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The mean relaxation time formalism introduced by Nadler and Schulten@J. Chem. Phys.82, 151
~1985!# in their generalized moment expansion method is extended to a general diffusion process in
arbitrary dimensions. The utility of the approach is demonstrated by calculating analytically the rate
of noise-induced transitions in a bistable system with an isolated transition point. The rate formula
obtained summarizes in a uniform manner much of what had been done before in this field.
Limitations of its validity are discussed and a perturbation procedure to systematically improve it is
proposed. The validity of our theoretical predictions for the rate is confirmed by comparing with
exact numerical results. ©1999 American Institute of Physics.@S0021-9606~99!50415-7#

I. INTRODUCTION

One of the longstanding problems in physical sciences
has been the development of methods to calculate rate con-
stants of equilibration process from a microscopic perspec-
tive. A small sample of this work can be found in Refs. 1–3.
For an historical review of the field, see that of Landauer.4

Finally, general reviews of the present state of the art have
recently been given by Mel’nikov5 and Hänggi, Talkner, and
Borkovec6 ~see also a collection of references in Refs. 7 and
8!. The phenomenon of escape from a locally stable state
arises in a multitude of scientific contexts, but the main mo-
tivation to study it stems from its connection to chemical
kinetics and the theory of diffusion in solids. Since the fun-
damental contribution of Kramers,9 much work has been de-
voted to the analysis of stochastic models governed by the
Fokker–Planck equation. It is a mesoscopic kinetic equation
for the distribution functionP(q,t) involving a deterministic
drift vectorG and a diffusion tensorD. The former describes
the deterministic path of the system, while the latter incor-
porates fluctuations away from this path. Here we deal with
the Fokker–Planck equation of a generic type~the summa-
tion rule over repeated indices is always implied, if not stated
otherwise!,

] tP~q,t !5LP~q,t ![] i@2Gi~q!1] jDi j ~q!#P~q,t !,
~1.1!

supplemented by the natural boundary conditions

nT
•J~P!50 for qP]R, n5normal to ]R, ~1.2!

where qT5(q1 ,...,qn)PR, ]R is the boundary ofR, and
where we have introduced the Fokker–Planck operatorL
given by Eq.~1.1! and the probability current reading

Ji~P!5Gi~q!P~q,t !2] jDi j ~q!P~q,t !. ~1.3!

In what follows we assume that a positive stationary distri-
bution P0(q)5P(q,t→`), the solution of

LP050, ~1.4!

exists. The quantity of interest is the escape rate of a system
from one metastable state into another by crossing an inter-
vening barrier.

The flexibility of the above description makes Eq.~1.1!
very attractive for both theoreticians and experimentalists.
Specific examples of this equation can be drawn from a vast
amount of different fields ranging from nuclear physics to
communication theory; accordingly, it has received a great
deal of attention in recent years~see, e.g., textbooks by
Gardiner1 and Risken2!. Since there is no unique way to
determine the escape rate, various different methods have
resulted. Here we mention specifically three rather general
approaches to this problem. The calculation of the ratio of a
stationary current at the top of the barrier to the population of
the well, as originally proposed by Kramers,9 is the method
most frequently used in the past.1,2,9–16An alternative deri-
vation is based on the mean first passage time formal-
ism.1,2,6,14,16–23Within its scope, the escape rate is deter-
mined as the inverse of the mean time after which a stochas-
tic trajectory starting within the well passes the stochastic
separatrix for the first time. Finally, a more precise definition
of the kinetic rate is adopted in the eigenmode expansion
method.2,16,24–29The separation of time scales which is typi-
cal in barrier crossing processes shows itself in a large gap in
the spectrum of the Fokker–Planck operator separating one
small nonzero eigenvalue from the rest of the spectrum. In
such a case, one can easily recognize the smallest nonzero
eigenvalue as the sum of forward and backward rates. Each
of the three approaches has its own advantages and draw-
backs. The Kramers method is more direct and simpler to use
than the two other approaches, though the latter give some
additional insight. Besides, the mean first passage time for-
malism reduces Eq.~1.1! to the stationary backward Fokker–
Planck equation supplemented by absorbing boundary con-
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ditions. For a one-dimensional process, the respective
Dirichlet problem is easily solved analytically in quadra-
tures, giving an explicit result for the rate.1,2,6,19Otherwise,
its solution is far from straightforward because absorbing
boundary conditions are known to present a special problem
for systems with more than one degree of freedom. The
eigenmode expansion method also reduces Eq.~1.1! to a
stationary problem but with the natural boundary conditions
~1.2!. Although the class of bistable processes for which the
first nonzero eigenvalue may be calculated exactly is rather
limited,2,30 the method is in a sense superior over the mean
first passage time approach. From a mathematical point of
view, diffusion problems of such a type are easier to solve
since no external boundary conditions are required to deter-
mine the escape rate.

In the present paper we propose an alternative method to
obtain the rate which combines the principal advantages of
the mentioned approaches. The basic idea is to define this
quantity in terms of an integral time characteristic, a so-
called mean relaxation time, introduced by Nadler and
Schulter31 in their generalized moment expansion method
~for applications of the method, see also Ref. 32!. The re-
mainder of the paper is organized as follows. In Sec. II the
method of Nadler and Schulten is briefly reviewed and its
connection to the method of eigenmode expansion is estab-
lished. An approximate rate expression for a general two-
state diffusion process is derived in Sec. III. The derivation is
based on the assumption that the potential barrier is high
enough compared to the noise strength so that any nonlinear-
ity in the original Fokker–Planck operator can safely be ne-
glected. In Sec. IV a perturbation approach to take into ac-
count the nonlinear contribution is outlined. In this way an
improved rate expression is derived that involves the leading
nonvanishing correction in terms of the inverse barrier
height. In Sec. V, the accuracy of our theoretical predictions
is tested by comparing with exact numerical rates in one- and
two-dimensional potentials. The final section contains some
concluding remarks.

II. PRELIMINARIES

A. Phenomenological description

As a preliminary we briefly outline the problem of inter-
est and a phenomenological approach to its solution. To
model a two-state process, the system~1.1! is assumed to
have two domains of attractionRA andRB corresponding to
metastable statesA and B, respectively, and one transition
attractor, referred to henceforth as a saddleS, which is un-
stable in the direction transverse to the stochastic separatrix
]V. Here we restrict our consideration to the case of a saddle
point qS located at the origin,qS50. The generalization to
an arbitrary unstable attractor is straightforward. It is clear
that a detailed solution of the partial differential equation is a
far from simple task not only in many dimensions but even
in one dimension. To simplify the problem, one usually as-
sumes that the dynamics of the two-state process obeys the
phenomenological linear rate equations,33

A�
kB

kA

B ~2.1!

and

] tNA~ t !52kANA~ t !1kBNB~ t !,
~2.2!

] tNB~ t !5kANA~ t !2kBNB~ t !.

Here NA(t) and NB(t) are the time-dependent nonequilib-
rium probabilities to find the system in, respectively, theA
and theB metastable state,

Ni~ t !5E
R
dqs i~q!P~q,t !, ~2.3!

defined relative to a surface separatingA andB,

s i~q!5H 1, qPRi

0, otherwise,
i 5A,B, ~2.4!

while kA and kB are the rates of escaping from these states
related to each other through the equilibrium fractions

kANA
e5kBNB

e , Ni
e5Ni~`!, i 5A,B. ~2.5!

As the system of interest is assumed to be closed,NA1NB

51, the equations can be reduced to one equation for a func-
tion given by

dN~ t !5NA~ t !2NA
e . ~2.6!

This yields a single-exponential approximation of the dy-
namics,

dN~ t !

dN~0!
5exp~2kt!, ~2.7!

which depends upon the full equilibration rate,k5kA1kB .
In this way the complicated nonstationary problem~1.1! is
reduced to a more simple problem of determining the equili-
bration rate.

B. Generalized moment expansion method

Next we briefly review the generalized moment expan-
sion method of Nadler and Schulten.31 To this end, let us
consider the equilibrium time correlation function of an ob-
servableM (t),

C~ t !5^dM ~0!dM ~ t !&5^dM exp~ tL1!dM &. ~2.8!

Without loss of generality we assume thatC(t) is normal-
ized, C(0)51. In the aboveL1 is the backward Fokker–
Planck operator

L15Gi~q!] i1Di j ~q!] i j
2 , ~2.9!

dM5M2^M &, while ^ & denotes the average with respect to
the stationary solution of the Fokker–Planck equation. The
average has the properties of an inner product on the space of
functionsdM , i.e.,

^dM ~0!dM ~ t !&5E
R
dqP0~q!dM ~q!etL1

dM ~q!.

~2.10!
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The generalized moment expansion method starts with the
Laplace-transformed correlation function

Ĉ~v!5E
0

`

dte2vtC~ t !5^dM ~v2L1!21dM & ~2.11!

and involves a two-point Pade´-approximation aroundv
5`,

Ĉ~v!52 (
m50

`

tm~21/v!m11, ~2.12!

tm5~21!mFdmC~ t !

dtm G
t50

, ~2.13!

andv50,

Ĉ~v!5 (
m50

`

t2m21~2v!m, ~2.14!

t2m215
1

m! E0

`

dttmC~ t !. ~2.15!

The expansion coefficientstm for both m.0 andm,0 are
evaluated from

tm5~21!m^dM ~L1!mdM &. ~2.16!

They contain information on the short- and long-time scales,
respectively. Since it is impossible to determine and sum
infinitely many terms in the series representations of Eqs.
~2.12! and ~2.14!, these must be truncated at some finitem
5 i andm5 j . The resulting approximation toC(t) is a su-
perposition ofn exponentials that exactly reproducei deriva-
tives of C(t) at t50 @Eq. ~2.13!# and j relaxation moments
@Eq. ~2.15!#,

C~ t !5(
l 51

n

al exp~2h l t !, ~2.17!

wherei 1 j 115n and

(
m51

n

am~hm!m5tm , 2 j <m< i . ~2.18!

The approximation includes in a balanced way both short-
and long-time effects. However, the utility of the generalized
moment expansion method appears to be restricted to one-
dimensional stochastic processes, because just in that case
the moments of the backward Fokker–Planck operatorL1

are available analytically.31,32

III. MEAN RELAXATION TIME FORMALISM

To proceed further we note that by the Onsager regres-
sion hypothesisdN(t) decays to equilibrium in the same
fashion as does the equilibrium time correlation function

C~ t !5
^dN~0!dN~ t !&

^dN~0!dN~0!&
, ~3.1!

i.e.,33

C~ t !5dN~ t !/dN~0!. ~3.2!

Consequently, by Eq.~2.7! C(t);exp(2kt) at long times
when the phenomenology is valid. Criteria for the validity of
Eq. ~2.2! will be discussed in Sec. V of the present paper~see
also Ref. 34!. Here we only note that the dynamics of physi-
cal and chemical processes is often not known in detail. It is
frequently the case that the largest relaxation time is the sole
kinetic quantity obtainable from experiments. Therefore ef-
fective methods for its evaluation is one of the most funda-
mental problems in physics and chemistry.

The method we outline below is an extension of the
elegant formalism of Nadler and Schulten to a general two-
state Fokker–Planck process. As we are interested in the
long-time regime where the decay is unconditionally single
exponential, we limit ourselves ton51, i.e.,

C~ t !5exp~2t/t21!. ~3.3!

In that event, the long-time rate is given by the inverse of the
so-called mean relaxation time31 reading~from here on, we
shall drop the index21 to keep the notation simple!

t5E
0

`

dtC~ t !. ~3.4!

Interpretations of this quantity are the following. Should one
think the decay be single exponential, as is the case for~2.7!,
thent215k, and therefore

kA5NB
et21, kB5NA

et21. ~3.5!

Furthermore, if one expands the Green function of the
Fokker–Planck equation

P~q,tuq0![etLd~q2q0!5Pm
1~q0!Pm~q!e2lmt, m>0

~3.6!

in terms of the complete set of eigenfunctions~below sum-
mation over the indexi is not implied!,

LPi52l i Pi , L1Pi
152l i Pi

1 ,

E
R
dqPi

1~q!Pj~q!5d i j , ~3.7!

one obtains

C~ t !5cm exp~2lmt !, m>1, ~3.8!

and, accordingly,

t5cmlm
21 ~3.9!

with

ci5~NA
eNB

e !21E
RA

dqPi~q!E
RA

dqPi
1~q!P0~q!. ~3.10!

Here the expansion coefficients satisfy 0<cm,1, Scm51. It
is clear that the rate description is meaningful if

12c1!1, ~3.11!

in which case

l15t21. ~3.12!

The validity of the approximate relations~3.3! and ~3.12!
will be discussed in Sec. V of the present paper.
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On the other hand, by Eq.~2.16! the formal expression
for the mean relaxation time reads

t5~NA
eNB

e !21E
R
dqdN~q!P0~q!F~q!, ~3.13!

wheredN(q)5sA(q)2NA
e andF(q) is determined from

L1F~q!52dN~q!, ~3.14!

on the space of functions orthogonal toP0 ,

E
R
dqP0~q!F~q!50. ~3.15!

In case the escape dynamics entails a one-dimensional
Fokker–Planck process in the interval@a,b#, Eq. ~3.14! can
be readily solved exactly to give31

t5~NA
eNB

e !21E
a

b

dx@D~x!P0~x!#21H E
a

x

dydN~y!P0~y!J 2

.

~3.16!

Yet another special case that allows the explicit expression
for the mean relaxation time includes diffusive problems in a
spherically symmetric potential, in a spherically symmetric
domain. Other than that there is no closed form solution to
Eq. ~3.14!.

Here we deal with the problem in the limit of small
diffusion coefficients~or large barriers!

Di j ~q!5«D̄ i j ~q!, «!1, ~3.17!

where the noise strength« measured in units of the barrier
height is assumed to be small. In such a case, if the system
starts withinRA it will typically first approach the metastable
stateA and stay within its neighborhood for a long-timeT
until an occasional fluctuation drives the system to the prod-
uct stateB. Accordingly, we may seek the functionF(q) in
the form

F~q!5T f~q!, ~3.18!

where the constant partT is obtained by multiplying~3.14!
by P0 and integrating overRA . This yields

T52NA
eNB

eF E
RA

dqP0~q!L1 f ~q!G21

, ~3.19!

leading us finally to

t52F E
RA

dqP0~q!L1 f ~q!G21E
RA

dqP0~q! f ~q!.

~3.20!

The above formula is formally exact in the sense that no
approximation has been made to derive it. Unfortunately, it
is still too complicated to use for quantitative calculations.
Thus approximation schemes must be invoked.

In order to construct an approximate solution we use the
fact thatT is exponentially large,T;exp(«21), and hence the
inhomogeneity2dN(q)/T may safely be neglected in Eq.
~3.14!, i.e.,

L1 f 50. ~3.21!

For vanishing diffusion the resulting first-order partial differ-
ential equation has only solutions that are piecewise constant
on the domains of attraction of the deterministic equations of
motion. We choose these values as beingNB

e and2NA
e , such

that the resulting function is orthogonal to the stationary so-
lution. The presence of small diffusive terms inL1 changes
the behavior off only near the deterministic separatrix where
the steplike behavior is smoothed out. Since the expression
for the mean relaxation time, Eq.~3.13!, contains the station-
ary distribution as a weight, only the region of the saddle
point is of importance for sufficiently small«. Hence we may
split the backward operator into a leading contributionL0

1

and a correctionL1
1 reading

L15L0
11L1

1 , ~3.22!

where

L0
15Bi

jqj] i1D̃ i j ] i j
2 ,

Bi
j5] jGi~q!uq5qS, D̃ i j 5Di j ~qS! ~3.23!

describes the linear dynamics near the saddle and

L1
15DGi~q!] i1DDi j ~q!] i j

2 ,

DGi~q!5Gi~q!2Bi
jqj , DDi j ~q!5Di j ~q!2D̃ i j

~3.24!

the anharmonic correction. When writing Eq.~3.24! we have
taken into account the fact that for«→0 the saddle point
coincides with a stationary point of the drift vector, i.e.,
G(qS)50. In passing we note that rescaling the coordinates
qi by the square root of the noise strength renders the leading
contributionL0

1 independent of« and the correctionL1
1 pro-

portional to the noise strength. Consequently, the nonlinear-
ity L1

1 may be considered as a small perturbation. A pertur-
bation series for the functionf reads16,23,28

f 5 f 01 f 11 f 21¯ . ~3.25!

NeglectingL1
1 completely we arrive at

L0
1 f 050. ~3.26!

Within this approximation the solution of Eq.~3.21! reads

f 05N2FN11A2/pE
0

br

dsexp~2s2/2!G , ~3.27!

whereN1 andN2 are constants of integration and

b5Am/Drr , r 5w•q. ~3.28!

In the above,Drr denotes ther,r-component of the diffusion

Drr 5wTD̃w, ~3.29!

while m is the positive eigenvalue of the matrixB with the
associated eigenvectorw, i.e.,

Bi
jwi5mwj . ~3.30!

The chain of approximations made to construct~3.27! con-
stitutes the essence of the standard saddle point approxima-
tion method.11,15,20,27,28 One of the disadvantages of the
method is that the resulting rate expression is asymptotic in
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the barrier height. A way to improve it by taking into ac-
count finite-barrier corrections will be discussed in Sec. IV
of the present paper.

In the remainder of this section we restrict our discus-
sion to the lowest order contributionf 0 . It is not hard to see
that the constantN2 involved in f 0 can be set to unity with-
out loss of generality,N251. Next, the constantN1 defined
by Eq.~3.15! is easily evaluated explicitly using the fact that
P0 has sharp maxima in the vicinity of the stable attractorsA
andB. There, the approximate solutionf 0 is nearly constant.
Consequently, the constantN1 is given by

N15~NB
e2NA

e !a0 . ~3.31!

Hereby the vectorw was assumed to be oriented so thatr is
positive atA and negative atB. The numerator of Eq.~3.20!
can also be evaluated in the same manner to yield

E
RA

dqP0~q! f ~q!52h0NA
eNB

e . ~3.32!

Usually, one argues that the constantsa0 andh0 appearing
in the above equations are unity up to exponentially small
corrections in the barrier height, and therefore can be ne-
glected. We will see in the following that for low barrier
heights these corrections also become important.

Thus, using only the lowest order approximationf 0 , the
mean relaxation time formalism leads to the following
equilibration rate:

k052~2h0NA
eNB

e !21E
RA

dqP0~q!L1
1 f 0~q!, ~3.33!

where we have employed Eq.~3.26!. The above formula re-
produces various different rate expressions available in the
literature for multidimensional Fokker–Planck
processes.9–11,14,15,17,21In order to illustrate this statement, let
us explicitly evaluate the numerator of Eq.~3.33!. After a
partial integration the integral entering the numerator reads

I 5E
]RA

dSi@Ji~P0! f 01P0Di j ] j f 0#, ~3.34!

wheredS denotes the oriented surface element on]RA . It
should be noted here that the stationary probability current
J(P0) does not in general vanish. Asf 0 is practically con-
stant away from the saddle, the surface integral overf 0J(P0)
vanishes. Furthermore, the main contribution to the surface
integral over the second term comes from the neighborhood
of the saddle where only the derivative with respect tor
contributes while the other derivatives are negligible. There-
fore, we may approximate the separatrix in the vicinity of
that point by its tangential hyperplaner 50,

I'E
r 50

dSr P0Drr ] r f 052bDrrA2/pE
r 50

dSr P0 ,

~3.35!

where the minus sign arises from the opposite directions of
dSi and]r /]qi . Introducing ad-function into the integral on
the right of ~3.35! we eventually arrive at

k05
bDrr

h0NA
eNB

eA2p
E

R
dqP0~q!d~w•q!. ~3.36!

Before proceeding further three remarks are in order.
First, we note that Eqs.~3.33! and ~3.36! do not necessarily
coincide with each other. The difference may arise due to
exponentially small corrections introduced by Eq.~3.35!.
Second, when applied to the Kramers problem and its gen-
eralization to time-dependent friction, Eq.~3.33! agrees with
rate formulas derived by Dekker25 and Talkner and Braun,21

respectively. Third, all the above-mentioned rate formulas
presuppose the knowledge of the stationary solution. Since
P0 is positive, we may write

P0~q!5H E
R
dq exp@2F~q!#J 21

exp@2F~q!#, ~3.37!

whereF~q! is a so-called generalized potential. The potential
is easily obtained in closed form@by simple integration of
Eq. ~1.4!# when the underlying dynamics obeys detailed
balance.1,2 Otherwise, no general method exists for comput-
ing P0 ,35,36and therefore the escape dynamics must be stud-
ied in each particular case separately.36,37 This makes estab-
lishing general properties ofk a quite difficult task, which
lies outside the scope of the present paper anyway.

Here we assume that the generalized potential is known.
In the weak noise limit, Eq.~3.17!, F~q! is the Lyapunov
function of the deterministic dynamics; consequently, it must
be minimal on the stable attractors and maximal on the
saddle of the deterministic dynamics. Assuming that all these
attractors are point attractors and expandingF~q! in their
neighborhood as

F~q!5FM1w i j
Mqiqj1O~ uqu3!, M5A,B,S, ~3.38!

allows one to perform all the integrals appearing in Eq.
~3.36! analytically. This leads in a straightforward way~for
more details, see the Appendix! to a rate formula of the
standard form,14,15,20,27

kst5
m

2pAudetwSu
@AdetwA exp~FA2FS!

1AdetwB exp~FB2FS!#. ~3.39!

Some other approximate rate expressions available in the
literature for particular Fokker–Planck processes9–11 follow
from Eq. ~3.39! in a very natural fashion.

Finally, to conclude this section we mention two draw-
backs of the above steepest-descent approximation. First of
all we note that using Eq.~3.38! implies the differentiability
of the generalized potential. The latter, however, is not a
generic case. In many nontrivial examples the generalized
potential shows singularities.35 Second, when deriving Eq.
~3.39! we have neglected in the series~3.38! terms of order
higher thanuqu2. This neglect is quite severe and introduces
a large error that has to be compensated for by a large po-
tential barrier.
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IV. FINITE-BARRIER CORRECTIONS

As we already noted, the method used for approximately
solving Eq.~3.21! is asymptotic. It rests on the assumption
that the barrier height measured in units of the noise intensity
is sufficiently large not only in order that a rate description is
meaningful but, additionally, that on the diffusional length
scale at the saddle any nonlinearity can be neglected. This
condition, though, is not always met in realistic barrier
crossing processes. The problem of finite-barrier corrections
has been studied actively in recent years and many different
methods have been suggested for their evalu-
ation.16,23,24,26–28,38,39However, the utility of the results ob-
tained so far is restricted to particular~one- and two-
dimensional! Fokker–Planck equations. The aim of this sec-
tion is to outline a general approach to the problem. An
obvious way to improve the present solution is to take into
account the nonlinearityL1

1 @Eq. ~3.24!# fully neglected in
the derivation of Eq.~3.27!. Based on the series representa-
tion ~3.25!, a perturbation theory with respect to the nonlin-
earity L1

1 can be performed, leading to a hierarchy of inho-
mogeneous equations of the form16,28

L0
1 f m52L1

1 f m21 , m>1, ~4.1!

with f 0 being determined by~3.27!. Here we limit ourselves
to first order in the perturbation

L0
1 f 152L1

1 f 0 . ~4.2!

Then, splitting off a Gaussian function fromf 1 ,

f 1~q!5b~2/p!1/2exp~2b2r 2/2!h~q!, ~4.3!

and using the explicit expressions~3.27! and ~3.24! for f 0

andL1
1 , respectively, we arrive at the following equation for

the functionh:

~L0
122rb2wiD̃i j ] j2m!h5rb2wiDDi j wj2DGiwi .

~4.4!

The latter can be solved systematically by expandingh,
DGi , andDDi j ,

h5H1Hiqi1Hi j qiqj1Hi jkqiqjqk1O~ uqu4!,

DGi5Bi
jkqjqk1Bi

jkmqjqkqm1O~ uqu4!, ~4.5!

DDi j 5Di j
k qk1Di j

kmqkqm1O~ uqu3!,

and equating like powers ofqi . This results in a set of alge-
braic equations for the coefficientsH, Hi , Hi j , and Hi jk

reading

~2Bi
j24b2wmD̃miwj2md i j !Hik5b2Dim

k wiwmwj2Bi
jkwi ,

H5~2/m!D̃ i j Hi j ,

~4.6!~3Bi
j26b2wmD̃miwj2md i j !Hikp

5
b2

2
Dim

kpwiwmwj2
1

6
wiBi

jkp ,

~md i j 12b2wmD̃miwj2Bi
j !Hi56D̃miHmi j .

Once the first-order perturbation correction is known, the
mean relaxation time formalism gives the following im-
proved expression for the equilibration rate:

k152~2h1NA
eNB

e !21E
RA

dqP0L1
1 f 1 , ~4.7!

where we have usedL0
1 f 050 and the defining Eq.~4.2! for

f 1 . After a partial integration this rate can be rewritten in the
form

k15~h0 /h1!k02~2h1NA
eNB

e !21E
]RA

dSi P0Di j ] j f 1 .

~4.8!

Hereby we introduced the parameterh1 ,

h15~2NA
eNB

e !21E
RA

dqP0~ f 01 f 1!

5h01~2NA
eNB

e !21E
RA

dqP0f 1 , ~4.9!

which is unity up to exponentially small corrections in the
barrier height. As will be shown in the next section, these
corrections are important for low barrier heights.

V. APPLICATIONS

A. A one-dimensional model

Since exact results for the mean relaxation time are only
available in one dimension, we first consider a typical model
given by

] tP~x,t !5]x~x32x1D]x!P~x,t !. ~5.1!

The dynamics is that of a Brownian particle moving in the
symmetric bistable potential

F~x!5
~x221!2

4D
, ~5.2!

in the large damping limit. The height of the potential bar-
rier, DF5F(0)2F(61), is related to the noise strengthD
via

DF5~4D !21. ~5.3!

Our aim is to test the validity of the rate description@Eqs.
~2.7! and~3.12!#, as well as the utility of the various approxi-
mations discussed above for the escape rate.

The mean relaxation time of the Fokker–Planck process
~5.1! was calculated in terms of Eq.~3.16! by numerical
quadratures. Numerically exact results for the first nonzero
eigenvaluel1 and the equilibrium time correlation function
C(t) were obtained by a basis set method described earlier.29

In Fig. 1 these results are compared to the single exponential
approximation C(t)5exp(2kt) taken with k5l1 and k
51/t. The sharp minima obtained withk51/t mean that the
corresponding approximation crosses the true correlation
function atl1t51. The calculation clearly demonstrates that
depending on the barrier height there are two different
mechanisms determining the equilibration process. For low
barrier heights (DF,5) the system belongs to the relax-
ational regime. In this regime the equilibration rate is not
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very small, while the coefficientc1 noticeably deviates from
unity. Accordingly, the long-time behavior is determined by
a set of low-lying eigenvalues. This indicates that the rate
description as a whole loses its meaning for too low barriers.
It is remarkable, however, that even for a low barrier (DF
;1) a large share of the system (c1;0.9) decays with one
and the same ratel1 and therefore the error made by using
the single exponential approximation~2.7! is relatively small
~just of order 10% as seen from Fig. 1!. On the contrary, at
high barriers the system belongs to the rate regime. In that
even the long-time behavior is characterized by a least non-
vanishing eigenvalue that is separated from all larger ones by
an exponentially large gap. Moreover, almost the whole sys-
tem decays with the same rate, becausec1'1 in this regime.
The above observations are well illustrated by Fig. 2, which
shows log10(12c1) as a function of the barrier height. The
logarithmic plot clearly demonstrates that the difference 1
2c1 decreases withDF exponentially so that already for
DF*5 the dynamics is single exponential in the entire time
domain. The same is found to be true forh0 , h1 , andl1t.
All these quantities also very rapidly approach unity with
increasing barrier height~the corresponding results for the
product l1t are not shown in Fig. 2, as they are indistin-
guishable from those forc1!.

Finally, we compare in Fig. 3 the exact mean relaxation
time @Eq. ~3.16!# to its zeroth-@Eq. ~3.33!# and first- @Eq.

~4.7!# order approximations. As we have seen from Fig. 2,
for low barriers the numerator of the mean relaxation time is
rather sensitive to the detailed shape of the functionf (x);
accordingly, the factorsh0 and h1 in the denominator of
Eqs. ~3.33! and ~4.7! must not be approximated by unity.
Though the resulting corrections are ‘‘exponentially small’’
they do not much differ in magnitude from the ‘‘leading’’
algebraic corrections for low barrier heights. In particular,
for DF51 the factorsh0 andh1 are 0.80 and 0.71, respec-
tively. Taking this fact into account reduces the error in the
corresponding approximations by a factor of 3. With increas-
ing barrier height the effect disappears. ForDF*5, the in-
equalities 0.995<h1,h0,1 usually hold; consequently, the
factors h0 and h1 can safely be neglected. One may thus
conclude that in the rate regime, deviations between the nu-
merically exact results and approximate rate expressions are
essentially due to finite-barrier effects. As evidenced by Fig.
3, first-order corrections lead to a considerable improvement
of the rate in this regime, reducing the error by factors, or
even by orders of magnitude. The excellent agreement dem-
onstrates the potential of the present approach. It is capable
of describing rather accurately the largest relaxation time in a
bistable potential over a broad range of barrier heights. Our
comparison also includes results obtained with the standard
rate expression~3.39!. The latter is seen to be least accurate.
It systematically overestimates the exact equilibration rate
for all DF>2.

FIG. 1. Logarithm of the relative error@~approximate!-~exact!#/~exact! in the
equilibrium time correlation function@Eq. ~3.1!# for DF51 and 6 made by
using the single exponential approximation, Eq.~2.7! with k5l1 ~dashed
lines! andk51/t ~solid lines!.

FIG. 2. Logarithm of the deviation of the different coefficients from unity.
Solid line: y5c1 with c1 defined by Eq.~3.10!; dashed line:y5h0 , Eq.
~3.32!; dot-dashed line:y5h1 , Eq. ~4.9!.

FIG. 3. Relative errors in the inverse mean relaxation time made by using
different approximate expressions. Dot-dashed line: standard rate formula
kst , Eq. ~3.39!; dashed line: zeroth-order approximationk0 , Eq. ~3.33!;
open circles connected by dashed line: zeroth-order approximation evalu-
ated withh051, h0k0 ; solid line: first-order approximationk1 , Eq. ~4.7!;
solid circles connected by solid line: first-order approximation evaluated
with h151, h1k1 .
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B. A double well coupled to a harmonic mode

As a second example, we consider a model that has been
introduced for studying charge-transfer reactions in polar
solvents.40 It consists of a reactive coordinatex ~describing
the nonlinear system of interest! and a relaxational~har-
monic! modey that mimics a slowly relaxing polarization. In
the limit of strong damping in both thex- andy-direction the
modes undergo a diffusional motion with generally different
diffusion constants. In dimensionless variables the dynamics
is given by the Smoluchowski equation

] tP~x,y,t !5D~]xe
2F]xe

F1j]ye
2F]ye

F!P~x,y,t !,
~5.4!

with the potential of mean forceF(x,y), reading

F~x,y!5
1

D FU~x!1
g

2
~y2x!2G ,

U~x!5 1
4 x42 1

2 x2. ~5.5!

Here,g is the coupling constant,D is a dimensionless tem-
perature related to the barrier height by Eq.~5.3!, and the
anisotropy parameterj is the ratio of the damping constant in
the direction of system and polarization coordinatesx andy,
respectively.

Numerically exact results for the least nonvanishing ei-
genvalue of Eq.~5.3! have been calculated in a previous
paper.28 These are compared in Fig. 4 to the standard rate
formula ~5.3!, the asymptotic mean relaxation time expres-
sion ~3.33!, and its value including the first-order corrections
~4.7!. As anticipated, the standard rate expression is the
worst approximation to the least nonvanishing eigenvalue. It
agrees relatively well with the exact results for large param-
etersj andDF. Large deviations, however, are found if both
j and DF are small, i.e., in the case of a slow harmonic
mode. The deviations are due to finite-barrier heights. It is
seen that the zeroth-order mean relaxation time formula
~3.33! is in better agreement with numerical calculations than
the standard rate expression for all values ofj and DF.
Finite-barrier corrections according to Eq.~4.7! lead to a
further considerable improvement of the rate. These correc-
tions must includeh1 for DF,5, in which caseh1 cannot be
approximated by unity. We have found that the factorh1

strongly depends on the barrier height and is rather insensi-
tive to j andg. Finally, we note that the errors of the various
approximate rate expressions slowly decrease for a stronger
coupling ~g.1! and increase with decreasingg while the
overall situation with varyingg remains similar to that for
g51.

VI. DISCUSSION

In the present paper the mean relaxation time formalism
of Nadler and Schulten31 that had been previously used for
solving one-dimensional problems was extended to a general
diffusion process in arbitrary dimensions. The utility of the
approach has been demonstrated by calculating analytically
the equilibration rate in a bistable system without manifest
detailed balance. An asymptotic formula that recovers vari-
ous different results already available in the literature for the

equilibration rate is constructed by using the standard Kram-
ers function. The derivation of this function is based on the
assumption that the potential barrier is high enough com-
pared to the noise strength so that any nonlinearity in the
Fokker–Planck operator can be neglected. An improved
function is constructed from a perturbation theory that gives
the standard Kramers function as zeroth-order solution. In
this way finite-barrier corrections to the rate are taken into
account. The present formalism is as simple to implement as
the Kramers method and still gives some additional insight.
Its connection to the method of eigenmode expansion has
been established. The validity of the theoretical predictions
has been tested by comparing with exact numerical rates in
one- and two-dimensional potentials. In all the cases consid-
ered we obtained excellent agreement between the theory
and estimates of the rate from numerical calculations. This
demonstrates the potential of the present approach. It is ca-
pable of describing rather accurately the largest relaxation
time in a bistable system over a broad range of barrier
heights.

ACKNOWLEDGMENTS

This work was supported in part by the Direccio´n Gen-
eral de Ensen˜anza Superior e Investigacio´n Cientı́fica of

FIG. 4. Same as in Fig. 3 but for the two-dimensional model, Eqs.~5.4! and
~5.5! with g51 andj50.1, 1, and 10. Solid circles are for log10(12h1).

7140 J. Chem. Phys., Vol. 110, No. 15, 15 April 1999 A. Drozdov and J. Brey



Spain~Project No. PB96-534!. Financial support of the Min-
istry of Education, Science, and Culture of Japan is also
greatly appreciated.

APPENDIX

The aim of the Appendix is to show that using the
steepest-descent approximation reduces Eq.~3.36! to Eq.
~3.39!. Indeed, with~3.38! all the integrals involved in~3.36!
become Gaussian and therefore are easily performed analyti-
cally. This gives the standard rate expression divided by the
square root of the factor

2b2w•~wS!21w, ~A1!

with (wS)21 being the inverse of the matrixwS. Hencefor-
ward, we shall drop the superscriptS for notational simplic-
ity. In conformity with the problem under study the constant
matrix w is assumed to have one negative andn21 positive
eigenvalues. In leading order in« it is determined from the
equation20,27

wB1BTw12wDw50, ~A2!

which can be rewritten in the form

w21BT1Bw2112D50. ~A3!

Multiplying the last equation byw from the right and by its
transposewT from the left, one obtains with Eqs.~3.28!,
~3.29!, and~3.30!,

2b2w•w21w51, ~A4!

from which the desired result immediately follows.
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