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Duality of measures of non-A-compactness

by

Juan Manuel Delgado (Seville) and Cándido Piñeiro (Huelva)

Abstract. Let A be a Banach operator ideal. Based on the notion of A-compactness
in a Banach space due to Carl and Stephani, we deal with the notion of measure of
non-A-compactness of an operator. We consider a map χA (respectively, nA) acting on
the operators of the surjective (respectively, injective) hull of A such that χA(T ) = 0 (re-
spectively, nA(T ) = 0) if and only if the operator T is A-compact (respectively, injectively
A-compact). Under certain conditions on the ideal A, we prove an equivalence inequality
involving χA(T ∗) and nAd(T ). This inequality provides an extension of a previous result
stating that an operator is quasi p-nuclear if and only if its adjoint is p-compact in the
sense of Sinha and Karn.

1. Introduction. It is well known that if a bounded subset A of a
Banach space X is not relatively compact, then there exists ε > 0 such
that A cannot be covered by finitely many balls with radii smaller than (or
equal to) ε. In this setting, the Hausdorff measure of noncompactness (or
the ball measure of noncompactness), χ, is defined for every bounded set A
as follows:

χ(A) = inf
{
ε > 0: A ⊂

n⋃
i=1

xi + εBX

}
,

where BX denotes the closed unit ball of X and the infimum is taken over
all possible sets of finitely many vectors x1, . . . , xn ∈ X [11]. Of course, χ(A)
vanishes if and only if A is relatively compact.

If T is a (bounded) linear operator from the Banach space X to the
Banach space Y , the measure of noncompactness of T can be defined in a
natural way by setting χ(T ) = χ(T (BX)). Then χ is a seminorm on L(X,Y ),
the space of all bounded linear operators from X to Y , and χ vanishes ex-
actly on K(X,Y ), the subspace of L(X,Y ) consisting of all compact opera-
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tors. According to Schauder’s classical theorem, an operator T ∈ L(X,Y ) is
compact if and only if its adjoint operator T ∗ is. In 1965, Gol’denštĕın and
Markus [12] proved the inequalities

1

2
χ(T ) ≤ χ(T ∗) ≤ 2χ(T ),

which, in some sense, may be considered as an extension of Schauder’s theo-
rem. Another extension is obtained if, for instance, the Kuratowski measure
of noncompactness, γ, is considered [15]. The definition of γ is similar to that
of χ with “balls with radii” replaced by “bounded subsets with diameter”.
In this case, Astala [2] showed

(1.1) γ(T ) = γ(T ∗)

for every T ∈ L(X,Y ).

Based on Grothendieck’s characterization of relatively compact sets as
those sitting inside the convex hull of the norm null sequences, Sinha and
Karn [21] introduced a strengthened form of compactness in Banach spaces.
Let 1 ≤ p <∞ and let p′ be the conjugate index of p (i.e., 1/p+ 1/p′ = 1).
A set K ⊂ X is said to be relatively p-compact if there exists a p-summable
sequence (xn) in X such that A ⊂ {

∑
n αnxn : (αn) ∈ B`p′} ((αn) ∈ Bc0

if p = 1). The notion of p-compact operator is defined in the obvious way:
an operator T ∈ L(X,Y ) is said to be p-compact if T (BX) is relatively
p-compact in Y . Serrano and the present authors have recently proved the
following: T (respectively, T ∗) is p-compact if and only if T ∗ (respectively, T )
is quasi p-nuclear [9, Corollary 3.4 and Proposition 3.8].

The main purpose of this paper is to obtain an extension of that result
using a sort of measures of noncompactness. Indeed, we consider a posi-
tive map χΠd

p
(respectively, nΠp) acting on Πd

p , the ideal of operators with
p-summing adjoints (respectively, Πp, the ideal of p-summing operators)
vanishing precisely on the class of p-compact operators (respectively, quasi
p-nuclear operators). With these maps in hand, an equality like (1.1) relat-
ing χΠd

p
and nΠp is obtained (Corollary 3.13), which provides the desired

generalization.

Our study is carried out in a more general setting. Given an operator
ideal A, the notions of surjective (respectively, injective) A-compactness in-
troduced in [4] (respectively, [23]) are basic to this paper. Section 2 is devoted
to the study of the map χA, defined on a certain class of bounded subsets of a
Banach space (the so called A-bounded sets), which gives information about
the degree of non-A-compactness of these sets in such a way that χA van-
ishes precisely on the class of (surjectively) A-compact sets. In Section 3, the
notion of measure of non-A-compactness is extended to the operator setting
using two different (but related) approaches. Indeed, the map χA (respec-
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tively, nA) gives information about the degree of non-A-compactness of an
operator, and it vanishes precisely on the class of surjectively (respectively,
injectively) A-compact operators. Under certain conditions on the ideal A,
we obtain several inequalities involving χA and nA acting on an operator
and its adjoint. We show that this approach is different from that appearing
in [2] and [24], where the notion of (outer and inner) A-variation of an oper-
ator is defined and studied. Finally, we introduce the notion of A-essential
norm ρA of an operator in Section 4 and we study the equivalence between
χA and ρA under certain conditions on X or Y .

Our notation is standard. X, Y and Z are always reserved for Banach
spaces. A Banach space X will be regarded as a subspace of its bidual X∗∗

under the canonical embedding iX : X → X∗∗. We denote the closed unit
ball of X by BX . The Banach space of all bounded linear operators from
X to Y is denoted by L(X,Y ). If A is an operator ideal, then Ad denotes
its dual operator ideal, i.e., the one with components Ad(X,Y ) = {T ∈
L(X,Y ) : T ∗ ∈ A(Y ∗, X∗)}.

Recall that an operator ideal A is surjective if, given S ∈ A(Z, Y ) and
T ∈ L(X,Y ), the condition T (BX) ⊂ S(BZ) implies that T ∈ A(X,Y ).
For an arbitrary ideal A, the surjective hull Asur of A is the operator ideal
whose components are

Asur(X,Y ) = {T ∈ L(X,Y ) : T (BX) ⊂ S(BZ), S ∈ A(Z, Y )},

that is, Asur is the smallest surjective ideal containing A. If D ⊂ X is a
bounded set and UD denotes the surjection of `1(D) onto X defined by
UD(ξ) =

∑
x∈D ξ(x)x, then it is easy to show that an operator T belongs to

Asur(X,Y ) if and only if T ◦ UBX
∈ A(`1(BX), Y ). In the case of a Banach

ideal [A, α], Asur becomes a Banach ideal when equipped with the norm

αsur(T ) = inf{α(S) : T (BX) ⊂ S(BZ), S ∈ A(Z, Y )}
= α(T ◦ UBX

).

An operator ideal A is injective if, given S ∈ A(X,Z) and T ∈ L(X,Y ),
the inequality ‖Tx‖ ≤ ‖Sx‖ for all x ∈ X implies that T ∈ A(X,Y ). For
an arbitrary ideal A, the injective hull Ainj of A is the operator ideal with
components

Ainj(X,Y ) = {T ∈ L(X,Y ) : ‖Tx‖ ≤ ‖Sx‖ for all x ∈ X, S ∈ A(X,Z)},

that is, Ainj is the smallest injective ideal containing A. If JY denotes the
canonical embedding of Y into `∞(BY ∗), defined by JY (y)(y∗) = 〈y∗, y〉,
then it is easy to show that an operator T belongs to Ainj(X,Y ) if and only
if JY ◦T ∈ A(X, `∞(BY ∗)). In the case of a Banach ideal [A, α], Ainj becomes
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a Banach ideal when equipped with the norm

αinj(T ) = inf{α(S) : ‖Tx‖ ≤ ‖Sx‖ for all x ∈ X, S ∈ A(X,Z)}
= α(JY ◦ T ).

We denote by L, K, W and F the operator ideals of bounded, com-
pact, weakly compact and finite rank linear operators, respectively. We also
need the following operator ideals: QN p—quasi p-nuclear operators, Ip—
p-integral operators and Πp—p-summing operators. We refer to Pietsch’s
book [19] for operator ideals (see also Diestel, Jarchow and Tonge [10] for
common operator ideals such as Ip and Πp, and Persson and Pietsch [18]
for QN p).

2. A measure of non-A-compactness of a set. Let A be an operator
ideal. A subset A of the Banach space X is said to be A-bounded if there
exist a Banach space Z and an operator S ∈ A(Z,X) with A ⊂ S(BZ) [22].
The class of A-bounded subsets of X is denoted by MA(X). Note that an
operator belongs to Asur(X,Y ) if and only if it maps bounded subsets of X
to A-bounded subsets of Y . The first examples rely on the following fact.

Proposition 2.1. A set A ⊂ X is A-bounded if and only if

UA ∈ A(`1(A), X).

Proof. If A ⊂ X is A-bounded and S ∈ A(Z,X) is such that A ⊂ S(BZ),
then

UA(B`1(A)) =
{∑

n

αnxn : xn ∈ A, (αn) ∈ B`1
}

⊂
{∑

n

αnxn : xn ∈ S(BZ), (αn) ∈ B`1
}

= S(BZ),

and it follows that UA(B`1(A)) is A-bounded. Thus, UA ∈ Asur(`1(A), X) =
A(`1(A), X) [19, Lemma 4.7.3].

The converse is a direct consequence of the inclusion A ⊂ UA(B`1(A)).

Example 2.2. (1) The class of all L-bounded sets in X coincides with
that of all bounded sets.

(2) The class of all K-bounded sets in X coincides with that of all rela-
tively compact sets.

(3) Let p ∈ [1,∞). A bounded set A ⊂ X is said to be p-limited if for
every weakly p-summable sequence (x∗n) in X∗ there exists (αn) ∈ `p such
that |〈x∗n, x〉| ≤ αn for all x ∈ A and n ∈ N [14]. By [8, Proposition 2.1],
A ⊂ X is p-limited if and only if U∗A is p-summing. So the class of all
Πd
p -bounded sets in X is precisely that of all p-limited sets.

(4) Let 1 ≤ p < ∞ and let p′ be the conjugate index of p. Denote by
Kp the ideal consisting of all p-compact operators in the sense of Sinha and
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Karn. Since A ⊂ X is relatively p-compact if and only if UA ∈ Kp(`1(A), X)
[9, Proposition 3.5], we deduce that the class of all Kp-bounded sets in X is
precisely that of all relatively p-compact sets.

In [4], a special type of A-bounded sets was introduced by Carl and
Stephani as a refinement of compactness related to a given operator ideal.
A set A ⊂ X is said to be A-compact if there exist a Banach space Z,
a compact set K ⊂ Z and an operator S ∈ A(Z,X) such that A ⊂ S(K)
(actually, this is the characterization of A-compact sets appearing in [4,
Theorem 1.2]). We denote by MAc (X) the class of A-compact subsets of X.

Relying on the notion of A-compactness, the notion of A-compact op-
erator is defined in the obvious way: T ∈ L(X,Y ) is said to be A-compact
if T maps bounded sets in X to relatively A-compact sets in Y . If KA de-
notes the class of A-compact operators, then KA is a surjective operator
ideal and KA = Asur ◦ K = KA ◦ K [4, Theorem 2.1]. From this, it is easy
to deduce that A ⊂ X is A-compact if and only if UA ∈ KA(`1(A), X) and
that MAc (X) = MA

sur

c (X) = MA◦Kc (X).

Example 2.3. (1) If A = L or A = K, the class of all A-compact sets
in X coincides with that of all relatively compact sets.

(2) Having in mind the equality Kp = Πd
p ◦ K (see, for instance, [1,

Corollary 4.9]) and the surjectivity of the ideal Πd
p (being the dual of an

injective ideal), it follows that KΠd
p = Kp. So A ⊂ X is Πd

p -compact if and
only if UA is p-compact. By [9, Proposition 3.5], we deduce that the class of
all Πd

p -compact sets in X is precisely that of all relatively p-compact sets.

(3) Using the above properties, we have

M
Πd

p
c (X) = M

Πd
p◦K

c (X) = M
Kp
c (X),

that is, the class of all Kp-compact sets in X is precisely that of all relatively
p-compact sets.

The notion of A-compactness may be expressed in a similar way to the
notion of precompactness in a Banach space.

Theorem ([4, Theorem 3.1]). Let [A, α] be a Banach operator ideal,
X a Banach space and A ∈ MA(X). The following statements are equiva-
lent:

(a) A is A-compact.
(b) For every ε > 0, there are finitely many elements x1, . . . , xn ∈ X,

a Banach space Z and an operator S ∈ A(Z,X) with α(S) ≤ ε such
that

A ⊂
n⋃
i=1

xi + S(BZ).
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The above result is a basis for the following definition of measure of
noncompactness referring to a given Banach operator ideal A.

Definition 2.4. Let [A, α] be a Banach operator ideal, X a Banach
space and A ∈MA(X). The (outer) measure of non-A-compactness of A is

χA(A) = inf
{
ε > 0: A ⊂

n⋃
i=1

xi + S(BZ)
}
,

the infimum taken over all possible x1, . . . , xn ∈ X, Banach spaces Z and
operators S ∈ A(Z,X) with α(S) ≤ ε.

The condition A ∈MA(X) ensures that in the above definition we take
the infimum of a nonempty set of positive numbers. Of course, if A ⊂ B,
then χB(·) ≤ χA(·) and χL ≡ χ.

In this section, we omit the word “outer” when referring to “outer mea-
sures of non-A-compactness”.

Remark 2.5. It is clear that

χA(A) = inf
{
α(S) : A ⊂

n⋃
i=1

xi + S(BZ)
}
,

the infimum taken over all possible x1, . . . , xn ∈ X, Banach spaces Z and
operators S ∈ A(Z,X). From this, it follows that χA(A) = limn en(A,A),
where (en(A,A)) is the sequence of generalized (outer) entropy numbers of
the set A with respect to A introduced in [4, Definition 3]. Theorem 3.2
in [4] may be used to obtain the equality χA(A) = χAsur(A) for every A ∈
MA(X) = MA

sur
(X).

On the other hand, [7, Proposition 5] shows that

χA(A) = inf{α(S) : A ⊂ T (BE) + S(BZ)},
where the infimum is taken over all Banach spaces E and Z and operators
T ∈ KA(E,X) and S ∈ A(Z,X).

Remark 2.6. Taking a glance at Proposition 2.1, it is also possible to
conclude that

χA(A) = inf
{
ε > 0: A ⊂

n⋃
i=1

xi +B
}
,

the infimum taken over all possible x1, . . . , xn ∈ X and A-bounded subsets
B of X with α(UB) ≤ ε.

Remark 2.7. In [16], a way to measure the “size” of A-compact sets is
introduced as follows. If A ⊂ X is A-compact, then one can define mA(A) =
inf{α(S) : A ⊂ S(K), S ∈ A(Z,X), K ⊂ BZ compact}, where the infimum
is taken over all Banach spaces Z. It must be pointed out that this notion
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is different from that in Definition 2.4; in fact, a bounded set is A-compact
if and only if its mA-measure is finite.

Most of the proofs of the following properties are routine, so they are
omitted.

Proposition 2.8. Assume A is a Banach operator ideal and A,A1, A2

⊂ X are A-bounded. Then:

(1) χA(A) = 0 if and only if A is A-compact.
(2) If A1 ⊂ A2, then χA(A1) ≤ χA(A2). Thus,

χA(A1 ∩A2) ≤ min{χA(A1), χA(A2)}.
(3) χA(A1 +A2) ≤ χA(A1) + χA(A2). As a consequence,

χA(∆+A) = χA(A)

whenever ∆ ⊂ X is finite.
(4) χA(λA) = |λ|χA(A) for every λ ∈ R.
(5) If T ∈ L(X,Y ), then χA(T (A)) ≤ ‖T‖χA(A).
(6) If D ⊂ X is bounded and T ∈ Asur(X,Y ), then

χA(T (D)) ≤ αsur(T )χ(D),

where χ(D) denotes the Hausdorff measure of noncompactness of D.
(7) If A2 is A-compact, then χA(A1 ∪A2) = χA(A1).
(8) χA(UA(B`1(A))) = χA(A).

Proof. (3) Although the idea of the proof is included in [4, Section 4], we
give a sketch for completeness. By [4, p. 89, property A], it can be deduced
that

e2n−1(A1 +A2,A) ≤ en(A1,A) + en(A2,A);

hence

χA(A1 +A2) = lim
n
e2n−1(A1 +A2,A)

≤ lim
n

(en(A1,A) + en(A2,A)) = χA(A1) + χA(A2).

(6) If D ⊂ X is bounded and T ∈ Asur(X,Y ), it is clear that T (D)
is Asur-bounded. Let ε > χ(D) and choose x1, . . . , xn ∈ X so that D ⊂⋃n
i=1 xi+εBX . Then T (D) ⊂

⋃n
i=1 T (xi)+εT (BX), so in view of Remark 2.5

we have

χAsur(T (D)) ≤ αsur(εT ) = αsur(T )ε.

Letting ε↘ χ(D), we obtain χAsur(T (D)) ≤ αsur(T )χ(D), and the property
follows since χA ≡ χAsur [4, Theorem 3.2].

(7) By monotonicity, χA(A1) ≤ χA(A1 ∪ A2). For the converse inequal-
ity, fix ε > χA(A1) so that A1 ⊂

⋃n
i=1 xi + S1(BZ1) with α(S1) ≤ ε.

Now, for a given δ > 0, the A-compactness of A2 ensures the existence of
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u1, . . . , um ∈ X as well as a Banach space Z2 and S2 ∈ A(Z2, X) with
α(S2) ≤ δ satisfying A2 ⊂

⋃m
j=1 uj+S2(BZ2). Setting ∆1 = {x1, . . . , xn} and

∆2 = {u1, . . . , um}, it is clear that A1∪A2 ⊂ (∆1∪∆2)+S1(BZ1)+S2(BZ2).
So, in view of (2), (3) and (6), and having in mind that χ(BE) = 1 whenever
E is infinite-dimensional [3, Theorem 2.5], we conclude that

χA(A1 ∪A2) ≤ χA(S1(BZ1)) + χA(S2(BZ2))

≤ α(S1)χ(BZ1) + α(S2)χ(BZ2)

≤ ε+ δ.

Letting δ ↘ 0 and ε↘ χA(A1) yields the desired inequality.

Remark 2.9. As a consequence of Proposition 2.8(6), every T in
Asur(X,Y ) maps relatively compact subsets of X to A-compact subsets
of Y . For A = Πd

p , this means that every operator with p-summing adjoint
maps relatively compact subsets to p-compact subsets (as already proved in
[9, Theorem 3.14]).

It is easy to show that the Hausdorff measure of noncompactness is
semiadditive, that is, χ(D1∪D2) = max{χ(D1), χ(D2)}. Apart from the case
stated in Proposition 2.8(7), we have not been able to establish whether this
property remains true for measures of non-A-compactness with A different
from L. In this connection, we have the following result.

Proposition 2.10. Let p ≥ 1 and let A1, A2 ⊂ X be Πd
p -bounded sets.

Then

χΠd
p
(A1 ∪A2) ≤ 21/p max{χΠd

p
(A1), χΠd

p
(A2)}.

Proof. Suppose ε > χΠd
p
(A1) ≥ χΠd

p
(A2) and consider coverings Aj ⊂⋃nj

i=1 x
j
i +Bj with πp(UBj ) ≤ ε, j = 1, 2 (Remark 2.6). Then

A1 ∪A2 ⊂
⋃
x∈∆

x+B

where ∆ = {xji : i = 1, . . . , n1, j = 1, . . . , n2} and B = B1 ∪ B2. It suffices

to see that πp(U
∗
B) ≤ 21/pε. For any fixed weakly p-summable sequence (x∗n)

in X∗, it is possible to find a partition of N into two sets G1 and G2 such
that ∑

n

‖U∗Bx∗n‖p ≤
∑
n∈G1

‖U∗B1
x∗n‖p +

∑
n∈G2

‖U∗B2
x∗n‖p.

Hence,

πp(U
∗
B) ≤ (πp(U

∗
B1

)p + πp(U
∗
B1

)p)1/p ≤ 21/pε.

Remark 2.11. If D ⊂ X is bounded then χ(D) = χ(D). For an arbi-
trary Banach operator ideal A, we cannot even ensure that A is A-bounded
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whenever A ⊂ X is. Much more can be said if A enjoys the following prop-
erty:

Property (P). There exists a positive constant C such that, for any
Banach spaces X and Y and T ∈ A(X,Y ), we have:

(i) T ∗∗(BX∗∗) ⊂ Y (that is, A ⊂ W).

(ii) The operator T̃ : BX∗∗ 3 x∗∗ 7→ T ∗∗x∗∗ ∈ Y belongs to A(X∗∗, Y ).

(iii) α(T̃ ) ≤ Cα(T ).

Proposition 2.12. Suppose A is a Banach operator ideal with prop-
erty (P) and X is a Banach space. Then:

(1) A ⊂ X is A-bounded if and only if A is.
(2) χA(A) ≤ χA(A) ≤ CχA(A).

Proof. Let S ∈ A(Z,X) with A ⊂ S(BZ). Then A ⊂ S̃(BZ∗∗). By
hypothesis, S is weakly compact, so it factors through a reflexive Banach
space. Thus, S̃ is weak∗-weak continuous. From this, S̃(BZ∗∗) is a weakly
compact set in Y and, being absolutely convex, it is norm closed. So we have
A ⊂ S̃(BZ∗∗), and this shows that A is A-bounded.

Finally, (2) is obtained using a standard argument.

If a Banach operator ideal A ⊂ W is regular and satisfies A = Add,
then it enjoys property (P). This is the case of operator ideals A ⊂ W
and A = Amax [6, pp. 206–207]. Hence, Πd

p satisfies property (P) (in fact,

Πd
p = Kmax

p [20, Theorem 12]).

Corollary 2.13. If A ⊂ X is Πd
p -bounded, then χΠd

p
(A) = χΠd

p
(A).

3. Measures of non-A-compactness of an operator. If an operator
T : X → Y fails to be A-compact, it seems natural to quantify the distance
between T and KA(X,Y ) by evaluating χA(T (BX)) when this expression
makes sense.

Definition 3.1. Let [A, α] be a Banach operator ideal and let T be in
Asur(X,Y ). The (outer) measure of non-A-compactness of T is

χA(T ) = χA(T (BX)).

Note that χA(T ) = limn en(T,A) (see [4, Section 4]). When A = L, we
are dealing with the so called ball measure of noncompactness.

Example 3.2. Let A = {en : n ∈ N} ⊂ c0, where (en) is the unit vector
basis in c0. Let us check that χA(A) = 1 if A = Πp or A = Πd

p . If I denotes
the embedding map from `1 into c0, then ι1(I

∗) = 1 (see, for instance, [19,
Proposition 6.4.4]), so χId1

(A) ≤ 1. In view of [10, Corollary 5.7],

χΠd
p
(A) ≤ χΠd

1
(A) = χId1

(A) ≤ 1.
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From this and the equality χL(A) = χ(A) = 1 [3, p. 24], it follows that
χΠd

p
(A) = 1. On the other hand, I is 1-integral and ι1(I) = 1 [10, Theo-

rem 5.15], so arguing as above shows that χΠp(A) = 1. Now, notice that I
is precisely the operator UA, so according to Proposition 2.8(8) we conclude
that χΠp(I) = χΠd

p
(I) = 1.

Remark 3.3. Given a Banach ideal A, the (outer) A-variation of an
operator T ∈ L(X,Y ) is defined by

γA(T ) = inf{ε > 0: T (BX) ⊂ εBY + S(BZ)},
where the infimum is taken over all Banach spaces Z and operators S ∈
A(Z,X) [2, Definition 3.1]. Example 3.2 makes it clear that this is a different
notion from that appearing in Definition 3.1; in fact, by [2, Theorem 3.8],

γΠp(I) = inf{‖I − S‖ : S ∈ Πp(`1, c0)} = 0.

The following result shows an alternative way to describe χA(T ):

Proposition 3.4. Let A be a Banach operator ideal and T ∈Asur(X,Y ).
Then

χA(T ) = inf{k > 0: χA(T (D)) ≤ kχ(D) for all D ⊂ X bounded}.
If X is infinite-dimensional, then

χA(T ) = sup{χA(T (D)) : D ⊂ X bounded with χ(D) = 1}.
Proof. We prove the first equality (the second follows by a standard

argument). The assertion is clear if X is finite-dimensional. Suppose X is
infinite-dimensional and set

G = {k > 0: χA(T (D)) ≤ kχ(D) for all D ⊂ X bounded}.
Notice that Proposition 2.8(6) ensures that G 6= ∅. Since χ(BX) = 1, we
have χA(T (BX)) ≤ k whenever k ∈ G, and this yields χA(T ) ≤ inf G.

For the opposite inequality, it suffices to show χA(T (D)) ≤ χA(T (BX))
for every bounded set D ⊂ X satisfying χ(D) = 1. Fix D with those prop-
erties and δ > 1. There exist x1, . . . , xm ∈ X such that

(3.1) D ⊂
m⋃
i=1

xi + δBX .

On the other hand, if ε > χA(T (BX)), one can find y1, . . . , yn ∈ Y , a Banach
space Z and S ∈ A(Z, Y ) satisfying α(S) ≤ ε so that

(3.2) T (BX) ⊂
n⋃
j=1

yj + S(BZ).

From (3.1) and (3.2), we have a covering T (D) ⊂
⋃
y∈∆ y+ δS(BZ), ∆ ⊂ Y

being a finite set. Therefore, χA(T (D)) ≤ α(δS) ≤ δε, and the proof finishes
by just taking the infimum over δ and ε.
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The next proposition lists some basic properties of the outer measure
of non-A-compactness of an operator; they can be easily obtained from the
definition and Propositions 2.8 and 3.4.

Proposition 3.5. Let A be a Banach operator ideal and T ∈Asur(X,Y ).
Then:

(1) χA(·) is a seminorm on Asur(X,Y ).
(2) χA(T ) = 0 if and only if T ∈ KA(X,Y ).
(3) If S ∈ KA(X,Y ), then χA(T + S) = χA(T ).
(4) If X0 and Y0 are Banach spaces, R ∈ L(Y, Y0) and S ∈ L(X0, X),

then χA(R ◦ T ◦ S) ≤ ‖R‖χA(T )‖S‖.
(5) If D ⊂ X is bounded, then χA(T (D)) ≤ χA(T )χ(D).
(6) If S ∈ Asur(Y,Z), then χA(S ◦ T ) ≤ χA(S)χA(T ).
(7) If IdX ∈ Asur(X,X), then χA(IdX) = 0 if and only if X is finite-

dimensional (otherwise, χA(IdX) ≥ 1).

Given a Banach operator ideal A, the outer measure of non-A-compact-
ness of an operator may be considered as a tool to evaluate the degree of
non-A-compactness of an operator belonging the surjective hull Asur. To
obtain an extension of the equality QN p = Kdp, we are going to consider
another type of measure quantifying the degree of noncompactness (with
respect to A) of operators belonging to the injective hull Ainj. The following
concept was introduced and studied by Stephani [23, Section 1].

Definition 3.6. Let A be an operator ideal. An operator T ∈ L(X,Y )
is said to be injectively A-compact if there exist a Banach space Z, a se-
quence (z∗n) ∈ c0(Z

∗) and an operator S ∈ Ainj(X,Z) such that ‖Tx‖ ≤
supn |〈z∗n, Sx〉| for all x ∈ X.

Remark 3.7. It is well known that T ∈ L(X,Y ) is compact if there
exists (x∗n) ∈ c0(X∗) such that ‖Tx‖ ≤ supn |〈x∗n, x〉| for all x ∈ X. Thus, for
A = L the preceding notion coincides with the notion of compact operator.

If HA denotes the class of injectively A-compact operators, then HA
is an injective operator ideal and HA = K ◦ Ainj [23, Theorem 1.1]. For
example, HΠp = K ◦Πp = QN p [23, p. 255].

Remark 3.8. Since HA = K ◦ Ainj [23, Theorem 1.1], Ainj(X,Z) may
be replaced with A(X,Z) in the preceding definition.

When dealing with a Banach operator ideal [A, α], the following char-
acterization of injectively A-compact operators may be deduced from [23,
Theorem 1.1].

Theorem 3.9. Let A be a Banach operator ideal and T ∈ L(X,Y ). The
following statements are equivalent:
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(1) T is injectively A-compact.
(2) For every ε > 0, there are finitely many functionals x∗1, . . . , x

∗
n ∈ X∗,

a Banach space Z and an operator S ∈ A(X,Z) with α(S) ≤ ε such
that

‖Tx‖ ≤ sup
1≤i≤n

|〈x∗i , x〉|+ ‖Sx‖

for all x ∈ X.

Definition 3.10. Let [A, α] be a Banach operator ideal and let T be in
Ainj(X,Y ). The (inner) measure of non-A-compactness of T is

nA(T ) = inf
{
ε > 0: ‖Tx‖ ≤ sup

1≤i≤n
|〈x∗i , x〉|+ ‖Sx‖ for all x ∈ X

}
,

the infimum taken over all x∗1, . . . , x
∗
n ∈ X∗, Banach spaces Z and operators

S ∈ A(X,Z) with α(S) ≤ ε.

The condition T ∈ Ainj(X,Y ) ensures that in the above definition we
take the infimum of a nonempty set of positive numbers. In fact, nA(T ) ≤
αinj(T ). In this case, nA vanishes precisely on operators belonging to HA.

Remark 3.11. Given a Banach ideal A, the (inner) A-variation of an
operator T ∈ L(X,Y ) is defined by

βA(T ) = inf{ε > 0: ‖Tx‖ ≤ ε‖x‖+ ‖Sx‖ for all x ∈ X},

where the infimum is taken over all Banach spaces Z and operators S ∈
A(X,Z) [24]. Since βA(T ) = 0 if and only if JY ◦T is in the uniform closure
of A(X, `∞(BY ∗)) [13, Theorem 20.7.3], the (inner) A-variation is a different
notion from that appearing in Definition 3.10.

Theorem 3.12. Let A be a Banach operator ideal with property (P) (see
Remark 2.11). Then

1

C
χA(T ∗) ≤ nAd(T ) ≤ CχA(T ∗)

for every T ∈ (Ad)inj(X,Y ).

Proof. Notice that χA(T ∗) makes sense if T ∈ (Ad)inj(X,Y ) since (Ad)inj
⊂ (Asur)d [19, Theorem 8.5.9]. To prove nAd(T ) ≤ CχA(T ∗), we fix ε >
χA(T ∗(BY ∗)) and consider functionals x∗1, . . . , x

∗
n ∈ X∗, a Banach space Z

and S ∈ A(Z,X∗) satisfying α(S) ≤ ε and

T ∗(BY ∗) ⊂
n⋃
i=1

x∗i + S(BZ).

This covering of T ∗(BY ∗) yields

(3.3) |〈T ∗y∗, x〉| ≤ sup
1≤i≤n

|〈x∗i , x〉|+ sup
z∈BZ

|〈Sz, x〉|
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for all y∗ ∈ BY ∗ and x ∈ X. If we set S0 := S∗ ◦ iX , it follows that

‖Tx‖ ≤ sup
1≤i≤n

|〈x∗i , x〉|+ ‖S0x‖

for all x ∈ X. Hence, as A enjoys property (P), we have S0 ∈ Ad(X,Z∗)
and

nAd(T ) ≤ αd(S0) ≤ αd(S∗) = α(S∗∗) = α(iY ◦ S̃) ≤ Cε,
so that nAd(T ) ≤ CχA(T ∗) by taking the infimum over ε.

For the reverse inequality, fix ε > nAd(T ) and consider x∗1, . . . , x
∗
n ∈ X∗,

a Banach space Z and S ∈ Ad(X,Z) satisfying αd(S) ≤ ε and

‖Tx‖ ≤ sup
1≤i≤n

|〈x∗i , x〉|+ ‖Sx‖

for all x ∈ X. Set

A := aco
( n⋃
i=1

±x∗i + S∗(BZ∗)
)
.

We are going to see that T ∗(BY ∗) ⊂ A. For contradiction, suppose there
exists x∗0 ∈ T ∗(BY ∗)\A. According to the Hahn–Banach separation theorem,
we can separate x∗0 and A in X∗ endowed with the weak∗ topology: there are
r > 0 and x0 ∈ X such that |〈x∗0, x0〉| > r and |〈±x∗i + S∗z∗, x0〉| < r for all
z∗ ∈ BZ∗ and i = 1, . . . , n. In particular, if z∗0 ∈ BZ∗ with ‖Sx0‖ = 〈z∗0 , Sx0〉,
we can select x̄∗ ∈ {±x∗i : i = 1, . . . , n} such that

(3.4) sup
1≤i≤n

|〈x∗i , x0〉|+ ‖Sx0‖ = |〈x̄∗ + S∗z∗0 , x0〉| < r.

Now, choose y∗0 ∈ BY ∗ with T ∗y∗0 = x∗0; then

r < |〈x∗0, x0〉| ≤ ‖Tx0‖ ≤ sup
1≤i≤n

|〈x∗i , x0〉|+ ‖Sx0‖ < r,

a contradiction that proves T ∗(BY ∗) ⊂ A.

According to properties (2), (3) and (8) in Proposition 2.8, and Propo-
sition 2.12, we have

χA(T ∗(BY ∗)) ≤ CχA(S∗(BZ∗)) ≤ Cα(S∗) ≤ Cε.
Taking the infimum over ε yields χA(T ∗) ≤ CnAd(T ).

Setting A = Πd
p in the previous theorem, we obtain the following exten-

sion of the equality QN p = Kdp [9, Corollary 3.4].

Corollary 3.13. For every T ∈ Πp(X,Y ), nΠp(T ) = χΠd
p
(T ∗).

Remark 3.14. For every Banach operator ideal A, a direct proof yields
nA(T ∗) ≤ χAd(T ) for every T ∈ (Ad)sur(X,Y ) (notice that nA(T ∗) makes
sense if T ∈ (Ad)sur(X,Y ) since (Ad)sur = (Ainj)d [19, Theorem 8.5.9]).
Thus, for A = Πp, we have nΠp(T ∗) ≤ χΠd

p
(T ) for every T ∈ Πd

p (X,Y ),
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which may be considered as an extension of the inclusion Kp ⊂ QN d
p [9,

Corollary 3.4].

From Corollary 3.13, it is clear that nΠp(T ∗) = χΠd
p
(T ∗∗) for every T in

Πd
p (X,Y ). Nevertheless, we do not know if there exists a positive constant C

satisfying nΠp(T ∗) ≥ CχΠd
p
(T ) for every T ∈ Πd

p (X,Y ). The main problem

is that the measure of non-A-compactness of a set depends on the ambient
space. This implies that the equality χA(T ) = χA(T ∗∗) does not hold in
general. Indeed, taking a glance at Example 3.2, we have

χL(I) = χL(UA(B`1)) = χL(A) = 1.

On the other hand, notice that A ⊂ 1
2e+ 1

2B`∞ , where e = (1, 1, . . .) ∈ `∞.
Thus,

I∗∗(B`∗∗1 ) = I∗∗(B`1
w∗

) ⊂ I(B`1)
w

= I(B`1)
‖·‖∞ ⊂ aco

(
1

2
e

)
+

1

2
B`∞ .

From this and [3, Theorem 2.5], it follows that

χL(I∗∗) ≤ χL
(

aco

(
1

2
e

))
+ χL

(
1

2
B`∞

)
=

1

2
χL(B`∞) =

1

2
.

Thus, if A ⊂ `∞, then χL(A) ≤ 1/2.

4. The A-essential norm. Another way to measure the degree of non-
compactness of an operator T ∈ L(X,Y ) is provided by its essential norm,
defined by ‖T‖K = inf{‖T − S‖ : S ∈ K(X,Y )}. Of course, χL(·) ≤ ‖ · ‖K,
so it is natural to ask whether those seminorms are or are not equivalent.
Several authors have dealt with this problem using different approaches (see
for instance [12] and [24]).

Given a Banach ideal [A, α], Theorem 4.1 in [4] states that the ideal KA
is complete with respect to the ideal norm αsur on Asur. This allows one to
define the A-essential norm of an operator in Asur(X,Y ) in a similar way to
the classical essential norm, namely, the quotient ideal norm in Asur(X,Y )
modulo the A-compact operators:

ρA(T ) = inf{αsur(T − S) : S ∈ KA(X,Y )}.
This is a seminorm on Asur(X,Y ) that vanishes precisely on A-compact
operators. A straightforward argument shows that χA(T ) ≤ ρA(T ) for every
T ∈ Asur(X,Y ).

The aim of this section is to obtain several results showing the equiva-
lence between χA and ρA under certain conditions on X, Y or A.

Recall that a Banach space X is said to have the πλ-approximation prop-
erty if there exists a sequence (Pk) of linear projections on X with finite
rank satisfying limk Pkx = x for every x ∈ X and supk ‖Pk‖ ≤ λ [5, p. 295].
The arguments in the following proof are an adaptation of a result due to
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Gol’denštĕın and Markus which connects the essential norm ‖ · ‖K and the
ball measure of noncompactness χL of an operator (see [12] or [17]).

Theorem 4.1. Let X and Y be Banach spaces and 1 ≤ p <∞. Suppose
that Y has the πλ-approximation property. Then ρΠd

p
(T ) ≤ (1 + λ)χΠd

p
(T )

for every T ∈ Πd
p (X,Y ).

Proof. Let T ∈ Πd
p (X,Y ). Given ε > 0, there exist y1, . . . , yn ∈ Y ,

a Banach space Z and S ∈ Πd
p (Z, Y ) with Πd

p (S) ≤ χΠd
p
(T ) + ε/2 satisfying

(4.1) T (BX) ⊂
n⋃
i=1

yi + S(BZ).

Choose N ∈ N such that

(4.2) ‖PNyi − yi‖ ≤
ε

2n1/p

for all i ∈ {1, . . . , n}. We are going to show that

(4.3) πdp(T − PN ◦ T ) ≤ (1 + λ)(χΠd
p
(T ) + ε),

which yields ρΠd
p
(T ) ≤ (1 + λ)(χΠd

p
(T ) + ε), so the proof will be concluded

by letting ε↘ 0.

To see (4.3), let (y∗k) ∈ `wp (Y ∗). If (xk) is a sequence in BX , inclusion
(4.1) provides a sequence (zk) in BZ such that Txk = yik + Szk, where
yik ∈ {y1, . . . , yn}. Thus,(∑

k

|〈(T − PN ◦ T )∗y∗k, xk〉|p
)1/p

=
(∑

k

|〈y∗k, (T − PN ◦ T )xk〉|p
)1/p

≤
(∑

k

|〈y∗k, (IdY −PN )(Txk− yik)〉|p
)1/p

+
(∑

k

|〈y∗k, (IdY −PN )yik〉|
p
)1/p

.

On the one hand,(∑
k

|〈y∗k, (IdY − PN )(Txk − yik)〉|p
)1/p

=
(∑

k

|〈y∗k, (IdY − PN )Szk〉|p
)1/p

≤
(∑

k

|〈S∗(IdY − PN )∗y∗k, zk〉|p
)1/p

≤ πp(S∗(IdY − PN )∗)‖(y∗k)‖wp

≤
(
χΠd

p
(T ) +

ε

2

)
(1 + λ)‖(y∗k)‖wp .
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On the other hand,(∑
k

|〈y∗k, (IdY − PN )yik〉|
p
)1/p

=
(∑

k

|〈(IdY − PN )∗y∗k, (IdY − PN )yik〉|
p
)1/p

≤
(∑

k

( n∑
i=1

|〈(IdY − PN )∗y∗k, (IdY − PN )yi〉|p
))1/p

≤
( n∑
i=1

εp

2pn

)1/p

‖((IdY − PN )∗y∗k)‖wp

≤ ε

2
(1 + λ)‖(y∗k)‖wp .

Summing up, we have(∑
k

|〈(T − PN ◦ T )∗y∗k, xk〉|p
)1/p

≤ (1 + λ)(χΠd
p
(T ) + ε)‖(y∗k)‖wp ,

which leads to (4.3).

With suitable changes in the preceding result, it is possible to obtain an
inequality involving ρΠp(T ) and χΠd

p
(T ∗):

Theorem 4.2. Let X and Y be Banach spaces and 1 ≤ p <∞. Suppose
that X∗ has the πλ-approximation property. Then ρΠp(T ) ≤ (1+λ)mΠd

p
(T ∗)

for every T ∈ Πp(X,Y ).

We finish with a general version of Theorem 4.1.

Theorem 4.3. Let [A, α] be a Banach operator ideal. Let Y be a Banach
space for which there exists a positive constant L such that if E ⊂ Y is a
finite-dimensional space, there exists a finite-dimensional subspace E ⊂ F ⊂
Y and a projection P : Y → F with ‖P‖ ≤ L. Then ρA(T ) ≤ (1 + L)χA(T )
for every T ∈ Asur(X,Y ).

Proof. Starting as in the proof of Theorem 4.1, set E = span {yi : i =
1, . . . , n} and consider the corresponding subspace F and the projection P
given by the hypothesis. Then the conclusion is a consequence of

(T − P ◦ T )(BX) ⊂ (IdY − P )(S(BZ)).
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