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Decay of metastable states: Mean relaxation time formulation
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The mean relaxation time formalism introduced by Nadler and SchidteGhem. Phys32, 151
(1985] in their generalized moment expansion method is extended to a general diffusion process in
arbitrary dimensions. The utility of the approach is demonstrated by calculating analytically the rate
of noise-induced transitions in a bistable system with an isolated transition point. The rate formula
obtained summarizes in a uniform manner much of what had been done before in this field.
Limitations of its validity are discussed and a perturbation procedure to systematically improve it is
proposed. The validity of our theoretical predictions for the rate is confirmed by comparing with
exact numerical results. @999 American Institute of Physids$0021-960609)50415-7

I. INTRODUCTION In what follows we assume that a positive stationary distri-

) , . , bution Py(q) =P(qg,t—=), the solution of
One of the longstanding problems in physical sciences

has been the development of methods to calculate rate con- LPo=0, (1.9
stants of equilibration process from a microscopic perspecg

tive. A small sample of this work can be found in Refs. 1-3.t4m gne metastable state into another by crossing an inter-
For an historical review of the field, see that of Landduer. vening barrier.

Finally, general reviews of the present state of the art have 11 flexibility of the above description makes Ed.1)
recently geen given by Mel'n_lkor\/and Hanggi, Talkner, and  yery attractive for both theoreticians and experimentalists.
BorkovecC (see also a collection of references in Refs. 7 andspecific examples of this equation can be drawn from a vast
8). The phenomenon of escape from a locally stable statgmqoynt of different fields ranging from nuclear physics to

a'lrise's ina multitu.de of scientific'contexts, put the main MO~ communication theory: accordingly, it has received a great
tivation to study it stems from its connection to chemical yoai of attention in recent yealsee, e.g., textbooks by

kinetics and the theory of diffusion in solids. Since the fun- s, dinet and Riskef). Since there is no unique way to

damental contribution of Krame?s_much work has been de- getermine the escape rate, various different methods have
voted to the analysis of stochastic models governed by thgsgjted. Here we mention specifically three rather general
Fokker—Planck equation. It is a mesoscopic kinetic equation,nroaches to this problem. The calculation of the ratio of a

for the distribution functiorP(q,t) involving a deterministic  g¢ationary current at the top of the barrier to the population of
drift vectorG and a diffusion tensdD. The former describes o well, as originally proposed by Kraméri the method

the deterministic path of the system, while the latter incor-, ¢ frequently used in the pd<t®~18An alternative deri-
porates fluctuations away from this path. Here we deal with,5iion is based on the mean first passage time formal-
the Fokker—Planck equation of a generic tyfiee summa- g, 126.14.16-23\pjithin its scope, the escape rate is deter-

tion rule over repeated indices is always implied, if not stated,ined as the inverse of the mean time after which a stochas-

otherwise, tic trajectory starting within the well passes the stochastic
aP(a,t)=LP(q,)=a[ — Gi(q)+ 3;D;;(q) IP(.1), separatr.ix fqr the fir;t time. Finqlly, amore precise definitiqn
of the kinetic rate is adopted in the eigenmode expansion
N method?1624=29The separation of time scales which is typi-
supplemented by the natural boundary conditions cal in barrier crossing processes shows itself in a large gap in
nT.J(P)=0 for qedR, n=normal to 4R, (1.2 the spectrum of _the Fokker—Planck operator separating one
small nonzero eigenvalue from the rest of the spectrum. In
whereq"=(q;,....0,) €R, JR is the boundary oR, and such a case, one can easily recognize the smallest nonzero
where we have introduced the Fokker—Planck operator €igenvalue as the sum of forward and backward rates. Each

xists. The quantity of interest is the escape rate of a system

given by Eq.(1.1) and the probability current reading of the three approaches has its own advantages and draw-
backs. The Kramers method is more direct and simpler to use
Ji(P)=Gj(a)P(q,t) —9;Dj;(a) P(q,1). (1.3 than the two other approaches, though the latter give some

additional insight. Besides, the mean first passage time for-

apermanent address: Institute for High Temperatures, 13/19 Izhorskaydlalism reduc_es Eq1.1) to the stationary ba(kaard Fokker—
Street, 127412 Moscow, Russia. Planck equation supplemented by absorbing boundary con-
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ditions. For a one-dimensional process, the respective Ka

Dirichlet problem is easily solved analytically in quadra- A=B (2.7)
tures, giving an explicit result for the rat&:®>1°Otherwise, ks

its solution is far from straightforward because absorbingand
boundary conditions are known to present a special problem
for systems with more than one degree of freedom. The INA(1) = = KaNa(1) +ksNg(1),
eigenmode expansion method also reduces (Ed) to a 3Ng(t)=KaNa(t) —kgNg(t).
stationary problem but with the natural boundary conditions ) -
(1.2). Although the class of bistable processes for which thd1€7€ Na(t) and Ng(t) are the time-dependent nonequilib-

first nonzero eigenvalue may be calculated exactly is rathefi™ Probabilities to find the system in, respectively, te

(2.2

limited 2% the method is in a sense superior over the meaitnd theB metastable state,
first passage time approach. From a mathematical point of
view, diffusion problems of such a type are easier to solve  Ni(t)= fquUi(Q)P(q,t)- 2.3
since no external boundary conditions are required to deter-
mine the escape rate. defined relative to a surface separatihgnd B,
In the present paper we propose an alternative method to 1
. . . . . y q S Ri
obtain the rate which combines the principal advantages of Ui(Q)Z[ _ i=A,B, (2.4)
the mentioned approaches. The basic idea is to define this 0, otherwise,

quantity in terms of an integral time characteristic, a soypjle k, andkg are the rates of escaping from these states

called mean relaxation time, introduced by Nadler andeg|ated to each other through the equilibrium fractions
Schultef! in their generalized moment expansion method

(for applications of the method, see also Ref).3the re- kaNa=kgNg, Nf=Nj(=), i=AB. 2.9
mainder of the paper is organized as follows. In Sec. Il theyg {he system of interest is assumed to be clodégt Ng

method of Nadler and Schulten is briefly reviewed and its:1 the equations can be reduced to one equation for a func-
connection to the method of eigenmode expansion is estal?l-on’ given by

lished. An approximate rate expression for a general two-

state diffusion process is derived in Sec. Ill. The derivationis ~ SN(t)=N(t)— N3z . (2.6
based on the assumption that the potential barrier is hig
enough compared to the noise strength so that any nonline
ity in the original Fokker—Planck operator can safely be ne-

glected. In Sec. IV a perturbation approach to take into ac-  6N(t)

count the nonlinear contribution is outlined. In this way an M=exp(—kt), 2.7
improved rate expression is derived that involves the leading

nonvanishing correction in terms of the inverse barrierVNich depends upon the full equilibration rateska+kg.

height. In Sec. V, the accuracy of our theoretical predictiondn this way the complicated nonstationary problé€ml) is

is tested by comparing with exact numerical rates in one- anffduced to a more simple problem of determining the equili-
two-dimensional potentials. The final section contains som&@ration rate.

concluding remarks.

tf’his yields a single-exponential approximation of the dy-
amics,

B. Generalized moment expansion method

Next we briefly review the generalized moment expan-
Il. PRELIMINARIES sion method of Nadler and SchultdhTo this end, let us
consider the equilibrium time correlation function of an ob-

A. Phenomenological description
servableM (1),

As a preliminary we briefly outline the problem of inter- N
est and a phenomenological approach to its solution. To C(t)=(M(0)5M(t))=(M exp(tL™)oM). (2.8

model a two-state process, the systél) is assumed to  without loss of generality we assume th&a¢t) is normal-

have two domains of attractidRy andRg corresponding to  jzed, C(0)=1. In the aboveL™* is the backward Fokker—
metastable state& and B, respectively, and one transition planck operator

attractor, referred to henceforth as a sadglevhich is un- N )
stable in the direction transverse to the stochastic separatrix L =Gi(Q)di+Dij(a)djj, (2.9
d€). Here we restrict our consideration to the case of a saddlgy = m — (M), while () denotes the average with respect to

point g° located at the origing®=0. The generalization t0 e stationary solution of the Fokker—Planck equation. The

an arbitrary unstable attractor is straightforward. It is clearyyerage has the properties of an inner product on the space of
that a detailed solution of the partial differential equation is agnctions M, i.e.,

far from simple task not only in many dimensions but even

in one dimension. To simplify the problem, one usually as- M M :f P M Ry

sumes that the dynamics of the two-state process obeys the (SM(0) oM (1)) qu o(@)oM(a)e™ SM(q).
phenomenological linear rate equatidis, (2.10



J. Chem. Phys., Vol. 110, No. 15, 15 April 1999 A. Drozdov and J. Brey 7135

The generalized moment expansion method starts with th€onsequently, by Eq2.7) C(t)~exp(—kt) at long times
Laplace-transformed correlation function when the phenomenology is valid. Criteria for the validity of
" Eq. (2.2 will be discussed in Sec. V of the present pafsee
é(w): j dte*wtc(t):(gm(w—|_+)*15|\/|> (2.11) also Ref. 34 Here we only note that the dynamics of physi-

0 cal and chemical processes is often not known in detail. It is
and involves a two-point Paepproximation aroundw  frequently the case that the largest relaxation time is the sole
=, kinetic quantity obtainable from experiments. Therefore ef-

fective methods for its evaluation is one of the most funda-

- _ n mental problems in physics and chemistry.
C“")—‘mE:O T — L) ™", (212 The method we outline below is an extension of the
" elegant formalism of Nadler and Schulten to a general two-
- :(_1)m[d C(t)} 2.13 state Fokker—Planck process. As we are interested in the
m dt™ t=O, long-time regime where the decay is unconditionally single
exponential, we limit ourselves te=1, i.e.,
andw=0,
w C(t)y=exp —t/7_,). (3.3
Clw)= Z T m-1(— o)™, (214 |nthat event, the long-time rate is given by the inverse of the
m=0 so-called mean relaxation tiﬁi‘ereading(from here on, we
1 (= shall drop the index-1 to keep the notation simple
r_m_1=wf0 dtt™C(t). (2.15

T= fo dtC(t). (3.9

The expansion coefficients, for bothm>0 andm<0 are

evaluated from Interpretations of this quantity are the following. Should one

Tm=(—1)™SM(LT)"SM). (2.16  think the decay be single exponential, as is the casé(ay,

-1_
They contain information on the short- and long-time scales'fhen 7 "=k, and therefore

respectively. Since it is impossible to determine and sum ka=NS7 %, kg=NS7 1. (3.5
infinitely many terms in the series representations of Egs. ] )

(2.12 and (2.14), these must be truncated at some fimite Furthermore, if one expands the Green function of the
=i andm=j. The resulting approximation t6(t) is a su- Fokker—Planck equation

perposition ofv exponentials that exactly reproduicéeriva- P(a.tla®) =et' s(g— a®) =P ()P e Mt m=0
tives of C(t) att=0 [Eq. (2.13] andj relaxation moments (@tla?) (@=a)=Pm(@)Pn(a) ’ (3.6
[Eq. (2.19],

in terms of the complete set of eigenfunctidbelow sum-

_ mation over the index is not implied,
C(t)=> aexp—nt), (2.17 P
=1 LPi=—\P;, LTP/=—\P/,
wherei+j+1=w» and
i’ f dgP;" () Pj(a)=5;; , (3.7
E au(ﬂ,u)m:’rmr _JSmSl (218) R
pu=1 .
one obtains

The approximation includes in a balanced way both short-

and long-time effects. However, the utility of the generalized C(t)=Cmexp(—Ant), m=1, (3.8
moment expansion method appears to be restricted to onand, accordingly,

dimensional stochastic processes, because just in that case 4

the moments of the backward Fokker—Planck operhtor 7=CiAm 3.9
are available analytically:=2 with

Ci=(Nf\N§)’1J qui(q)j daP{" (9)Po(a). (3.10
Ill. MEAN RELAXATION TIME FORMALISM Ra Ra

i ici i <1 =1.1
To proceed further we note that by the Onsager regres|:|ere the expansion coefficients satisf O =<1, 2 Cp t

sion hypothesissN(t) decays to equilibrium in the same Is clear that the rate description is meaningful if

fashion as does the equilibrium time correlation function 1-c,<1, (3.11
SN(0) SN(t in which case
c®= <5N (0)5N (o)> ’ @D
(6N(0)8N(0)) Ny=7 L (3.12
e’

The validity of the approximate relation8.3) and (3.12
C(t)=6N(t)/N(0). (3.2 will be discussed in Sec. V of the present paper.
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On the other hand, by E¢2.16 the formal expression
for the mean relaxation time reads

r=(NSNG) ! fquamq)Po(q)F(q). (313

where SN(q) = oa(q) — Nz andF(q) is determined from

L"F(q)=—éN(a), (3.14
on the space of functions orthogonalRg,
fquPo(q)F(q)=0. (3.19

In case the escape dynamics entails a one-dimensional

Fokker—Planck process in the intenfalb], Eq. (3.14) can
be readily solved exactly to give

2

b X
T= (NiNS)flL dX[D(X)Po(X)]l( Ja dysN(y) Po(Y)] :
(3.16

A. Drozdov and J. Brey

For vanishing diffusion the resulting first-order partial differ-
ential equation has only solutions that are piecewise constant
on the domains of attraction of the deterministic equations of
motion. We choose these values as belifgand —N§ , such

that the resulting function is orthogonal to the stationary so-
lution. The presence of small diffusive termslifi changes

the behavior of only near the deterministic separatrix where
the steplike behavior is smoothed out. Since the expression
for the mean relaxation time, E¢B.13, contains the station-
ary distribution as a weight, only the region of the saddle
point is of importance for sufficiently smadl Hence we may
split the backward operator into a leading contributlgf

and a correctio.; reading

Lt=Lg+Lj, (3.22
where

Lg:quJ5|+5|Jaﬁy

Bl=9,Gi(®lq-qs, Dij=Di;(@® 3.23

Yet another special case that allows the explicit expressiogescribes the linear dynamics near the saddle and

for the mean relaxation time includes diffusive problems in a
spherically symmetric potential, in a spherically symmetric
domain. Other than that there is no closed form solution to

Eq. (3.14.

Here we deal with the problem in the limit of small

diffusion coefficientgor large barriers

Dij(a)=eDjj(q), e<1, (3.17)

where the noise strength measured in units of the barrier
height is assumed to be small. In such a case, if the syste
starts withinR, it will typically first approach the metastable

state A and stay within its neighborhood for a long-tinie

until an occasional fluctuation drives the system to the prod

uct stateB. Accordingly, we may seek the functidfn(q) in
the form

F(a)=Tf(q), (3.18

where the constant paft is obtained by multiplying3.14
by P, and integrating oveR, . This yields

-1
T=—NzNg fR quo(q)L*f(q)} , (3.19
leading us finally to
-1
T=— f quo(q)Uf(q)} quPo(Q)f(q).
Ra Ra
(3.20

The above formula is formally exact in the sense that no
approximation has been made to derive it. Unfortunately,
is still too complicated to use for quantitative calculations

Thus approximation schemes must be invoked.

In order to construct an approximate solution we use the

fact thatT is exponentially largeT ~exp 1), and hence the

inhomogeneity— 6N(q)/T may safely be neglected in Eq.

(3.19), i.e.,

L*f=0. (3.20)

L1 =AGi(a)d;+ADj(a)df,
AGi(q)=Gj(q)—Blq;, AD;j(q)=Djj(q)—Dj
(3.29

the anharmonic correction. When writing E§.24) we have
taken into account the fact that fer—0 the saddle point
coincides with a stationary point of the drift vector, i.e.,
G(g%=0. In passing we note that rescaling the coordinates
Etby the square root of the noise strength renders the leading

ntributionL 5 independent of and the correctio; pro-
portional to the noise strength. Consequently, the nonlinear-
ity L, may be considered as a small perturbation. A pertur-
bation series for the functiohreads®2%28

f=f0+f1+f2+"‘. (325)
NeglectingL; completely we arrive at
Ly fo=0. (3.2

Within this approximation the solution of E¢3.21) reads

br
fo=No N1+ \/2/77f dsexp(—s?/2) |, (3.29
0
where ] and N, are constants of integration and
b:\/.L/Drrv r=w-dg. (328)
In the aboveD,, denotes the,r-component of the diffusion
D, =w'Dw, (3.29

IR/vhile w is the positive eigenvalue of the mati with the
‘associated eigenvectar, i.e.,

(3.30

The chain of approximations made to constr(&R7) con-
stitutes the essence of the standard saddle point approxima-
tion method'1152927.280ne of the disadvantages of the
method is that the resulting rate expression is asymptotic in
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the barrier height. A way to improve it by taking into ac- bD,,
count finite-barrier corrections will be discussed in Sec. IV k0=e—eJ dgPq(q) S(w-Qq). (3.39
of the present paper. 7oNENE V27 JR

In the remainder of this section we restrict our discus-
sion to the lowest order contributidiy. It is not hard to see Before proceeding further three remarks are in order.
that the constand/; involved in f, can be set to unity with-  First, we note that Eq€¢3.33 and(3.36 do not necessarily
out loss of generality\,=1. Next, the constant/; defined coincide \_N|th each other. T_he dllfference may arise due to
by Eq.(3.15 is easily evaluated explicitly using the fact that €xponentially small corrections introduced by HG.39.
P, has sharp maxima in the vicinity of the stable attractors Second, when applied to the Kramers problem and its gen-
andB. There, the approximate solutidg is nearly constant. ~€ralization to time-dependent friction, E®.33 agrees with

Consequently, the constanf, is given by rate formulas derived by DekKerand Talkner and Brauft,
respectively. Third, all the above-mentioned rate formulas
N1=(N§—NR) ag. (3.3) presuppose the knowledge of the stationary solution. Since

. . P, is positive, we may write
Hereby the vectow was assumed to be oriented so thét

positive atA and negative aB. The numerator of E¢3.20 -1
can also be evaluated in the same manner to yield Po(Q)Z‘ fqu eXF{—CD(Q)]J exd —P(q)], (3.39
fR dqPo(a)f(g)=2moNaNg. (3.32  where®d(q) is a so-called generalized potential. The potential
A

is easily obtained in closed forfiby simple integration of

Usually, one argues that the constaatsand 5, appearing EQ: (1.4] when Fhe underlying dynamics _obeys detailed

in the above equations are unity up to exponentially Sma[palancel.'2 Otherwise, no general method ex_|sts for comput-

corrections in the barrier height, and therefore can be nelNd Po.***°and therefore the escape dynamics must be stud-

glected. We will see in the following that for low barrier i€d in each particular case separa_l?é"@?.'l'ms makes estab-

heights these corrections also become important. lishing general properties & a quite difficult task, which
Thus, using only the lowest order approximatiigy) the lies outside the scope of the present paper anyway.

equilibration rate: In the weak noise limit, Eq(3.17), ®(q) is the Lyapunov

function of the deterministic dynamics; consequently, it must
enien—1 4 be minimal on the stable attractors and maximal on the
Ko=—(270NaNg) L daPo(q)Ly fo(a), (333 saddle of the deterministic dynamics. Assuming that all these
A attractors are point attractors and expandi) in their
where we have employed E(B.26). The above formula re- neighborhood as
produces various different rate expressions available in the
literature for multidimensional ~ Fokker—Planck d(q)=DPy+ e qq;+0(g®), M=AB,S, (3.39
processes 1114151724y order to illustrate this statement, let
us explicitly evaluate the numerator of E@.33. After a  allows one to perform all the integrals appearing in Eq.
partial integration the integral entering the numerator reads(3.36 analytically. This leads in a straightforward wépr
more details, see the Appenglixo a rate formula of the

,15,20,2
1= [ asta(Pofo+PoDyfol. (334  standard formt50
JdRp

wheredS denotes the oriented surface elementddty, . It kst:L[WeXp(qJA_q)s)
should be noted here that the stationary probability current 277\/|det905|

J(Py) does not in general vanish. Ag is practically con-

stant away from the saddle, the surface integral dy&(P,) +dete® exp(@g— Pg)]. (3.39
vanishes. Furthermore, the main contribution to the surfac
integral over the second term comes from the neighborhoo%
of the saddle where only the derivative with respectrto !
contributes while the other derivatives are negligible. There
fore, we may approximate the separatrix in the vicinity of
that point by its tangential hyperplame=0,

ome other approximate rate expressions available in the
terature for particular Fokker—Planck processésfollow
from Eq.(3.39 in a very natural fashion.

Finally, to conclude this section we mention two draw-
backs of the above steepest-descent approximation. First of
all we note that using Eq3.38 implies the differentiability

of the generalized potential. The latter, however, is not a
|~fr=Od$PoDrrﬁrfo=—bDrr\/ﬂfrzodsrpo: generic case. In many nontrivial examples the generalized
(3.35 potential shows singulariti€S. Second, when deriving Eq.
(3.39 we have neglected in the seri€%38 terms of order
where the minus sign arises from the opposite directions ofiigher than|g|2. This neglect is quite severe and introduces
dS anddr/dq; . Introducing ad-function into the integral on a large error that has to be compensated for by a large po-
the right of(3.35 we eventually arrive at tential barrier.
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IV. FINITE-BARRIER CORRECTIONS

A. Drozdov and J. Brey

Once the first-order perturbation correction is known, the
mean relaxation time formalism gives the following im-

As we already noted, the method used for approximatel;broved expression for the equilibration rate:

solving Eq.(3.21) is asymptotic. It rests on the assumption

that the barrier height measured in units of the noise intensity
is sufficiently large not only in order that a rate description is

meaningful but, additionally, that on the diffusional length

scale at the saddle any nonlinearity can be neglected. Th

condition, though, is not always met in realistic barrier

crossing processes. The problem of finite-barrier correction
has been studied actively in recent years and many different

methods have been suggested for their evalu
ation 16:23.24.26-28.38.3y5\yever, the utility of the results ob-
tained so far is restricted to particuldone- and two-

dimensional Fokker—Planck equations. The aim of this sec-
tion is to outline a general approach to the problem. An
obvious way to improve the present solution is to take into

account the nonlinearity.; [Eq. (3.24)] fully neglected in

the derivation of Eq(3.27). Based on the series representa-

tion (3.25), a perturbation theory with respect to the nonlin-
earity L, can be performed, leading to a hierarchy of inho-
mogeneous equations of the fdffR®

La—fmZ—Lffm_l, m=1, (4.1

with fq being determined by3.27). Here we limit ourselves
to first order in the perturbation

Lgfi=—LJfo. (4.2)
Then, splitting off a Gaussian function frof,
f1(q)=b(2/m)Y?exp—b?r?/2)h(q), 4.3

and using the explicit expressioni3.27) and (3.24 for f,
andL; , respectively, we arrive at the following equation for
the functionh:

(Lg—2rb2Wi5ij&j—,LL)h=rb2WiADijo—AGiWi .
(4.4)

The latter can be solved systematically by expandmg
AG;, andADj;,

h=H-+H;q;+Hj;0i0; + Hijaiq;a+O(|al*),
AG; =B} q;ax+B}“"q;aam+O(|al*), (4.5
ADjj= DEQkﬂL DikJ'kaQmJF O(lal®),

and equating like powers af; . This results in a set of alge-
braic equations for the coefficients, H;, H;;, and Hj
reading

(2B! — 4b?WD i — 1 8j) Hi = b?D e wiwimw; — Bl w;
H=(2/u)DjjHy; ,
(3B! — 6b°WD W — 8 Hixp

2

(4.9

= 2 WiB{'kp,

K
DWW Wpw; — 5

(118 + 2b°WenD iw; — B H; = 6D iH -

k1=—(2n1N§Ng)*1JR dgPoL; fq, 4.7
A

here we have used, fo=0 and the defining Eq4.2) for

1. After a partial integration this rate can be rewritten in the
gorm

k1:(Wolﬂl)ko_(zﬂlNiNg)ilLR dSPoD;;9;f;.
A

(4.9
Hereby we introduced the parametey,
m=(2NING) | daPo(fo+ 1)
A
— o+ (NENG) [ dapofy, @9
R

A

which is unity up to exponentially small corrections in the
barrier height. As will be shown in the next section, these
corrections are important for low barrier heights.

V. APPLICATIONS
A. A one-dimensional model

Since exact results for the mean relaxation time are only
available in one dimension, we first consider a typical model
given by

P (X,1) = (x3—x+Da,) P(x,1). (5.1
The dynamics is that of a Brownian particle moving in the
symmetric bistable potential
(x*-1)

D
in the large damping limit. The height of the potential bar-

rier, Ab=d(0)—P(£1), is related to the noise strendth
via

d(x)= (5.2

Ad=(4D) 1. (5.3

Our aim is to test the validity of the rate descriptiags.
(2.7 and(3.12], as well as the utility of the various approxi-
mations discussed above for the escape rate.

The mean relaxation time of the Fokker—Planck process
(5.1 was calculated in terms of Eq3.16 by numerical
quadratures. Numerically exact results for the first nonzero
eigenvalue\ ; and the equilibrium time correlation function
C(t) were obtained by a basis set method described e&tlier.
In Fig. 1 these results are compared to the single exponential
approximation C(t) =exp(—kt) taken with k=X\; and k
=1/7. The sharp minima obtained with= 1/ mean that the
corresponding approximation crosses the true correlation
function at\,t=1. The calculation clearly demonstrates that
depending on the barrier height there are two different
mechanisms determining the equilibration process. For low
barrier heights A®d <5) the system belongs to the relax-
ational regime. In this regime the equilibration rate is not
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2} AD=1

error

logyglerror
1
w
1
1

-5

FIG. 1. Logarithm of the relative err¢fapproximate-(exacy)/(exac} in the

equilibrium time correlation functiofEqg. (3.1)] for A®=1 and 6 made by
using the single exponential approximation, E2.7) with k=X, (dashed
lines) andk=1/7 (solid lines.

logyglerrorl

very small, while the coefficiert; noticeably deviates from
unity. Accordingly, the long-time behavior is determined by
a set of low-lying eigenvalues. This indicates that the rate -3 7
description as a whole loses its meaning for too low barriers.
It is remarkable, however, that even for a low barridmd
~1) a large share of the systern;(~0.9) decays with one
and the same rate; and therefore the error made by using
the sing|e exponentia| approximati@_?) is re|ative|y small FIG. 3. Relative errors in the inverse mean relaxation time made by using

: ; different approximate expressions. Dot-dashed line: standard rate formula
0

(J.USt of Order 10% as seen from Figl. Dn the con'trary, at kst» EQ. (3.39; dashed line: zeroth-order approximati@p, Eq. (3.33;

high barriers the system belongs to the rate regime. In theﬁ:)en circles connected by dashed line: zeroth-order approximation evalu-

even the long-time behavior is characterized by a least noruted with o= 1, 7ko; solid line: first-order approximatiok, , Eq. (4.7);
vanishing eigenvalue that is separated from all larger ones bsplid circles connected by solid line: first-order approximation evaluated
an exponentially large gap. Moreover, almost the whole sys¥ith 7:=1, 7K.

tem decays with the same rate, becatige1 in this regime.

The above observations are well illustrated by Fig. 2, which

shows logg(1—c;) as a function of the barrier height. The (4.7)] order approximations. As we have seen from Fig. 2,

logarithmic plot clearly demonstrates that the difference l¢o o\ harriers the numerator of the mean relaxation time is
—¢; decreases with\® exponentially so that already for | 4iher sensitive to the detailed shape of the funcitx):

A<I>35_ the dynamic:_; is single exponential in the entire timeaccordingly, the factorsy, and 7, in the denominator of

domain. The same is found to be true fag, 7,, and\17.  Eqs (3.33 and (4.7) must not be approximated by unity.
All these quantities also very rapidly approach unity withhq,gh the resulting corrections are “exponentially small”
increasing barrier heighithe corresponding results for the they do not much differ in magnitude from the “leading”

productA,7 are not shown in Fig. 2, as they are indistin- 5igaprajc corrections for low barrier heights. In particular,
guishable from those far,). . for Ad=1 the factorsy, and 7, are 0.80 and 0.71, respec-
~ Finally, we compare in Fig. 3 the exact mean relaxationgye|y. Taking this fact into account reduces the error in the
time [Eq. (3.16] to its zeroth-[Eq. (3.33] and first-[EQ.  ¢qrresponding approximations by a factor of 3. With increas-
ing barrier height the effect disappears. Asb=5, the in-
equalities 0.995 7, < o<1 usually hold; consequently, the
%, factors o and n, can safely be neglected. One may thus
Ny . conclude that in the rate regime, deviations between the nu-
2F \N . merically exact results and approximate rate expressions are
S essentially due to finite-barrier effects. As evidenced by Fig.
3, first-order corrections lead to a considerable improvement
\ N of the rate in this regime, reducing the error by factors, or
, even by orders of magnitude. The excellent agreement dem-
6k . ] onstrates the potential of the present approach. It is capable
of describing rather accurately the largest relaxation time in a
0 5 10 15 bistable potential over a broad range of barrier heights. Our
A® comparison also includes results obtained with the standard
FIG. 2. Logarithm of the deviation of the different coefficients from unity. rate expres§|o(8.39). The, latter is seen to be |E§l§t acpurate.
Solid line: y=c, with ¢, defined by Eq(3.10; dashed liney=7,, Eq. It Systematically overestimates the exact equilibration rate
(3.32; dot-dashed liney=7,, Eq.(4.9). for all A®=2.

5 10 15 20
AD

f0g40(1-y)
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B. A double well coupled to a harmonic mode 1 — T T

As a second example, we consider a model that has been 08 1
introduced for studying charge-transfer reactions in polar
solvents® It consists of a reactive coordinate(describing
the nonlinear system of inter¢sand a relaxationalhar-
monic) modey that mimics a slowly relaxing polarization. In
the limit of strong damping in both the andy-direction the
modes undergo a diffusional motion with generally different 0 ) : :
diffusion constants. In dimensionless variables the dynamics
is given by the Smoluchowski equation

HP(xy,1)=D(de *o,e®+ o e "o, e®)P(x,y,1), —
Gy - |-

with the potential of mean forc®(x,y), reading

1
cI)(le): 5

logqoferror)

U+ 5 (y=%)? y

U(x)= 3x*— ix2 (5.5 2 5 ; ,; é 10
Here, v is the coupling constanD) is a dimensionless tem- AD
perature related to the barrier height by E§.3), and the 4 =TT T T .
anisotropy parametefis the ratio of the damping constant in q Tl
the direction of system and polarization coordinatesdy, D "’_"‘*~
respectively.

Numerically exact results for the least nonvanishing ei-
genvalue of Eq.5.3) have been calculated in a previous
paper?® These are compared in Fig. 4 to the standard rate =10
formula (5.3), the asymptotic mean relaxation time expres- L L L
sion (3.33, and its value including the first-order corrections 2 4 6 8 10
(4.7. As anticipated, the standard rate expression is the AD
worst appro>.<imation to .the least nonvanishing eigenvalue. IFJIG. 4. Same as in Fig. 3 but for the two-dimensional model, Esid) and
agrees relatively well with the exact results for large params ) with y=1 and&=0.1, 1, and 10. Solid circles are for lgfl— 7,).
eters¢ andA®. Large deviations, however, are found if both
¢ and A® are small, i.e., in the case of a slow harmonic
mode. The deviations are due to finite-barrier heights. It isequilibration rate is constructed by using the standard Kram-
seen that the zeroth-order mean relaxation time formulgrs function. The derivation of this function is based on the
(3.33 is in better agreement with numerical calculations thangssumption that the potential barrier is high enough com-
the standard rate expression for all valueséoénd A®.  pared to the noise strength so that any nonlinearity in the
Finite-barrier corrections according to E@t.7) lead to a  Fokker—Planck operator can be neglected. An improved
further considerable improvement of the rate. These correqunction is constructed from a perturbation theory that gives
tions must includey; for A®<5, in which casep; cannotbe  the standard Kramers function as zeroth-order solution. In
approximated by unity. We have found that the factar  this way finite-barrier corrections to the rate are taken into
strongly depends on the barrier height and is rather insensjccount. The present formalism is as simple to implement as
tive to £ andy. Finally, we note that the errors of the various the Kramers method and still gives some additional insight.
approximate rate expressions slowly decrease for a strong@s connection to the method of eigenmode expansion has
coupling (y>1) and increase with decreasingwhile the  peen established. The validity of the theoretical predictions
overall situation with varyingy remains similar to that for has been tested by Comparing with exact numerical rates in
r=1 one- and two-dimensional potentials. In all the cases consid-

ered we obtained excellent agreement between the theory
and estimates of the rate from numerical calculations. This
demonstrates the potential of the present approach. It is ca-

In the present paper the mean relaxation time formalisnpable of describing rather accurately the largest relaxation
of Nadler and Schultéfh that had been previously used for time in a bistable system over a broad range of barrier
solving one-dimensional problems was extended to a generkights.
diffusion process in arbitrary dimensions. The utility of the
approach has been demonstrated by calculating analytical
the equilibration rate in a bistable system without manifes
detailed balance. An asymptotic formula that recovers vari-  This work was supported in part by the DireatiGen-
ous different results already available in the literature for theeral de Enseanza Superior e InvestigacioCientfica of

logo(error)
*

VI. DISCUSSION
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