mathcal{A} -compactness introduced in [4] (respectively, [23]) are basic to this paper. Section 2 is devoted to the study of the map $\chi_{\mathcal{A}}$, defined on a certain class of bounded subsets of a Banach space (the so called \mathcal{A} -bounded sets), which gives information about the degree of non- \mathcal{A} -compactness of these sets in such a way that $\chi_{\mathcal{A}}$ vanishes precisely on the class of (surjectively) \mathcal{A} -compact sets. In Section 3, the notion of measure of non- \mathcal{A} -compactness is extended to the operator setting using two different (but related) approaches. Indeed, the map $\chi_{\mathcal{A}}$ (respectively, $n_{\mathcal{A}}$) gives information about the degree of non- \mathcal{A} -compactness of an operator, and it vanishes precisely on the class of surjectively (respectively, injectively) \mathcal{A} -compact operators. Under certain conditions on the ideal \mathcal{A} , we obtain several inequalities involving $\chi_{\mathcal{A}}$ and $n_{\mathcal{A}}$ acting on an operator and its adjoint. We show that this approach is different from that appearing in [2] and [24], where the notion of (outer and inner) \mathcal{A} -variation of an operator is defined and studied. Finally, we introduce the notion of \mathcal{A} -essential norm $\rho_{\mathcal{A}}$ of an operator in Section 4 and we study the equivalence between $\chi_{\mathcal{A}}$ and $\rho_{\mathcal{A}}$ under certain conditions on X or Y.

Our notation is standard. X, Y and Z are always reserved for Banach spaces. A Banach space X will be regarded as a subspace of its bidual X^{**} under the canonical embedding $i_X \colon X \to X^{**}$. We denote the closed unit ball of X by B_X . The Banach space of all bounded linear operators from X to Y is denoted by $\mathcal{L}(X,Y)$. If \mathcal{A} is an operator ideal, then \mathcal{A}^d denotes its dual operator ideal, i.e., the one with components $\mathcal{A}^d(X,Y) = \{T \in \mathcal{L}(X,Y) \colon T^* \in \mathcal{A}(Y^*,X^*)\}.$

Recall that an operator ideal \mathcal{A} is surjective if, given $S \in \mathcal{A}(Z, Y)$ and $T \in \mathcal{L}(X, Y)$, the condition $T(B_X) \subset S(B_Z)$ implies that $T \in \mathcal{A}(X, Y)$. For an arbitrary ideal \mathcal{A} , the surjective hull \mathcal{A}^{sur} of \mathcal{A} is the operator ideal whose components are

$$\mathcal{A}^{\mathrm{sur}}(X,Y) = \{ T \in \mathcal{L}(X,Y) \colon T(B_X) \subset S(B_Z), \, S \in \mathcal{A}(Z,Y) \},\$$

that is, \mathcal{A}^{sur} is the smallest surjective ideal containing \mathcal{A} . If $D \subset X$ is a bounded set and U_D denotes the surjection of $\ell_1(D)$ onto X defined by $U_D(\xi) = \sum_{x \in D} \xi(x)x$, then it is easy to show that an operator T belongs to $\mathcal{A}^{\text{sur}}(X,Y)$ if and only if $T \circ U_{B_X} \in \mathcal{A}(\ell_1(B_X),Y)$. In the case of a Banach ideal $[\mathcal{A}, \alpha]$, \mathcal{A}^{sur} becomes a Banach ideal when equipped with the norm

$$\alpha^{\text{sur}}(T) = \inf\{\alpha(S) \colon T(B_X) \subset S(B_Z), S \in \mathcal{A}(Z,Y)\}$$
$$= \alpha(T \circ U_{B_X}).$$

An operator ideal \mathcal{A} is *injective* if, given $S \in \mathcal{A}(X, Z)$ and $T \in \mathcal{L}(X, Y)$, the inequality $||Tx|| \leq ||Sx||$ for all $x \in X$ implies that $T \in \mathcal{A}(X, Y)$. For an arbitrary ideal \mathcal{A} , the *injective hull* \mathcal{A}^{inj} of \mathcal{A} is the operator ideal with components

$$\mathcal{A}^{\text{inj}}(X,Y) = \{ T \in \mathcal{L}(X,Y) \colon ||Tx|| \le ||Sx|| \text{ for all } x \in X, S \in \mathcal{A}(X,Z) \},\$$

that is, \mathcal{A}^{inj} is the smallest injective ideal containing \mathcal{A} . If J_Y denotes the canonical embedding of Y into $\ell_{\infty}(B_{Y^*})$, defined by $J_Y(y)(y^*) = \langle y^*, y \rangle$, then it is easy to show that an operator T belongs to $\mathcal{A}^{\text{inj}}(X,Y)$ if and only if $J_Y \circ T \in \mathcal{A}(X, \ell_{\infty}(B_{Y^*}))$. In the case of a Banach ideal $[\mathcal{A}, \alpha], \mathcal{A}^{\text{inj}}$ becomes

a Banach ideal when equipped with the norm

$$\alpha^{\operatorname{inj}}(T) = \inf\{\alpha(S) \colon ||Tx|| \le ||Sx|| \text{ for all } x \in X, S \in \mathcal{A}(X, Z)\}$$
$$= \alpha(J_Y \circ T).$$

We denote by \mathcal{L} , \mathcal{K} , \mathcal{W} and \mathcal{F} the operator ideals of bounded, compact, weakly compact and finite rank linear operators, respectively. We also need the following operator ideals: \mathcal{QN}_p —quasi *p*-nuclear operators, \mathcal{I}_p *p*-integral operators and Π_p —*p*-summing operators. We refer to Pietsch's book [19] for operator ideals (see also Diestel, Jarchow and Tonge [10] for common operator ideals such as \mathcal{I}_p and Π_p , and Persson and Pietsch [18] for \mathcal{QN}_p).

2. A measure of non- \mathcal{A} -compactness of a set. Let \mathcal{A} be an operator ideal. A subset A of the Banach space X is said to be \mathcal{A} -bounded if there exist a Banach space Z and an operator $S \in \mathcal{A}(Z, X)$ with $A \subset S(B_Z)$ [22]. The class of \mathcal{A} -bounded subsets of X is denoted by $\mathfrak{M}^{\mathcal{A}}(X)$. Note that an operator belongs to $\mathcal{A}^{\mathrm{sur}}(X, Y)$ if and only if it maps bounded subsets of X to \mathcal{A} -bounded subsets of Y. The first examples rely on the following fact.

PROPOSITION 2.1. A set $A \subset X$ is A-bounded if and only if

$$U_A \in \mathcal{A}(\ell_1(A), X).$$

Proof. If $A \subset X$ is \mathcal{A} -bounded and $S \in \mathcal{A}(Z, X)$ is such that $A \subset S(B_Z)$, then

$$U_A(B_{\ell_1(A)}) = \left\{ \sum_n \alpha_n x_n \colon x_n \in A, \ (\alpha_n) \in B_{\ell_1} \right\}$$
$$\subset \left\{ \sum_n \alpha_n x_n \colon x_n \in S(B_Z), \ (\alpha_n) \in B_{\ell_1} \right\} = S(B_Z),$$

and it follows that $U_A(B_{\ell_1(A)})$ is \mathcal{A} -bounded. Thus, $U_A \in \mathcal{A}^{\text{sur}}(\ell_1(A), X) = \mathcal{A}(\ell_1(A), X)$ [19, Lemma 4.7.3].

The converse is a direct consequence of the inclusion $A \subset U_A(B_{\ell_1(A)})$.

EXAMPLE 2.2. (1) The class of all \mathcal{L} -bounded sets in X coincides with that of all bounded sets.

(2) The class of all \mathcal{K} -bounded sets in X coincides with that of all relatively compact sets.

(3) Let $p \in [1, \infty)$. A bounded set $A \subset X$ is said to be *p*-limited if for every weakly *p*-summable sequence (x_n^*) in X^* there exists $(\alpha_n) \in \ell_p$ such that $|\langle x_n^*, x \rangle| \leq \alpha_n$ for all $x \in A$ and $n \in \mathbb{N}$ [14]. By [8, Proposition 2.1], $A \subset X$ is *p*-limited if and only if U_A^* is *p*-summing. So the class of all Π_p^d -bounded sets in X is precisely that of all *p*-limited sets.

(4) Let $1 \leq p < \infty$ and let p' be the conjugate index of p. Denote by \mathcal{K}_p the ideal consisting of all p-compact operators in the sense of Sinha and

Karn. Since $A \subset X$ is relatively *p*-compact if and only if $U_A \in \mathcal{K}_p(\ell_1(A), X)$ [9, Proposition 3.5], we deduce that the class of all \mathcal{K}_p -bounded sets in X is precisely that of all relatively *p*-compact sets.

In [4], a special type of \mathcal{A} -bounded sets was introduced by Carl and Stephani as a refinement of compactness related to a given operator ideal. A set $A \subset X$ is said to be \mathcal{A} -compact if there exist a Banach space Z, a compact set $K \subset Z$ and an operator $S \in \mathcal{A}(Z, X)$ such that $A \subset S(K)$ (actually, this is the characterization of \mathcal{A} -compact sets appearing in [4, Theorem 1.2]). We denote by $\mathfrak{M}_c^{\mathcal{A}}(X)$ the class of \mathcal{A} -compact subsets of X.

Relying on the notion of \mathcal{A} -compactness, the notion of \mathcal{A} -compact operator is defined in the obvious way: $T \in \mathcal{L}(X, Y)$ is said to be \mathcal{A} -compact if T maps bounded sets in X to relatively \mathcal{A} -compact sets in Y. If $\mathcal{K}^{\mathcal{A}}$ denotes the class of \mathcal{A} -compact operators, then $\mathcal{K}^{\mathcal{A}}$ is a surjective operator ideal and $\mathcal{K}^{\mathcal{A}} = \mathcal{A}^{\text{sur}} \circ \mathcal{K} = \mathcal{K}^{\mathcal{A}} \circ \mathcal{K}$ [4, Theorem 2.1]. From this, it is easy to deduce that $A \subset X$ is \mathcal{A} -compact if and only if $U_A \in \mathcal{K}^{\mathcal{A}}(\ell_1(A), X)$ and that $\mathfrak{M}_c^{\mathcal{A}}(X) = \mathfrak{M}_c^{\mathcal{A} \circ \mathcal{K}}(X)$.

EXAMPLE 2.3. (1) If $\mathcal{A} = \mathcal{L}$ or $\mathcal{A} = \mathcal{K}$, the class of all \mathcal{A} -compact sets in X coincides with that of all relatively compact sets.

(2) Having in mind the equality $\mathcal{K}_p = \Pi_p^d \circ \mathcal{K}$ (see, for instance, [1, Corollary 4.9]) and the surjectivity of the ideal Π_p^d (being the dual of an injective ideal), it follows that $\mathcal{K}^{\Pi_p^d} = \mathcal{K}_p$. So $A \subset X$ is Π_p^d -compact if and only if U_A is *p*-compact. By [9, Proposition 3.5], we deduce that the class of all Π_p^d -compact sets in X is precisely that of all relatively *p*-compact sets.

(3) Using the above properties, we have

$$\mathfrak{M}_{c}^{\Pi_{p}^{d}}(X) = \mathfrak{M}_{c}^{\Pi_{p}^{d} \circ \mathcal{K}}(X) = \mathfrak{M}_{c}^{\mathcal{K}_{p}}(X),$$

that is, the class of all \mathcal{K}_p -compact sets in X is precisely that of all relatively p-compact sets.

The notion of \mathcal{A} -compactness may be expressed in a similar way to the notion of precompactness in a Banach space.

THEOREM ([4, Theorem 3.1]). Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal, X a Banach space and $A \in \mathfrak{M}^{\mathcal{A}}(X)$. The following statements are equivalent:

- (a) A is \mathcal{A} -compact.
- (b) For every $\varepsilon > 0$, there are finitely many elements $x_1, \ldots, x_n \in X$, a Banach space Z and an operator $S \in \mathcal{A}(Z, X)$ with $\alpha(S) \leq \varepsilon$ such that

$$A \subset \bigcup_{i=1}^{n} x_i + S(B_Z).$$

The above result is a basis for the following definition of measure of noncompactness referring to a given Banach operator ideal \mathcal{A} .

DEFINITION 2.4. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal, X a Banach space and $A \in \mathfrak{M}^{\mathcal{A}}(X)$. The (outer) measure of non- \mathcal{A} -compactness of A is

$$\chi_{\mathcal{A}}(A) = \inf \left\{ \varepsilon > 0 \colon A \subset \bigcup_{i=1}^{n} x_i + S(B_Z) \right\},$$

the infimum taken over all possible $x_1, \ldots, x_n \in X$, Banach spaces Z and operators $S \in \mathcal{A}(Z, X)$ with $\alpha(S) \leq \varepsilon$.

The condition $A \in \mathfrak{M}^{\mathcal{A}}(X)$ ensures that in the above definition we take the infimum of a nonempty set of positive numbers. Of course, if $\mathcal{A} \subset \mathcal{B}$, then $\chi_{\mathcal{B}}(\cdot) \leq \chi_{\mathcal{A}}(\cdot)$ and $\chi_{\mathcal{L}} \equiv \chi$.

In this section, we omit the word "outer" when referring to "outer measures of non- \mathcal{A} -compactness".

REMARK 2.5. It is clear that

$$\chi_{\mathcal{A}}(A) = \inf \Big\{ \alpha(S) \colon A \subset \bigcup_{i=1}^{n} x_i + S(B_Z) \Big\},\$$

the infimum taken over all possible $x_1, \ldots, x_n \in X$, Banach spaces Z and operators $S \in \mathcal{A}(Z, X)$. From this, it follows that $\chi_{\mathcal{A}}(A) = \lim_n e_n(A, \mathcal{A})$, where $(e_n(A, \mathcal{A}))$ is the sequence of generalized (outer) entropy numbers of the set A with respect to \mathcal{A} introduced in [4, Definition 3]. Theorem 3.2 in [4] may be used to obtain the equality $\chi_{\mathcal{A}}(A) = \chi_{\mathcal{A}^{sur}}(A)$ for every $A \in \mathfrak{M}^{\mathcal{A}^{sur}}(X) = \mathfrak{M}^{\mathcal{A}^{sur}}(X)$.

On the other hand, [7, Proposition 5] shows that

$$\chi_{\mathcal{A}}(A) = \inf\{\alpha(S) \colon A \subset T(B_E) + S(B_Z)\},\$$

where the infimum is taken over all Banach spaces E and Z and operators $T \in \mathcal{K}^{\mathcal{A}}(E, X)$ and $S \in \mathcal{A}(Z, X)$.

REMARK 2.6. Taking a glance at Proposition 2.1, it is also possible to conclude that

$$\chi_{\mathcal{A}}(A) = \inf \Big\{ \varepsilon > 0 \colon A \subset \bigcup_{i=1}^{n} x_i + B \Big\},$$

the infimum taken over all possible $x_1, \ldots, x_n \in X$ and \mathcal{A} -bounded subsets B of X with $\alpha(U_B) \leq \varepsilon$.

REMARK 2.7. In [16], a way to measure the "size" of \mathcal{A} -compact sets is introduced as follows. If $A \subset X$ is \mathcal{A} -compact, then one can define $m_{\mathcal{A}}(A) =$ $\inf\{\alpha(S): A \subset S(K), S \in \mathcal{A}(Z, X), K \subset B_Z \text{ compact}\}$, where the infimum is taken over all Banach spaces Z. It must be pointed out that this notion is different from that in Definition 2.4; in fact, a bounded set is \mathcal{A} -compact if and only if its $m_{\mathcal{A}}$ -measure is finite.

Most of the proofs of the following properties are routine, so they are omitted.

PROPOSITION 2.8. Assume \mathcal{A} is a Banach operator ideal and $A, A_1, A_2 \subset X$ are \mathcal{A} -bounded. Then:

- (1) $\chi_{\mathcal{A}}(A) = 0$ if and only if A is A-compact.
- (2) If $A_1 \subset A_2$, then $\chi_{\mathcal{A}}(A_1) \leq \chi_{\mathcal{A}}(A_2)$. Thus,

 $\chi_{\mathcal{A}}(A_1 \cap A_2) \le \min\{\chi_{\mathcal{A}}(A_1), \chi_{\mathcal{A}}(A_2)\}.$

(3) $\chi_{\mathcal{A}}(A_1 + A_2) \leq \chi_{\mathcal{A}}(A_1) + \chi_{\mathcal{A}}(A_2)$. As a consequence, $\chi_{\mathcal{A}}(\Delta + A) = \chi_{\mathcal{A}}(A)$

whenever $\Delta \subset X$ is finite.

- (4) $\chi_{\mathcal{A}}(\lambda A) = |\lambda| \chi_{\mathcal{A}}(A)$ for every $\lambda \in \mathbb{R}$.
- (5) If $T \in \mathcal{L}(X, Y)$, then $\chi_{\mathcal{A}}(T(A)) \leq ||T|| \chi_{\mathcal{A}}(A)$.
- (6) If $D \subset X$ is bounded and $T \in \mathcal{A}^{sur}(X, Y)$, then

$$\chi_{\mathcal{A}}(T(D)) \le \alpha^{\mathrm{sur}}(T)\chi(D),$$

where $\chi(D)$ denotes the Hausdorff measure of noncompactness of D.

- (7) If A_2 is \mathcal{A} -compact, then $\chi_{\mathcal{A}}(A_1 \cup A_2) = \chi_{\mathcal{A}}(A_1)$.
- (8) $\chi_{\mathcal{A}}(U_A(B_{\ell_1(A)})) = \chi_{\mathcal{A}}(A).$

Proof. (3) Although the idea of the proof is included in [4, Section 4], we give a sketch for completeness. By [4, p. 89, property A], it can be deduced that

$$e_{2n-1}(A_1+A_2,\mathcal{A}) \le e_n(A_1,\mathcal{A}) + e_n(A_2,\mathcal{A});$$

hence

$$\chi_{\mathcal{A}}(A_1 + A_2) = \lim_{n} e_{2n-1}(A_1 + A_2, \mathcal{A})$$

$$\leq \lim_{n} (e_n(A_1, \mathcal{A}) + e_n(A_2, \mathcal{A})) = \chi_{\mathcal{A}}(A_1) + \chi_{\mathcal{A}}(A_2).$$

(6) If $D \subset X$ is bounded and $T \in \mathcal{A}^{sur}(X,Y)$, it is clear that T(D) is \mathcal{A}^{sur} -bounded. Let $\varepsilon > \chi(D)$ and choose $x_1, \ldots, x_n \in X$ so that $D \subset \bigcup_{i=1}^n x_i + \varepsilon B_X$. Then $T(D) \subset \bigcup_{i=1}^n T(x_i) + \varepsilon T(B_X)$, so in view of Remark 2.5 we have

$$\chi_{\mathcal{A}^{\mathrm{sur}}}(T(D)) \leq \alpha^{\mathrm{sur}}(\varepsilon T) = \alpha^{\mathrm{sur}}(T)\varepsilon.$$

Letting $\varepsilon \searrow \chi(D)$, we obtain $\chi_{\mathcal{A}^{\text{sur}}}(T(D)) \leq \alpha^{\text{sur}}(T)\chi(D)$, and the property follows since $\chi_{\mathcal{A}} \equiv \chi_{\mathcal{A}^{\text{sur}}}$ [4, Theorem 3.2].

(7) By monotonicity, $\chi_{\mathcal{A}}(A_1) \leq \chi_{\mathcal{A}}(A_1 \cup A_2)$. For the converse inequality, fix $\varepsilon > \chi_{\mathcal{A}}(A_1)$ so that $A_1 \subset \bigcup_{i=1}^n x_i + S_1(B_{Z_1})$ with $\alpha(S_1) \leq \varepsilon$. Now, for a given $\delta > 0$, the \mathcal{A} -compactness of A_2 ensures the existence of $u_1, \ldots, u_m \in X$ as well as a Banach space Z_2 and $S_2 \in \mathcal{A}(Z_2, X)$ with $\alpha(S_2) \leq \delta$ satisfying $A_2 \subset \bigcup_{j=1}^m u_j + S_2(B_{Z_2})$. Setting $\Delta_1 = \{x_1, \ldots, x_n\}$ and $\Delta_2 = \{u_1, \ldots, u_m\}$, it is clear that $A_1 \cup A_2 \subset (\Delta_1 \cup \Delta_2) + S_1(B_{Z_1}) + S_2(B_{Z_2})$. So, in view of (2), (3) and (6), and having in mind that $\chi(B_E) = 1$ whenever E is infinite-dimensional [3, Theorem 2.5], we conclude that

$$\chi_{\mathcal{A}}(A_1 \cup A_2) \leq \chi_{\mathcal{A}}(S_1(B_{Z_1})) + \chi_{\mathcal{A}}(S_2(B_{Z_2}))$$
$$\leq \alpha(S_1)\chi(B_{Z_1}) + \alpha(S_2)\chi(B_{Z_2})$$
$$\leq \varepsilon + \delta.$$

Letting $\delta \searrow 0$ and $\varepsilon \searrow \chi_{\mathcal{A}}(A_1)$ yields the desired inequality.

REMARK 2.9. As a consequence of Proposition 2.8(6), every T in $\mathcal{A}^{\text{sur}}(X,Y)$ maps relatively compact subsets of X to \mathcal{A} -compact subsets of Y. For $\mathcal{A} = \Pi_p^d$, this means that every operator with p-summing adjoint maps relatively compact subsets to p-compact subsets (as already proved in [9, Theorem 3.14]).

It is easy to show that the Hausdorff measure of noncompactness is semiadditive, that is, $\chi(D_1 \cup D_2) = \max{\{\chi(D_1), \chi(D_2)\}}$. Apart from the case stated in Proposition 2.8(7), we have not been able to establish whether this property remains true for measures of non- \mathcal{A} -compactness with \mathcal{A} different from \mathcal{L} . In this connection, we have the following result.

PROPOSITION 2.10. Let $p \ge 1$ and let $A_1, A_2 \subset X$ be Π_p^d -bounded sets. Then

$$\chi_{\Pi_p^d}(A_1 \cup A_2) \le 2^{1/p} \max\{\chi_{\Pi_p^d}(A_1), \chi_{\Pi_p^d}(A_2)\}.$$

Proof. Suppose $\varepsilon > \chi_{\Pi_p^d}(A_1) \ge \chi_{\Pi_p^d}(A_2)$ and consider coverings $A_j \subset \bigcup_{i=1}^{n_j} x_i^j + B_j$ with $\pi_p(U_{B_j}) \le \varepsilon$, j = 1, 2 (Remark 2.6). Then

$$A_1 \cup A_2 \subset \bigcup_{x \in \Delta} x + B$$

where $\Delta = \{x_i^j: i = 1, ..., n_1, j = 1, ..., n_2\}$ and $B = B_1 \cup B_2$. It suffices to see that $\pi_p(U_B^*) \leq 2^{1/p} \varepsilon$. For any fixed weakly *p*-summable sequence (x_n^*) in X^* , it is possible to find a partition of \mathbb{N} into two sets G_1 and G_2 such that

$$\sum_{n} \|U_{B}^{*}x_{n}^{*}\|^{p} \leq \sum_{n \in G_{1}} \|U_{B_{1}}^{*}x_{n}^{*}\|^{p} + \sum_{n \in G_{2}} \|U_{B_{2}}^{*}x_{n}^{*}\|^{p}.$$

Hence,

$$\pi_p(U_B^*) \le (\pi_p(U_{B_1}^*)^p + \pi_p(U_{B_1}^*)^p)^{1/p} \le 2^{1/p}\varepsilon.$$

REMARK 2.11. If $D \subset X$ is bounded then $\chi(D) = \chi(\overline{D})$. For an arbitrary Banach operator ideal \mathcal{A} , we cannot even ensure that \overline{A} is \mathcal{A} -bounded

whenever $A \subset X$ is. Much more can be said if \mathcal{A} enjoys the following property:

PROPERTY (P). There exists a positive constant C such that, for any Banach spaces X and Y and $T \in \mathcal{A}(X, Y)$, we have:

- (i) $T^{**}(B_{X^{**}}) \subset Y$ (that is, $\mathcal{A} \subset \mathcal{W}$).
- (ii) The operator $\widetilde{T}: B_{X^{**}} \ni x^{**} \mapsto T^{**}x^{**} \in Y$ belongs to $\mathcal{A}(X^{**}, Y)$.
- (iii) $\alpha(\widetilde{T}) \leq C\alpha(T)$.

PROPOSITION 2.12. Suppose \mathcal{A} is a Banach operator ideal with property (P) and X is a Banach space. Then:

- (1) $A \subset X$ is A-bounded if and only if \overline{A} is.
- (2) $\chi_{\mathcal{A}}(A) \leq \chi_{\mathcal{A}}(\overline{A}) \leq C\chi_{\mathcal{A}}(A).$

Proof. Let $S \in \mathcal{A}(Z, X)$ with $A \subset S(B_Z)$. Then $A \subset \widetilde{S}(B_{Z^{**}})$. By hypothesis, S is weakly compact, so it factors through a reflexive Banach space. Thus, \widetilde{S} is weak*-weak continuous. From this, $\widetilde{S}(B_{Z^{**}})$ is a weakly compact set in Y and, being absolutely convex, it is norm closed. So we have $\overline{A} \subset \widetilde{S}(B_{Z^{**}})$, and this shows that \overline{A} is \mathcal{A} -bounded.

Finally, (2) is obtained using a standard argument.

If a Banach operator ideal $\mathcal{A} \subset \mathcal{W}$ is regular and satisfies $\mathcal{A} = \mathcal{A}^{dd}$, then it enjoys property (P). This is the case of operator ideals $\mathcal{A} \subset \mathcal{W}$ and $\mathcal{A} = \mathcal{A}^{\max}$ [6, pp. 206–207]. Hence, Π_p^d satisfies property (P) (in fact, $\Pi_p^d = \mathcal{K}_p^{\max}$ [20, Theorem 12]).

COROLLARY 2.13. If $A \subset X$ is Π_p^d -bounded, then $\chi_{\Pi_n^d}(A) = \chi_{\Pi_n^d}(\overline{A})$.

3. Measures of non- \mathcal{A} **-compactness of an operator.** If an operator $T: X \to Y$ fails to be \mathcal{A} -compact, it seems natural to quantify the distance between T and $\mathcal{K}^{\mathcal{A}}(X,Y)$ by evaluating $\chi_{\mathcal{A}}(T(B_X))$ when this expression makes sense.

DEFINITION 3.1. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal and let T be in $\mathcal{A}^{\text{sur}}(X, Y)$. The *(outer) measure of non-\mathcal{A}-compactness* of T is

$$\chi_{\mathcal{A}}(T) = \chi_{\mathcal{A}}(T(B_X)).$$

Note that $\chi_{\mathcal{A}}(T) = \lim_{n \to \infty} e_n(T, \mathcal{A})$ (see [4, Section 4]). When $\mathcal{A} = \mathcal{L}$, we are dealing with the so called *ball measure of noncompactness*.

EXAMPLE 3.2. Let $A = \{e_n : n \in \mathbb{N}\} \subset c_0$, where (e_n) is the unit vector basis in c_0 . Let us check that $\chi_{\mathcal{A}}(A) = 1$ if $\mathcal{A} = \Pi_p$ or $\mathcal{A} = \Pi_p^d$. If I denotes the embedding map from ℓ_1 into c_0 , then $\iota_1(I^*) = 1$ (see, for instance, [19, Proposition 6.4.4]), so $\chi_{\mathcal{I}^d}(A) \leq 1$. In view of [10, Corollary 5.7],

$$\chi_{\Pi_p^d}(A) \le \chi_{\Pi_1^d}(A) = \chi_{\mathcal{I}_1^d}(A) \le 1.$$

From this and the equality $\chi_{\mathcal{L}}(A) = \chi(A) = 1$ [3, p. 24], it follows that $\chi_{\Pi_p^d}(A) = 1$. On the other hand, I is 1-integral and $\iota_1(I) = 1$ [10, Theorem 5.15], so arguing as above shows that $\chi_{\Pi_p}(A) = 1$. Now, notice that I is precisely the operator U_A , so according to Proposition 2.8(8) we conclude that $\chi_{\Pi_p}(I) = \chi_{\Pi_p^d}(I) = 1$.

REMARK 3.3. Given a Banach ideal \mathcal{A} , the (*outer*) \mathcal{A} -variation of an operator $T \in \mathcal{L}(X, Y)$ is defined by

$$\gamma_{\mathcal{A}}(T) = \inf\{\varepsilon > 0 \colon T(B_X) \subset \varepsilon B_Y + S(B_Z)\},\$$

where the infimum is taken over all Banach spaces Z and operators $S \in \mathcal{A}(Z, X)$ [2, Definition 3.1]. Example 3.2 makes it clear that this is a different notion from that appearing in Definition 3.1; in fact, by [2, Theorem 3.8],

$$\gamma_{\Pi_p}(I) = \inf\{\|I - S\| \colon S \in \Pi_p(\ell_1, c_0)\} = 0.$$

The following result shows an alternative way to describe $\chi_{\mathcal{A}}(T)$:

PROPOSITION 3.4. Let \mathcal{A} be a Banach operator ideal and $T \in \mathcal{A}^{sur}(X, Y)$. Then

$$\chi_{\mathcal{A}}(T) = \inf\{k > 0 \colon \chi_{\mathcal{A}}(T(D)) \le k\chi(D) \text{ for all } D \subset X \text{ bounded}\}$$

If X is infinite-dimensional, then

 $\chi_{\mathcal{A}}(T) = \sup\{\chi_{\mathcal{A}}(T(D)) \colon D \subset X \text{ bounded with } \chi(D) = 1\}.$

Proof. We prove the first equality (the second follows by a standard argument). The assertion is clear if X is finite-dimensional. Suppose X is infinite-dimensional and set

 $G = \{k > 0 \colon \chi_{\mathcal{A}}(T(D)) \le k\chi(D) \text{ for all } D \subset X \text{ bounded}\}.$

Notice that Proposition 2.8(6) ensures that $G \neq \emptyset$. Since $\chi(B_X) = 1$, we have $\chi_{\mathcal{A}}(T(B_X)) \leq k$ whenever $k \in G$, and this yields $\chi_{\mathcal{A}}(T) \leq \inf G$.

For the opposite inequality, it suffices to show $\chi_{\mathcal{A}}(T(D)) \leq \chi_{\mathcal{A}}(T(B_X))$ for every bounded set $D \subset X$ satisfying $\chi(D) = 1$. Fix D with those properties and $\delta > 1$. There exist $x_1, \ldots, x_m \in X$ such that

$$(3.1) D \subset \bigcup_{i=1}^m x_i + \delta B_X.$$

On the other hand, if $\varepsilon > \chi_{\mathcal{A}}(T(B_X))$, one can find $y_1, \ldots, y_n \in Y$, a Banach space Z and $S \in \mathcal{A}(Z, Y)$ satisfying $\alpha(S) \leq \varepsilon$ so that

(3.2)
$$T(B_X) \subset \bigcup_{j=1}^n y_j + S(B_Z).$$

From (3.1) and (3.2), we have a covering $T(D) \subset \bigcup_{y \in \Delta} y + \delta S(B_Z), \Delta \subset Y$ being a finite set. Therefore, $\chi_{\mathcal{A}}(T(D)) \leq \alpha(\delta S) \leq \delta \varepsilon$, and the proof finishes by just taking the infimum over δ and ε . The next proposition lists some basic properties of the outer measure of non- \mathcal{A} -compactness of an operator; they can be easily obtained from the definition and Propositions 2.8 and 3.4.

PROPOSITION 3.5. Let \mathcal{A} be a Banach operator ideal and $T \in \mathcal{A}^{sur}(X, Y)$. Then:

- (1) $\chi_{\mathcal{A}}(\cdot)$ is a seminorm on $\mathcal{A}^{\text{sur}}(X,Y)$.
- (2) $\chi_{\mathcal{A}}(T) = 0$ if and only if $T \in \mathcal{K}^{\mathcal{A}}(X, Y)$.
- (3) If $S \in \mathcal{K}^{\mathcal{A}}(X, Y)$, then $\chi_{\mathcal{A}}(T+S) = \chi_{\mathcal{A}}(T)$.
- (4) If X_0 and Y_0 are Banach spaces, $R \in \mathcal{L}(Y, Y_0)$ and $S \in \mathcal{L}(X_0, X)$, then $\chi_{\mathcal{A}}(R \circ T \circ S) \leq ||R||\chi_{\mathcal{A}}(T)||S||$.
- (5) If $D \subset X$ is bounded, then $\chi_{\mathcal{A}}(T(D)) \leq \chi_{\mathcal{A}}(T)\chi(D)$.
- (6) If $S \in \mathcal{A}^{\mathrm{sur}}(Y, Z)$, then $\chi_{\mathcal{A}}(S \circ T) \leq \chi_{\mathcal{A}}(S)\chi_{\mathcal{A}}(T)$.
- (7) If $\mathrm{Id}_X \in \mathcal{A}^{\mathrm{sur}}(X, X)$, then $\chi_{\mathcal{A}}(\mathrm{Id}_X) = 0$ if and only if X is finitedimensional (otherwise, $\chi_{\mathcal{A}}(\mathrm{Id}_X) \ge 1$).

Given a Banach operator ideal \mathcal{A} , the outer measure of non- \mathcal{A} -compactness of an operator may be considered as a tool to evaluate the degree of non- \mathcal{A} -compactness of an operator belonging the surjective hull \mathcal{A}^{sur} . To obtain an extension of the equality $\mathcal{QN}_p = \mathcal{K}_p^d$, we are going to consider another type of measure quantifying the degree of noncompactness (with respect to \mathcal{A}) of operators belonging to the injective hull \mathcal{A}^{inj} . The following concept was introduced and studied by Stephani [23, Section 1].

DEFINITION 3.6. Let \mathcal{A} be an operator ideal. An operator $T \in \mathcal{L}(X, Y)$ is said to be *injectively* \mathcal{A} -compact if there exist a Banach space Z, a sequence $(z_n^*) \in c_0(Z^*)$ and an operator $S \in \mathcal{A}^{\text{inj}}(X, Z)$ such that $||Tx|| \leq \sup_n |\langle z_n^*, Sx \rangle|$ for all $x \in X$.

REMARK 3.7. It is well known that $T \in \mathcal{L}(X, Y)$ is compact if there exists $(x_n^*) \in c_0(X^*)$ such that $||Tx|| \leq \sup_n |\langle x_n^*, x \rangle|$ for all $x \in X$. Thus, for $\mathcal{A} = \mathcal{L}$ the preceding notion coincides with the notion of compact operator.

If $\mathcal{H}^{\mathcal{A}}$ denotes the class of injectively \mathcal{A} -compact operators, then $\mathcal{H}^{\mathcal{A}}$ is an injective operator ideal and $\mathcal{H}^{\mathcal{A}} = \mathcal{K} \circ A^{\text{inj}}$ [23, Theorem 1.1]. For example, $\mathcal{H}^{\Pi_p} = \mathcal{K} \circ \Pi_p = \mathcal{QN}_p$ [23, p. 255].

REMARK 3.8. Since $\mathcal{H}^{\mathcal{A}} = \mathcal{K} \circ A^{\text{inj}}$ [23, Theorem 1.1], $\mathcal{A}^{\text{inj}}(X, Z)$ may be replaced with $\mathcal{A}(X, Z)$ in the preceding definition.

When dealing with a Banach operator ideal $[\mathcal{A}, \alpha]$, the following characterization of injectively \mathcal{A} -compact operators may be deduced from [23, Theorem 1.1].

THEOREM 3.9. Let \mathcal{A} be a Banach operator ideal and $T \in \mathcal{L}(X, Y)$. The following statements are equivalent:

- (1) T is injectively \mathcal{A} -compact.
- (2) For every $\varepsilon > 0$, there are finitely many functionals $x_1^*, \ldots, x_n^* \in X^*$, a Banach space Z and an operator $S \in \mathcal{A}(X, Z)$ with $\alpha(S) \leq \varepsilon$ such that

$$||Tx|| \le \sup_{1 \le i \le n} |\langle x_i^*, x \rangle| + ||Sx||$$

for all $x \in X$.

DEFINITION 3.10. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal and let T be in $\mathcal{A}^{inj}(X, Y)$. The *(inner) measure of non-A-compactness* of T is

$$n_{\mathcal{A}}(T) = \inf \Big\{ \varepsilon > 0 \colon \|Tx\| \le \sup_{1 \le i \le n} |\langle x_i^*, x \rangle| + \|Sx\| \text{ for all } x \in X \Big\},\$$

the infimum taken over all $x_1^*, \ldots, x_n^* \in X^*$, Banach spaces Z and operators $S \in \mathcal{A}(X, Z)$ with $\alpha(S) \leq \varepsilon$.

The condition $T \in \mathcal{A}^{\text{inj}}(X, Y)$ ensures that in the above definition we take the infimum of a nonempty set of positive numbers. In fact, $n_{\mathcal{A}}(T) \leq \alpha^{\text{inj}}(T)$. In this case, $n_{\mathcal{A}}$ vanishes precisely on operators belonging to $\mathcal{H}^{\mathcal{A}}$.

REMARK 3.11. Given a Banach ideal \mathcal{A} , the *(inner)* \mathcal{A} -variation of an operator $T \in \mathcal{L}(X, Y)$ is defined by

$$\beta_{\mathcal{A}}(T) = \inf\{\varepsilon > 0 \colon ||Tx|| \le \varepsilon ||x|| + ||Sx|| \text{ for all } x \in X\}$$

where the infimum is taken over all Banach spaces Z and operators $S \in \mathcal{A}(X,Z)$ [24]. Since $\beta_{\mathcal{A}}(T) = 0$ if and only if $J_Y \circ T$ is in the uniform closure of $\mathcal{A}(X, \ell_{\infty}(B_{Y^*}))$ [13, Theorem 20.7.3], the (inner) \mathcal{A} -variation is a different notion from that appearing in Definition 3.10.

THEOREM 3.12. Let \mathcal{A} be a Banach operator ideal with property (P) (see Remark 2.11). Then

$$\frac{1}{C}\chi_{\mathcal{A}}(T^*) \le n_{\mathcal{A}^d}(T) \le C\chi_{\mathcal{A}}(T^*)$$

for every $T \in (\mathcal{A}^d)^{\text{inj}}(X, Y)$.

Proof. Notice that $\chi_{\mathcal{A}}(T^*)$ makes sense if $T \in (\mathcal{A}^d)^{\operatorname{inj}}(X, Y)$ since $(\mathcal{A}^d)^{\operatorname{inj}} \subset (\mathcal{A}^{\operatorname{sur}})^d$ [19, Theorem 8.5.9]. To prove $n_{\mathcal{A}^d}(T) \leq C\chi_{\mathcal{A}}(T^*)$, we fix $\varepsilon > \chi_{\mathcal{A}}(T^*(B_{Y^*}))$ and consider functionals $x_1^*, \ldots, x_n^* \in X^*$, a Banach space Z and $S \in \mathcal{A}(Z, X^*)$ satisfying $\alpha(S) \leq \varepsilon$ and

$$T^*(B_{Y^*}) \subset \bigcup_{i=1}^n x_i^* + S(B_Z).$$

This covering of $T^*(B_{Y^*})$ yields

(3.3)
$$|\langle T^*y^*, x \rangle| \le \sup_{1 \le i \le n} |\langle x_i^*, x \rangle| + \sup_{z \in B_Z} |\langle Sz, x \rangle|$$

for all $y^* \in B_{Y^*}$ and $x \in X$. If we set $S_0 := S^* \circ i_X$, it follows that

$$||Tx|| \le \sup_{1\le i\le n} |\langle x_i^*, x\rangle| + ||S_0x||$$

for all $x \in X$. Hence, as \mathcal{A} enjoys property (P), we have $S_0 \in \mathcal{A}^d(X, Z^*)$ and

$$n_{\mathcal{A}^d}(T) \le \alpha^d(S_0) \le \alpha^d(S^*) = \alpha(S^{**}) = \alpha(i_Y \circ \widetilde{S}) \le C\varepsilon,$$

so that $n_{\mathcal{A}^d}(T) \leq C\chi_{\mathcal{A}}(T^*)$ by taking the infimum over ε .

For the reverse inequality, fix $\varepsilon > n_{\mathcal{A}^d}(T)$ and consider $x_1^*, \ldots, x_n^* \in X^*$, a Banach space Z and $S \in \mathcal{A}^d(X, Z)$ satisfying $\alpha^d(S) \leq \varepsilon$ and

$$||Tx|| \le \sup_{1 \le i \le n} |\langle x_i^*, x \rangle| + ||Sx||$$

for all $x \in X$. Set

$$A := \overline{\operatorname{aco}} \Big(\bigcup_{i=1}^{n} \pm x_i^* + S^*(B_{Z^*}) \Big).$$

We are going to see that $T^*(B_{Y^*}) \subset A$. For contradiction, suppose there exists $x_0^* \in T^*(B_{Y^*}) \setminus A$. According to the Hahn–Banach separation theorem, we can separate x_0^* and A in X^* endowed with the weak* topology: there are r > 0 and $x_0 \in X$ such that $|\langle x_0^*, x_0 \rangle| > r$ and $|\langle \pm x_i^* + S^* z^*, x_0 \rangle| < r$ for all $z^* \in B_{Z^*}$ and $i = 1, \ldots, n$. In particular, if $z_0^* \in B_{Z^*}$ with $||Sx_0|| = \langle z_0^*, Sx_0 \rangle$, we can select $\bar{x}^* \in \{\pm x_i^* : i = 1, \ldots, n\}$ such that

(3.4)
$$\sup_{1 \le i \le n} |\langle x_i^*, x_0 \rangle| + ||Sx_0|| = |\langle \bar{x}^* + S^* z_0^*, x_0 \rangle| < r.$$

Now, choose $y_0^* \in B_{Y^*}$ with $T^*y_0^* = x_0^*$; then

$$r < |\langle x_0^*, x_0 \rangle| \le ||Tx_0|| \le \sup_{1 \le i \le n} |\langle x_i^*, x_0 \rangle| + ||Sx_0|| < r,$$

a contradiction that proves $T^*(B_{Y^*}) \subset A$.

According to properties (2), (3) and (8) in Proposition 2.8, and Proposition 2.12, we have

$$\chi_{\mathcal{A}}(T^*(B_{Y^*})) \le C\chi_{\mathcal{A}}(S^*(B_{Z^*})) \le C\alpha(S^*) \le C\varepsilon.$$

Taking the infimum over ε yields $\chi_{\mathcal{A}}(T^*) \leq Cn_{\mathcal{A}^d}(T)$.

Setting $\mathcal{A} = \Pi_p^d$ in the previous theorem, we obtain the following extension of the equality $\mathcal{QN}_p = \mathcal{K}_p^d$ [9, Corollary 3.4].

COROLLARY 3.13. For every $T \in \Pi_p(X, Y)$, $n_{\Pi_p}(T) = \chi_{\Pi_n^d}(T^*)$.

REMARK 3.14. For every Banach operator ideal \mathcal{A} , a direct proof yields $n_{\mathcal{A}}(T^*) \leq \chi_{\mathcal{A}^d}(T)$ for every $T \in (\mathcal{A}^d)^{\text{sur}}(X,Y)$ (notice that $n_{\mathcal{A}}(T^*)$ makes sense if $T \in (\mathcal{A}^d)^{\text{sur}}(X,Y)$ since $(\mathcal{A}^d)^{\text{sur}} = (\mathcal{A}^{\text{inj}})^d$ [19, Theorem 8.5.9]). Thus, for $\mathcal{A} = \Pi_p$, we have $n_{\Pi_p}(T^*) \leq \chi_{\Pi_n^d}(T)$ for every $T \in \Pi_p^d(X,Y)$,

which may be considered as an extension of the inclusion $\mathcal{K}_p \subset \mathcal{QN}_p^d$ [9, Corollary 3.4].

From Corollary 3.13, it is clear that $n_{\Pi_p}(T^*) = \chi_{\Pi_p^d}(T^{**})$ for every T in $\Pi_p^d(X,Y)$. Nevertheless, we do not know if there exists a positive constant C satisfying $n_{\Pi_p}(T^*) \geq C\chi_{\Pi_p^d}(T)$ for every $T \in \Pi_p^d(X,Y)$. The main problem is that the measure of non- \mathcal{A} -compactness of a set depends on the ambient space. This implies that the equality $\chi_{\mathcal{A}}(T) = \chi_{\mathcal{A}}(T^{**})$ does not hold in general. Indeed, taking a glance at Example 3.2, we have

$$\chi_{\mathcal{L}}(I) = \chi_{\mathcal{L}}(U_A(B_{\ell_1})) = \chi_{\mathcal{L}}(A) = 1.$$

On the other hand, notice that $A \subset \frac{1}{2}e + \frac{1}{2}B_{\ell_{\infty}}$, where $e = (1, 1, ...) \in \ell_{\infty}$. Thus,

$$I^{**}(B_{\ell_1^{**}}) = I^{**}(\overline{B_{\ell_1}}^{w^*}) \subset \overline{I(B_{\ell_1})}^w = \overline{I(B_{\ell_1})}^{\|\cdot\|_{\infty}} \subset \operatorname{aco}\left(\frac{1}{2}e\right) + \frac{1}{2}B_{\ell_{\infty}}.$$

From this and [3, Theorem 2.5], it follows that

$$\chi_{\mathcal{L}}(I^{**}) \le \chi_{\mathcal{L}}\left(\operatorname{aco}\left(\frac{1}{2}e\right)\right) + \chi_{\mathcal{L}}\left(\frac{1}{2}B_{\ell_{\infty}}\right) = \frac{1}{2}\chi_{\mathcal{L}}(B_{\ell_{\infty}}) = \frac{1}{2}.$$

Thus, if $A \subset \ell_{\infty}$, then $\chi_{\mathcal{L}}(A) \leq 1/2$.

4. The \mathcal{A} -essential norm. Another way to measure the degree of noncompactness of an operator $T \in \mathcal{L}(X,Y)$ is provided by its essential norm, defined by $||T||_{\mathcal{K}} = \inf\{||T - S|| \colon S \in \mathcal{K}(X,Y)\}$. Of course, $\chi_{\mathcal{L}}(\cdot) \leq || \cdot ||_{\mathcal{K}}$, so it is natural to ask whether those seminorms are or are not equivalent. Several authors have dealt with this problem using different approaches (see for instance [12] and [24]).

Given a Banach ideal $[\mathcal{A}, \alpha]$, Theorem 4.1 in [4] states that the ideal $\mathcal{K}^{\mathcal{A}}$ is complete with respect to the ideal norm α^{sur} on \mathcal{A}^{sur} . This allows one to define the \mathcal{A} -essential norm of an operator in $\mathcal{A}^{\text{sur}}(X, Y)$ in a similar way to the classical essential norm, namely, the quotient ideal norm in $\mathcal{A}^{\text{sur}}(X, Y)$ modulo the \mathcal{A} -compact operators:

$$\rho_{\mathcal{A}}(T) = \inf\{\alpha^{\mathrm{sur}}(T-S) \colon S \in \mathcal{K}^{\mathcal{A}}(X,Y)\}.$$

This is a seminorm on $\mathcal{A}^{\text{sur}}(X, Y)$ that vanishes precisely on \mathcal{A} -compact operators. A straightforward argument shows that $\chi_{\mathcal{A}}(T) \leq \rho_{\mathcal{A}}(T)$ for every $T \in \mathcal{A}^{\text{sur}}(X, Y)$.

The aim of this section is to obtain several results showing the equivalence between $\chi_{\mathcal{A}}$ and $\rho_{\mathcal{A}}$ under certain conditions on X, Y or \mathcal{A} .

Recall that a Banach space X is said to have the π_{λ} -approximation property if there exists a sequence (P_k) of linear projections on X with finite rank satisfying $\lim_k P_k x = x$ for every $x \in X$ and $\sup_k ||P_k|| \leq \lambda$ [5, p. 295]. The arguments in the following proof are an adaptation of a result due to Gol'denšteĭn and Markus which connects the essential norm $\|\cdot\|_{\mathcal{K}}$ and the ball measure of noncompactness $\chi_{\mathcal{L}}$ of an operator (see [12] or [17]).

THEOREM 4.1. Let X and Y be Banach spaces and $1 \le p < \infty$. Suppose that Y has the π_{λ} -approximation property. Then $\rho_{\Pi_p^d}(T) \le (1+\lambda)\chi_{\Pi_p^d}(T)$ for every $T \in \Pi_p^d(X, Y)$.

Proof. Let $T \in \Pi_p^d(X, Y)$. Given $\varepsilon > 0$, there exist $y_1, \ldots, y_n \in Y$, a Banach space Z and $S \in \Pi_p^d(Z, Y)$ with $\Pi_p^d(S) \leq \chi_{\Pi_n^d}(T) + \varepsilon/2$ satisfying

(4.1)
$$T(B_X) \subset \bigcup_{i=1}^n y_i + S(B_Z).$$

Choose $N \in \mathbb{N}$ such that

(4.2)
$$||P_N y_i - y_i|| \le \frac{\varepsilon}{2n^{1/p}}$$

for all $i \in \{1, \ldots, n\}$. We are going to show that

(4.3)
$$\pi_p^d(T - P_N \circ T) \le (1 + \lambda)(\chi_{\Pi_p^d}(T) + \varepsilon),$$

which yields $\rho_{\Pi_p^d}(T) \leq (1+\lambda)(\chi_{\Pi_p^d}(T)+\varepsilon)$, so the proof will be concluded by letting $\varepsilon \searrow 0$.

To see (4.3), let $(y_k^*) \in \ell_p^w(Y^*)$. If (x_k) is a sequence in B_X , inclusion (4.1) provides a sequence (z_k) in B_Z such that $Tx_k = y_{i_k} + Sz_k$, where $y_{i_k} \in \{y_1, \ldots, y_n\}$. Thus,

$$\left(\sum_{k} |\langle (T - P_N \circ T)^* y_k^*, x_k \rangle|^p \right)^{1/p} = \left(\sum_{k} |\langle y_k^*, (T - P_N \circ T) x_k \rangle|^p \right)^{1/p}$$

$$\leq \left(\sum_{k} |\langle y_k^*, (\mathrm{Id}_Y - P_N) (T x_k - y_{i_k}) \rangle|^p \right)^{1/p} + \left(\sum_{k} |\langle y_k^*, (\mathrm{Id}_Y - P_N) y_{i_k} \rangle|^p \right)^{1/p}.$$

On the one hand,

$$\begin{split} \left(\sum_{k} |\langle y_{k}^{*}, (\mathrm{Id}_{Y} - P_{N})(Tx_{k} - y_{i_{k}})\rangle|^{p}\right)^{1/p} &= \left(\sum_{k} |\langle y_{k}^{*}, (\mathrm{Id}_{Y} - P_{N})Sz_{k}\rangle|^{p}\right)^{1/p} \\ &\leq \left(\sum_{k} |\langle S^{*}(\mathrm{Id}_{Y} - P_{N})^{*}y_{k}^{*}, z_{k}\rangle|^{p}\right)^{1/p} \\ &\leq \pi_{p}(S^{*}(\mathrm{Id}_{Y} - P_{N})^{*})\|(y_{k}^{*})\|_{p}^{w} \\ &\leq \left(\chi_{\Pi_{p}^{d}}(T) + \frac{\varepsilon}{2}\right)(1+\lambda)\|(y_{k}^{*})\|_{p}^{w}. \end{split}$$

On the other hand,

$$\begin{split} \left(\sum_{k} |\langle y_{k}^{*}, (\mathrm{Id}_{Y} - P_{N})y_{i_{k}}\rangle|^{p}\right)^{1/p} \\ &= \left(\sum_{k} |\langle (\mathrm{Id}_{Y} - P_{N})^{*}y_{k}^{*}, (\mathrm{Id}_{Y} - P_{N})y_{i_{k}}\rangle|^{p}\right)^{1/p} \\ &\leq \left(\sum_{k} \left(\sum_{i=1}^{n} |\langle (\mathrm{Id}_{Y} - P_{N})^{*}y_{k}^{*}, (\mathrm{Id}_{Y} - P_{N})y_{i}\rangle|^{p}\right)\right)^{1/p} \\ &\leq \left(\sum_{i=1}^{n} \frac{\varepsilon^{p}}{2^{p}n}\right)^{1/p} \|((\mathrm{Id}_{Y} - P_{N})^{*}y_{k}^{*})\|_{p}^{w} \\ &\leq \frac{\varepsilon}{2}(1+\lambda)\|(y_{k}^{*})\|_{p}^{w}. \end{split}$$

Summing up, we have

$$\left(\sum_{k} |\langle (T - P_N \circ T)^* y_k^*, x_k \rangle|^p\right)^{1/p} \le (1 + \lambda)(\chi_{\Pi_p^d}(T) + \varepsilon) ||(y_k^*)||_p^w,$$

which leads to (4.3).

With suitable changes in the preceding result, it is possible to obtain an inequality involving $\rho_{\Pi_p}(T)$ and $\chi_{\Pi_p^d}(T^*)$:

THEOREM 4.2. Let X and Y be Banach spaces and $1 \leq p < \infty$. Suppose that X^* has the π_{λ} -approximation property. Then $\rho_{\Pi_p}(T) \leq (1+\lambda)m_{\Pi_p^d}(T^*)$ for every $T \in \Pi_p(X, Y)$.

We finish with a general version of Theorem 4.1.

THEOREM 4.3. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal. Let Y be a Banach space for which there exists a positive constant L such that if $E \subset Y$ is a finite-dimensional space, there exists a finite-dimensional subspace $E \subset F \subset$ Y and a projection $P: Y \to F$ with $||P|| \leq L$. Then $\rho_{\mathcal{A}}(T) \leq (1+L)\chi_{\mathcal{A}}(T)$ for every $T \in \mathcal{A}^{sur}(X, Y)$.

Proof. Starting as in the proof of Theorem 4.1, set $E = \text{span} \{y_i : i = 1, ..., n\}$ and consider the corresponding subspace F and the projection P given by the hypothesis. Then the conclusion is a consequence of

$$(T - P \circ T)(B_X) \subset (\mathrm{Id}_Y - P)(S(B_Z)).$$

Acknowledgements. The authors would like to thank Professor T. Domínguez-Benavides for his useful ideas and comments while this research was in process. They are also grateful to the referee for valuable suggestions that improved the paper substantially.

References

- K. Ain, R. Lillemets and E. Oja, Compact operators which are defined by ℓ_p-spaces, Quaest. Math. 35 (2012), 145–159.
- [2] K. Astala, On measures of noncompactness and ideal variations in Banach spaces, Ann. Acad. Sci. Fenn. Ser. AI Math. Dissertationes 29 (1980), 42 pp.
- [3] J. M. Ayerbe-Toledano, T. Domínguez Benavides and G. López Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Oper. Theory Adv. Appl. 99, Birkhäuser, Basel, 1997.
- B. Carl and I. Stephani, On A-compact operators, generalized entropy numbers and entropy ideals, Math. Nachr. 119 (1984), 77–95.
- [5] P. G. Casazza, Approximation properties, in: Handbook of the Geometry of Banach Spaces, Vol. 1, North-Holland, Amsterdam, 2001, 271–316.
- [6] A. Defant and K. Floret, *Tensor Norms and Operator Ideals*, North-Holland Math. Stud. 176, North-Holland, Amsterdam, 1993.
- [7] A. Defant and M. S. Ramanujan, Surjective A-compactness and generalized Kolmogorov numbers, Note Mat. 11 (1991), 109–117.
- [8] J. M. Delgado and C. Piñeiro, A note on p-limited sets, J. Math. Anal. Appl. 410 (2014), 713–718.
- J. M. Delgado, C. Piñeiro and E. Serrano, Operators whose adjoints are quasi p-nuclear, Studia Math. 197 (2010), 291–304.
- [10] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Univ. Press, Cambridge, 1995.
- [11] I. Gokhberg, L. S. Gol'denšteĭn and A. S. Markus, Investigation of some properties of bounded linear operators in connection with their q-norms, Uch. Zap. Kishinevsk. Gos. Univ. 29 (1957), 29–36 (in Russian).
- [12] L. S. Gol'denšteĭn and A. S. Markus, On a measure of noncompactness of bounded sets and linear operators, in: Studies in Algebra and Mathematical Analysis, Kishinev, 1965, 45–54 (in Russian).
- [13] H. Jarchow, *Locally Convex Spaces*, Teubner, Stuttgart, 1981.
- [14] A. K. Karn and D. P. Sinha, An operator summability in sequences in Banach spaces, Glasgow Math. J. 56 (2014), 427–437.
- [15] K. Kuratowski, Sur les espaces complets, Fund. Math. 15 (1930), 301–309.
- [16] S. Lassalle and P. Turco, The Banach ideal of A-compact operators and related approximation properties, J. Funct. Anal. 265 (2013), 2452–2464.
- [17] R. D. Nussbaum, The radius of the essential spectrum, Duke Math. J. 37 (1970), 473–478.
- [18] A. Persson und A. Pietsch, p-nukleare und p-integrale Abbildungen in Banachräumen, Studia Math. 33 (1969), 19–62.
- [19] A. Pietsch, Operator Ideals, North-Holland Math. Library 20, North-Holland, Amsterdam, 1980.
- [20] A. Pietsch, The ideal of p-compact operators and its maximall hull, Proc. Amer. Math. Soc. 142 (2014), 519–530.
- [21] D. P. Sinha and A. K. Karn, Compact operators whose adjoints factor through subspaces of ℓ_p, Studia Math. 150 (2002), 17–33.
- [22] I. Stephani, Generating systems of sets and quotients of sujective operator ideals, Math. Nachr. 99 (1980), 13–27.
- [23] I. Stephani, Injectively A-compact operators, generalized inner entropy numbers and Gelfand numbers, Math. Nachr. 133 (1987), 247–272.

[24] H.-O. Tylli, The essential norm of an operator is not self-dual, Israel J. Math. 91 (1995), 93–110.

Juan Manuel Delgado Departamento de Matemática Aplicada I Escuela Técnica Superior de Arquitectura Avenida Reina Mercedes, 2 41012 Seville, Spain E-mail: jmdelga@us.es Cándido Piñeiro Departamento de Matemáticas Facultad de Ciencias Experimentales Campus Universitario de El Carmen 21071 Huelva, Spain E-mail: candido@uhu.es

112