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Abstract: The presence of a distribution of transition temperatures (DTT) is ubiquitous in materials
science. It is common to ascribe deviations from theoretical pure-phase behavior to this fact. To adapt
the different pure phase models to systems with a DTT, the parameters of such distribution must be
known or at least estimated. In this review, the different sources for the existence of such distributions
and their effects on magnetothermal properties are summarized. In addition, different models
proposed to extract the parameters of the corresponding DTT are discussed and extended, starting
from Weiss model, to account for other phenomenologies. Experimental results on amorphous
Fe-Nb-B and intermetallic MnCo(Fe)Ge systems are also reported.

Keywords: magnetic transitions; magnetostructural transitions; magnetoelastic transitions; distribution of
transition temperatures

1. Introduction

Magnetic behavior of materials is diverse. Despite the existence of different magnetic orders,
in this review, we focus on the transition between ferromagnetic (FM) and paramagnetic (PM) phases.
For those systems where the coupling between magnetic and crystalline structure can be neglected,
the transition from a low temperature ordered FM phase to a high temperature disordered PM
phase is smooth. Magnetization at zero field drops to zero at a fixed temperature independently
of the heating/cooling rate (i.e., the transition is not thermally activated). In fact, FM phase only
applies in a certain temperature range and, if there is neither structural changes nor magnetoelastic
coupling, a second-order phase transition (SOPT) takes place at the Curie temperature, TC. Above this
temperature, the exchange coupling is overcome by the thermal energy. To describe this magnetic
transition, two limit models can be assumed [1]: long range, mean field (MF) approach (Weiss molecular
field model), and short range, first neighbors approach (Heisenberg model).

Even in the case that the magnetic transition is not associated with a structural phase transition,
coupling between magnetic and crystalline structures cannot always be neglected. In the case of
magnetoelastically driven transitions, such as occurs for La(Fe,Si)13 intermetallic [2], coupling between
the cell volume and the molecular field constant of Weiss model yielded the development of Bean
and Rodbell (BR) model [3]. This model successfully describes a continuous change from SOPT to
first-order phase transition (FOPT) as the coupling parameter increases from a low temperature ordered
FM to a disordered high temperature PM phase.

Magnetostructural transitions, such as those occurring in magnetic Heusler alloys [4], imply the
reversible (although generally hysteretic) structural change from a low entropy, low symmetry, and low
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temperature phase (i.e., martensite) to a high entropy, high symmetry, and high temperature phase (i.e.,
austenite). Unlike the former described transitions, magnetostructural ones present a latent heat of the
transformation and can be thermally activated (i.e., the transition temperature can be shifted with the
heating or cooling rate) [5]. The magnetic nature of the austenite and martensite phases is diverse. It
is possible to find both magnetostructural transformations: from a FM martensite to a PM austenite
(implying an abrupt decrease to zero of the magnetization at the structural transition [6,7]) or from a
PM martensite to a FM austenite (implying an abrupt increase from zero of the magnetization at the
transition [8–10]). Moreover, transition from FM martensite to FM austenite can be also found [11],
implying a step change in the magnetization. Transitions from PM martensite to PM austenite,
although possible, are not of interest in our study frame as the zero-field magnetization is null for both
structural phases.

Despite the careful preparation of the experimental samples, different factors (inhomogeneities,
compositional gradients, crystal/particle size distributions, etc.) can lead to the appearance of non-single
pure phase transitions. Deviations from the theoretical single-phase behavior can be corrected assuming
a distribution of transition temperatures (DTT) in order to obtain a more realistic description of the
behavior of the samples.

In Section 2, the main sources affecting Curie and magnetostructural transition temperatures are
discussed. The presence of inhomogeneities in these sources (composition, crystal size, etc.), which can
lead to the appearance of a DTT, is discussed.

Section 3 describes the effects produced by the existence of such DTT as well as some deviations
from the theoretical predictions of single-phase models.

Section 4 describes different models used to extract the parameters of the DTT. Particularly, we
extend one method recently proposed by the authors [12] to describe SOPT under mean field (MF)
approach to account for the different types of transitions commented above. To describe systems out of
MF frame, we use Curie transitions described by Arrott–Noakes (AN) equation of state (EOS) [13]. To
describe magnetoelastic transitions, BR model is used. Finally, a simple model is developed to roughly
describe magnetostructural transitions.

Section 5 presents some new experimental data to test the proposed model.
Finally, the main conclusions derived from this study are summarized.

2. Sources for a Distribution of Transition Temperatures

2.1. Compositional Dependence of Transition Temperatures

Compositional heterogeneity is the most intuitive source for the presence of a DTT through the
compositional dependence of the transition temperatures (both Curie and magnetostructural ones). The
close link between composition and temperature at which the transition occurs naturally yields a DTT
when a certain gradient or heterogeneous compositional distribution exists. To estimate the importance
of this source, as an example for SOPT, we can explore the dependence of Curie temperature TC, in the
frame of the Weiss model [1]:

TC =
gJµB(J + 1)λMS

3kB
=

nVλµe f f
2

3kB
(1)

where gJ is the Landé factor; µB is the Bohr magneton; J is the total angular momentum of the
magnetic atom; MS is the saturation magnetization; nV is the number density of magnetic atoms;
µe f f = gJ

√
J(J + 1)µB is their effective magnetic moment; kB is the Boltzmann constant; and λ is

the molecular field constant (following Blundell’s book notation [1], λ has the same units as µ0, the
permeability of vacuum). The λ parameter is related to an effective exchange interaction, Jex. Assuming
a near neighbors approach:

λ =
2zJex

(
gJ − 1

)2

nV gJ2µB2 (2)
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where z is the number of near neighbors to which the atom is exchange coupled. In the case of transition
metals ions, for which the orbital component of the angular moment is quenched, Equation (2) reduces
to:

λ =
zJex

2nVµB2 (3)

The general case gives us a direct relation between TC and the number of near neighbors,
the exchange constant and the square of the effective magnetic moment:

TC =
2zJex

(
gJ − 1

)2
µe f f

2

3kBgJ2µB2 =
2zJex

(
gJ − 1

)2
J(J + 1)

3kB
(4)

where
(
gJ − 1

)2
J(J + 1) is de Gennes factor. TC of isostructural compositional series of rare earth (RE)

compounds follows a linear trend with de Gennes factor [14,15].
Table 1 collects the experimental magnetic parameters for FM pure metals [1,16] and the effective

Jex/kB from Weiss model. Despite this apparently clear picture, the presence of ferromagnetism is far
from being easy to explain. In fact, calculated values of Jex from direct exchange interaction are much
lower than the experimental ones. The indirect exchange transmitted by the conduction electrons,
as described by Ruderman, Kittel, Kasuya, and Yosida [1] (RKKY mechanism), can account for the
magnetism in rare earths for which the magnetic moment is due to well localized f electrons and
conduction electrons transmit the exchange [16]. However, the partially localized/itinerant nature
of the d electrons responsible for the magnetic moment in transition metals adds complexity to the
problem [17]. In any case, for metallic systems, the oscillatory dependence of Jex with the atomic
separation in metallic systems derived from RKKY interaction must be considered. In addition,
magnetic moments of the atoms depend on composition (e.g., in binary systems [18]).

Table 1. Magnetic properties of FM pure metals [1,16] and estimated Jex/kB from Weiss model.

Ferromagnet TC(K) Magnetic Moment (µB) Crystal Structure Jex/kB(K)

Fe 1043 2.22 bcc 159
Co 1394 1.715 hcp 237
Ni 631 0.605 fcc 862
Gd 293 7.98 hcp 2.3
Tb 220 9.77 hcp 2.6
Dy 89 10.83 hcp 1.5
Ho 20 11.2 hcp 0.5
Er 20 9.9 hcp 0.9
Tm 32 7.61 hcp 3.4

In the case of RE-based amorphous alloys, TC increases as the amount of RE increases and it
is maximum for Gd (see Figure 1a). For transition metal-based systems, as is found in Fe-based
amorphous alloys, TC is easily tunable by addition of non-magnetic or magnetic elements. When Co
is partially substituted for Fe, a general increase of the Curie temperature is observed [19]. Despite
the lower µe f f for Co or Ni than for Fe, a stronger Jex is inferred for both Co and Ni pure systems.
In the case of non-magnetic atom substitution (see Figure 1b), TC decreases as Fe content increases in
the alloy. Despite the larger number of magnetic moments, exchange is affected by the decrease in the
distance between Fe atoms.
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of the RE for three different families: RE55Co20Al25 [20,21], RE65Fe20Al15 [22,23], and RE70Fe30 [24,25]. (b) ஼ܶ  of Fe-B-Zr amorphous alloys as a function of the Fe content (data taken from [26–28] and 
supplemental material in [29]). 

Other indirect exchange mechanism occurs in oxides. For example, double exchange in 
La1-xCaxMnO3 is determined by the presence of two different valences in Mn ions [30]. However, there 
is no clear correlation but a wide spread of ஼ܶ data with respect to the fraction of Mn4+ ions (see 
Figure 2). ஼ܶ  in these systems can be roughly, but better, correlated with the tolerance factor, ݐ, 
which relates the average ratios of the different ion sites as [31]: ݐ = 〈ܴ௅௔〉 + ܴை√2(〈ܴெ௡〉 + ܴை) (5)

where 〈ܴ௅௔〉, ܴை, and 〈ܴெ௡〉 are the radii of the ions at lanthanum, oxygen, and manganese sites, 
respectively. However, the different ways to compositionally tailor this transition make this 
correlation just a rude approximation. Generally, substitution of other transition element for Mn 
yields a deterioration of the double exchange mechanism and thus a decrease of ஼ܶ [31].  

 

Figure 2. ஼ܶ  transition temperature as a function of the Mn+4 fraction in La-manganites (data taken 
from supplemental material of [29] and [31–37]). 

Figure 1. (a) TC of rare earth (RE)-based amorphous alloys as a function of the average atomic number
of the RE for three different families: RE55Co20Al25 [20,21], RE65Fe20Al15 [22,23], and RE70Fe30 [24,25].
(b) TC of Fe-B-Zr amorphous alloys as a function of the Fe content (data taken from [26–28] and
supplemental material in [29]).

Other indirect exchange mechanism occurs in oxides. For example, double exchange in
La1-xCaxMnO3 is determined by the presence of two different valences in Mn ions [30]. However,
there is no clear correlation but a wide spread of TC data with respect to the fraction of Mn4+ ions (see
Figure 2). TC in these systems can be roughly, but better, correlated with the tolerance factor, t, which
relates the average ratios of the different ion sites as [31]:

t =
〈RLa〉+ RO

√
2(〈RMn〉+ RO)

(5)

where 〈RLa〉, RO, and 〈RMn〉 are the radii of the ions at lanthanum, oxygen, and manganese sites,
respectively. However, the different ways to compositionally tailor this transition make this correlation
just a rude approximation. Generally, substitution of other transition element for Mn yields a
deterioration of the double exchange mechanism and thus a decrease of TC [31].
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from supplemental material of [29] and [31–37]).
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Magnetoelastic transition occurring for La(Fe,Si)13 phase is strongly dependent on the Si content [2,38,39].
Despite the order character of the transition (FOPT for low Si content and SOPT for high Si content [38]),
an almost linear correlation is followed with this parameter (see Figure 3). The slope of this linear
fitting yields a value of ~4 K change per at % of Si. In this family of alloys, further tailoring of the
transition is obtained by substitution of other elements such Co for Fe (increasing TC [40]) or other RE
for La (decreasing TC [41]) or by addition of interstitial atoms, mainly H [41] (increasing of TC).
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Figure 3. TC transition temperature as a function of the Si content in La(Fe,Si)13 system (data taken
from supplemental material in [29] and references therein).

In the case of magnetostructural transitions of Heusler alloys, the transition temperature, Tt, from
martensite to austenite phase is much more sensitive to the composition than the TC of the high and
low temperature phases. Figure 4 shows different transition temperatures as a function of the number
of electrons per atom in the outer shells for the different families of Heusler alloys. It is observed
that the slope of change in martensitic transformation is several times larger than the change in the
Curie temperature of the austenitic phase, TA

C . In fact, as an example, whereas TA
C is almost unaffected

when composition changes from Ni49.7Mn36.2In14.1 to Ni49.8Mn35.0In15.2, magnetostructural transition
decreases ~100 K. This strong dependence in Mn/In ratio is even enhanced in Ni(Co)MnIn, for which 1
at.% increase in Mn and decrease in In yields an increase in martensitic transformation of ~150 K [9].
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2.2. Other Factors Affecting Transition Temperature

Crystal size may influence the magnetic transition, particularly when this characteristic structural
length (crystal size) becomes of the order of the magnetic exchange correlation length. This magnitude

is related to the domain wall thickness, δ ∼
√

A
K , where A is the exchange stiffness and K is the

magnetic anisotropy constant. This occurs in the nanometer scale (e.g., δ =18 and 51 nm for bcc Fe
and hcp Co, respectively) [42]. In this range, changes in coercivity are huge. From large crystal sizes,
a reduction of this parameter enhances the impingement effect of crystal boundaries on the domain wall
displacement. However, in the nanometer range, when crystallites are smaller than the wall thickness,
averaging out of the magnetocrystalline anisotropy leads to a strong reduction of the coercivity with
the sixth power of the crystal size [42]. Therefore, both the softest (α-Fe nanocrystals embedded in an
amorphous FM matrix [42]) and the hardest (FeNdB-based nanocrystalline composites [43]) magnetic
materials have nanometer microstructure. The averaging out of the magnetocrystalline anisotropy is
effective when the nanocrystals are coupled (normally via a soft magnetic amorphous matrix in which
they are embedded).

When ferromagnetic nanocrystals are not coupled, isolated monodomain nanocrystals can exhibit
superparamagnetic behavior [44], characterized by a blocking temperature, TB < TC. Below TB,
normal FM behavior is observed. However, in the range TB < T < TC, the system behaves as a
superparamagnet (i.e., a PM with huge magnetic moments and thus described by Langevin function).
TB depends on the characteristic time of the measuring technique as it is defined as the temperature
at which the relaxation time equals this experimental timescale [45]: TB = 25KV/kB in the case of
quasi-static measurements, where V is the volume of the particle.

A general depletion of TC is found as crystal size decreases and different models have been
proposed to explain this (see some examples in [46]). However, changes in the magnetization and
Curie transition are theoretically limited to very few layers, approximately <10, in thin films [47].
Nanosized manganites show a broader transition [48] and even bulk antiferromagnetic manganites
can be FM when crystal size is reduced to nanometer scale [49]. Reduction of crystal size from 90 to
38 nm in DyCuAl reduces TC from 27 to 24 K [50]. Pr2Fe17 ball milled powders with nanometer size
present a lower TC ~ 290 K than their bulk counterparts (TC ~ 300 K) [51].

Different reasoning affects crystal size effect when a magnetostructural transition occurs.
The stabilization of the austenite phase by decreasing of the main grain size has been observed
in different Heusler systems produced by rapid quenching [52–54]. Crystal growth and compositional
homogenization is enhanced after annealing of these rapidly quenched systems and, generally,
increasing the structural and magnetic transition temperatures [55]. Aguilar-Ortiz et al. [56] reported a
shift of the martensitic transformation in Ni50Mn35In15 ribbons from 300 to 285 K as the crystal size
decreases from 7.3 to 0.9 µm. They also found variations in the Curie transition of both austenite and
martensite (from 309 to 293 K and from 199 to 178 K, respectively). On the other hand, a critical grain
size below which martensitic transformation is suppressed has been also reported for Ni-Ti [57] and
Fe-Pd [58] alloys.

Many production techniques can lead to the formation of a non-perfectly homogeneous system,
producing a broadening of the physical properties of the transition with respect to those expected
for theoretically pure system. This effect has been reported for La0.70-xEuxSr0.30MnO3 manganites,
where the consequent chemical distribution due to partial substitution of Eu for La affects the magnetic
and magnetocaloric properties of the compound [59]. The influence of atomic ordering on the Fe-Zr
amorphous powder obtained by high energy ball milling has also been studied, showing that the
structural relaxation combined with the homogenization of the composition is responsible for the
enhancement of the magnetic interactions [60].

Although the next-nearest-neighbor ordered L21 austenite crystal structure is formed in many
kinds of X2YZ magnetic Heusler alloys, such as Ni2MnAl [61], Mn2NiGa [62], and Ni2FeGa [63], various
locally disordered structures can be found in the L21 matrix. These materials are normally produced
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by melt-spinning technique, which can produce textured polycrystalline ribbons and prevents the
formation of additional phases due to the high cooling rates during the fabrication process. However,
the crystal structure of these compounds strongly depends on the composition and the quenching
rate, which can produce site disorder and will drastically influence the magnetic properties due to the
ferromagnetic/antiferromagnetic exchange interaction between atoms on the martensitic transformation.
In this sense, Passamani et al. [64] reported that Ni2-xFexMn1.44Sn0.56 alloys show a drastic shift of the
martensitic transformation after the replacement of Fe atoms for Ni and/or Mn. In this case, Fe-Mn
ferromagnetic interactions compensate Mn-Mn antiferromagnetic ones, which leads to the stabilization
of austenite phase. In the case of NiFeGa systems [63], the ferromagnetic character of the sample
strongly depends on the Fe-Fe interactions. The presence of Fe antisite atoms on Ni or Ga sites results
in the modification of magnetic interactions, changing both TC and structural transition temperature,
Tt. For Mn-Ni-Ga Heusler alloys, theoretical studies on ordered and disordered Mn and Ni sites results
in TC =958 K and 425 K, respectively [65]. These values, compared to the experimental one of 588 K,
must indicate the existence of a high degree of disorder in this system. In these melt-spun systems,
annealing produces an increase of Tt, TC, and saturation magnetization compared to those of as-cast
alloy [66].

In general, rapidly quenched systems, as commented above, lead to disordering but also to
crystal size reduction when crystalline structures are formed. Therefore, both sources may affect the
transition temperatures.

Pressure application, linked to cell volume changes, also affects magnetic transitions as the
exchange depends on the distance between the interacting atoms. The TC enhancement of Ni with
pressure is reduced for Ni(Fe) alloys with low Fe content. For Ni70Fe30 alloy, TC is almost pressure
independent. For higher Fe content, TC decreases with pressure [67].

Pressure application in RECo2 decreases the transition temperature [68] in agreement with the
predictions of Khmelevskyi and Mohn [69], which describe the magnetic interaction and order of
the transition in these systems taking into account the magnetovolume effects and spin fluctuations.
When 0.705 < a < 0.722 nm, where a is the lattice parameter, itinerant electron metamagnetic transition
(FOPT) occurs. For high pressures, the linear decrease of the transition temperature with pressure is
lost for RE = Ho and Er, becoming pressure independent above 4 GPa [70]. This has been ascribed to
the collapse of the Co magnetic moment sublattice, whereas RE sublattice remains almost unchanged
with pressure [71].

Pressure application in La(Fe,Si)13 phases decreases the transition temperatures [72]. In fact, the
so-called negative pressure effect (addition of interstitial atoms) is particularly important for these
magnetocaloric materials and H is added to elevate transition temperatures to room temperature for
applications [41].

Theoretical dependence of TC with pressure for Heusler alloys shows a complex behavior
dependent on the composition: e.g., whereas, for (Ni1-xPdx)2MnIn, TC increases as pressure increases,
for (Ni1-xCux)2MnSn, TC increases with pressure for x < 0.7 but decreases for x > 0.7 [73].

3. Effects of Distribution of Transition Temperatures

The most straightforward effect when a DTT occurs is the smearing of the magnetic transition.
To show this effect, magnetization curves as a function of temperature and magnetic field, M(T, H),
were calculated using AN equation of state (EOS) [13]:

H1/γ = a(T − TC)M
1
γ + bM

1
β+

1
γ (6)

where a and b are prefactors and β and γ are the critical exponents. Figure 5a shows the obtained
curves for different theoretical models (MF, Heisenberg, and Ising). Individual Mi(T, 0) curves were
obtained for each contribution to a Gaussian distribution of TCi characterized by its standard deviation
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∆TC and with an average 〈TC〉 = 300 K. These conditions for the distribution of TC are used along this
work unless explicitly stated.
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alloys [12,74], SOPT manganites [55,75], and other intermetallic phases [76]. It has been generally 
reported that the presence of a DTT leads to a decrease of the maximum of the magnetic entropy 
change, ∆ܵெ . However, as the ∆ܵெ(ܶ) peak becomes broader, an enhancement of the refrigerant 
capacity can be obtained [76,77]. Whether this enhancement is significant will depend on the thermal 
range at which a high enough ∆ܵெ is preserved.  

Concerning MCE, the presence of a DTT affects the exponent ݊ describing the field dependence 
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Figure 5. (a) Normalized magnetization at zero field vs. temperature calculated using Arrott–Noakes
EOS for individual contributions and a Gaussian distribution for several standard deviations.
(b) ln(M/MS) as a function of ln(〈TC〉 − T). The slope corresponds to the effective critical exponent β.
Curves were generated using Arrott–Noakes EOS for MF, Heisenberg, and Ising models. The curve
corresponding to a single Weiss-type contribution is also shown in the upper panel of (b) as a dotted
curve for comparison.

The smearing of the transition necessarily reduces the exponent β describing the decay of the
magnetization, at zero field, as TC is approached from lower temperatures: M ∼ (TC − T)β. Figure 5b
shows this effect for the calculated curves. Close to the transition (where the AN EOS is more reliable),
β decreases. This could lead to a misinterpretation of the actual parameter of the system when a DTT is
neglected. Although for TC − T � the exponent is preserved, it must be taken into account that AN
EOS loses its validity far from TC. For example, a single Weiss contribution (dotted curve in upper
panel of Figure 5b obtained from Brillouin function) deviates from linearity for TC − T > 50 K.

Magnetocaloric effect (MCE) of different systems were analyzed considering a DTT: amorphous
alloys [12,74], SOPT manganites [55,75], and other intermetallic phases [76]. It has been generally
reported that the presence of a DTT leads to a decrease of the maximum of the magnetic entropy
change, ∆SM. However, as the ∆SM(T) peak becomes broader, an enhancement of the refrigerant
capacity can be obtained [76,77]. Whether this enhancement is significant will depend on the thermal
range at which a high enough ∆SM is preserved.
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Concerning MCE, the presence of a DTT affects the exponent n describing the field dependence

of ∆Speak
M (H) = ∆Speak(1T)

M (µ0H)n at the peak temperature. This parameter is related to the critical
exponents (β,γ, δ) describing the transition in SOPT pure systems [78]:

n = 1 +
β− 1
β+ γ

= 1 +
1
δ

(
1−

1
β

)
(7)

It has been shown [74,79] that, as ∆TC increases, n increases from the theoretical value
corresponding to the pure phase towards 1. Although this could be a criterion to estimate ∆TC,
it must be taken with care when there are FM impurities such as α-Fe, typically found in La-Fe-Si [80]
or Fe-based amorphous [81], as they produce the same effect.

To describe FOPT, two different calculations have been done in this work. In a first approximation,
magnetization curves were calculated using BR model [3] to describe magnetoelastic transitions:

M
Ms

= BJ

[
gµB J
kBT

(µ0H + λM + λ3M3
)]

(8)

where BJ(y) is the Brillouin function. Instead of referring to λ3 coefficient, the model used refers to
parameter η:

η =
10
3

J2(J + 1)2

2J2 + 2J + 1
λ3

λ
(nV gµB)

2 (9)

where nV is the numerical density of magnetic moments. For η < 1, Equation (8) corresponds to a
SOPT (η = 0 corresponds to Weiss model) and, for η > 1, it corresponds to FOPT, being η = 1 the curve
corresponding to the tricritical point. Figure 6a shows M(T, 0)/MS for different values of η and ∆TC
and Figure 6b shows the corresponding 1

MS
dM
dT curves. It can be observed that the inflexion point, Tin f ,

shifts to lower temperatures as ∆TC increases. This feature is used in the next section.
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dM
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The second method used here to describe FOPT considers abrupt changes from one low temperature
phase (martensite) to a high temperature phase (austenite). Both phases are described by Weiss model
with their corresponding magnetic moments and TC values. This simple approach tries to resemble very
fast individual FOPT magnetostructural transformations, characteristic of martensitic transformations.
Therefore, TC of the low temperature phase is named as martensitic Curie temperature, TM

C , and that of
the high temperature phase is named austenitic Curie temperature, TA

C . As commented above (see
Figure 4), martensitic transformation temperature, Tt, is much more sensitive than Curie transitions in
Heusler alloys. Therefore, we consider a Gaussian DTT of the martensitic transformation temperatures,
with a standard deviation ∆Tt, while TM

C and TA
C are considered constant. Figure 7 shows the calculated

M(T, 0) curves for different ∆Tt and different TM
C and TA

C values, describing FM to PM, PM to FM,
and low magnetization FM to high magnetization FM, respectively.
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several standard deviations of the martensitic transformation. Specific magnetization at 0 K is taken as
15 emu/g for martensite and 90 emu/g for austenite phases.

4. Models to Determine the Parameters of a Distribution of Transition Temperatures

Some authors have proposed to directly obtain the parameters of the distribution by fitting the
zero-field magnetization versus temperature curves assuming a Gaussian distribution of TC and Weiss
model for each individual contribution [82,83]. Besides the non-trivial function for fitting, this direct
comparison between the Weiss theory and the experimental results asks for a good description of the
system in a wide temperature range by this model.

Bebenin et al. [84] studied the magnetocaloric response of inhomogeneous La0.7X0.3MnO3 (with X
= Ca and Ba) using a theoretical approach based on Landau theory, where the free energy per unit
volume can be written as a power series of the magnetization M, and adding the external field term:

f =
1
2

a(T − TC)M2 +
1
4

BM4 +
1
6

DM6
− µ0MHcos(θ) (10)
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where a(T − TC), B and D are the coefficients of the power series expansion in the Landau approximation.
The temperature dependence is only considered for the quadratic prefactor and θ is the angle between
field and magnetization. Based on a Gaussian distribution of TC, they proposed the following equation
to describe the magnetic entropy change per unit volume, ∆sM(H), at TC, in SOPT systems:

∆spk
M(H) = −

a
2

(µ0H
B

)2/3

−
a∆Tc
√

2πB

 (11)

where ∆TC is the standard deviation of the distribution and effects of demagnetizing field can be ignored
when high enough fields are considered. At the tricritical point B = 0, variations of this parameter
lead to a different expression (assuming the standard deviation of B around 0 is small enough):

∆spk
M(H) = −

a
2

(µ0H
D

)2/5

− 0.411

√
a∆Tc

D

 (12)

Apparently from the representation of ∆spk
M vs. H2/3 (or H2/5, in the case of systems at the tricritical

point), the slope and the intercept would supply information on ∆TC. However, extra information
is needed as three parameters need to be determined. Bebenin et al. also studied the FOPT case but
restricted to low fields.

Recently, we proposed a method to obtain the parameters of the DTT, initially based on Weiss
model [12] and thus only valid for such MF model describing SOPT. This method uses the differences
between the inflexion point, Tin f , of the dM

dT curves at zero field, the peak temperature of the MCE,
TMCE, and the peak temperature, Tχ, of the paramagnetic susceptibility (χP) with respect to 〈TC〉.
The following equations can be obtained for each parameter (error in parenthesis):

TWeiss
in f − 〈TC〉 = −0.732(6)∆Tc (13)

TWeiss
MCE − 〈TC〉 = −0.658(8)∆Tc (14)

TWeiss
χ − 〈TC〉 = 0.503(24)∆Tc − 0.0040(7)∆T2

C (15)

where superscript Weiss indicates the use of this model to describe the magnetization. Whereas
Tin f and TMCE shift to lower values with respect to 〈TC〉, Tχ shifts to higher ones. Therefore, the
combination of Equation (15) with Equation (13) or Equation (14) allows us to easily estimate 〈TC〉

and ∆TC. Calculations to obtain Equations (13)–(15) were done assuming 〈TC〉 = 300 K and quantum
angular momentum J = 7/2 with a Landé factor of g = 2 (characteristic values of Gd) [1]. Although the
parameters of Gd have been chosen, this does not represent any serious drawback or lack of generality.
In fact, the change in 〈TC〉 does not affect the equations (except for 〈TC〉 too close to zero to significantly
truncate the Gaussian DTT). However, there is a certain dependence on J, which is shown in Figure 8
for TWeiss

in f . As it can be observed (keeping g = 2, which is valid for transition metals), the differences

are only appreciable for ∆Tc >25 K. In the case of TWeiss
χ , a change in J will only change, in the same

factor, the constant C of each individual χpi = C/(T − TCi) susceptibility contribution to the DTT and
thus no effect is expected for Equation (15).

Experimentally, Tin f and Tχ can be obtained from the analysis of the approach to saturation of
the magnetization curves [85] and are independent of the magnetic field, while TMCE depends on the
maximum applied field (i.e., Equation (14) is obtained for µ0∆H = 1 T).

Assuming Arrott–Noakes EOS (using a = 1 Oe1/γ/K and b =0.01 Oe1/γ(emu/g)-1/γ-1/β) to describe
the systems, similar equations to Equations (13) and (15) can be obtained. Those for Tin f derived from
the calculations shown in Figure 5 result:

TMF
in f − 〈TC〉 = −0.770(5)∆Tc (16)
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THeisenberg
in f − 〈TC〉 = −0.529(4)∆Tc (17)

TIsing
in f − 〈TC〉 = −0.461(5)∆Tc (18)
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Figure 9a shows the calculated χP curves as a function of temperature for these three set of
critical exponents in AN EOS and Figure 9b shows the evolution of the peak temperature with ∆Tc.
The equations derived from the fitting are:

TMF
χ − 〈TC〉 = 0.489(18)∆Tc − 0.0034(4)∆Tc

2 (19)

THeisenberg
χ − 〈TC〉 = 0.285(19)∆Tc − 0.0027(5)∆Tc

2 (20)

TIsing
χ − 〈TC〉 = 0.377(22)∆Tc − 0.0036(4)∆Tc

2 (21)
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Concerning calculations derived from BR model, Figure 10 shows the η dependence of the slope
of Tin f − 〈TC〉 vs. ∆Tc. A quadratic dependence is observed for values describing SOPT. The following
equation can be derived for SOPT:

TBR
in f (η) − 〈TC〉 =

[
−0.730(3) + 0.218(21)η+ 0.188(22)η2

]
∆Tc (22)

In the case of FOPT, the difference becomes constant for η > 1.5 (TBR
in f (η) − 〈TC〉 ∼ −0.15).

In the η range corresponding to SOPT, magnetic transition of each individual contribution to DTT
occurs at its Tci and thus Equation (15) holds and TBR

χ (η < 1) = TWeiss
χ . However, for FOPT (η > 1) the

magnetic transitions of each individual contributions are shifted to higher temperatures than their
corresponding Tci in the DTT and TBR

χ (η > 1) , TWeiss
χ . As η increases in this range, the deviation from

linearity increases.
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Finally, concerning our simple model for magnetostructural transitions (magnetization shown in
Figure 7), the change in the inflexion point, TFOPT

in f , depends on the Curie temperature of the FM phase.

For high enough values of that TC, TFOPT
in f ∼ 〈Tt〉, as shown in Figure 11.
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Figure 11. Evolution of Tin f − 〈Tt〉 for simulated curves corresponding to magnetostructural sharp
transitions vs. the standard deviation ∆Tt of DTT and as a function of (a) TA

C , in a PM to FM transition;
(b) TM

C , in a FM to PM transition; and (c) TA
C , in a FM to FM transition. 〈Tt〉 = 300 K for all DTT.

In this FOPT model, the study ofχP is senseless except for the transition from a FM low temperature
martensite to a PM high temperature austenite. Figure 12a shows two examples of χP(T) for this
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type of transition along with the evolution of Tχ as a function of TA
C and ∆Tt (Figure 12b). This plot

(Figure 12b), in combination with Figure 11b, can be used to estimate the parameters of the DTT.
However, for those transitions with a FM phase above Tt, a rough estimation of the DTT parameters
could be obtained by fitting the dM/dT curves to a Gaussian function (assuming Curie temperatures
are far away from the martensitic transition).
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Figure 12. (a) Calculated χP curves assuming a distribution of sharp FOPT from a FM martensite
to a PM austenite for TA

C = 50 K and for TA
C = 200 K. (b) Evolution of the peak temperature of the

susceptibility curves vs. ∆Tt and as a function of TA
C . 〈Tt〉 = 300 K was used for all DTT.

5. Experimental Test of the Proposed Model

To test the proposed model for determining the parameters of the DTT, two different series are
used: mechanically alloyed partially amorphous Fe75Nb10B15 alloys and half-Heusler MnCo0.8Fe0.2Ge
intermetallics developed after annealing of a precursor amorphous system. Microstructure of the
samples was characterized by X-ray diffraction (XRD). Details on their production and microstructural
and magnetic characterization can be found in [86,87] for the amorphous Fe75Nb10B15 alloys and,
for the MnCo0.8Fe0.2Ge intermetallics, in [88].

To apply the different equations (e.g., for Weiss systems, Equations (13)–(15)), magnetization
curves are needed. From the analysis of the approach to saturation curves, Tin f and T are obtained
(a linear approach is used for simplification). Moreover, to obtain TMCE, magnetic entropy curves
are calculated from thermomagnetic dependence of magnetization using Maxwell thermodynamic
relation:

∆SM(T) = −
∫ Hmax

0
µ0
∂M(T, H)

∂T
dH (23)

As expected from Equation (23), TMCE, the temperature for the maximum ∆SM, depends on
the maximum applied field Hmax. This value was set to 1 T, as it was done for all the calculations
presented above. Magnetization measurements were performed in a Lakeshore 7407 vibrating sample
magnetometer. ∆SM(T) curves were obtained using the Magnetocaloric Effect Analysis Program [89]
to the magnetization curves.

5.1. Partially Amorphous Fe75Nb10B15 Mechanically Alloyed Systems

As a first example, we have applied the previously described method based on the shift of peak
temperatures in the frame of the Weiss model (Equations (13)–(15)) to a series of partially amorphous
Fe75Nb10B15 alloys. Figure 13a shows the XRD patterns of several partially amorphized samples
(the fraction of α-Fe crystalline phase, XC, obtained from Mössbauer spectrometry [81,86,87] for
each sample is indicated). Figure 13b shows, as an example, the M(T, H) curves of a Fe75Nb10B15

alloy with XC = 15%. As the magnetic transition studied in this alloy corresponds to the Curie
transition of the amorphous phase, effects such as crystal size can be discarded to be responsible of the
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presence of a DTT. Therefore, compositional heterogeneities can be considered. As crystalline fraction
increases, the geometrical distribution of the amorphous phase would resemble a porous sponge-like
configuration with the nanocrystals in the pores.
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Figure 14a shows the dM/dT at µ0H = 0 T and the χP curves from a linear fitting of the high field
magnetization curves along with the ∆SM(T) curves (integrated from 0 to µ0H = 1 T) for samples with
different values of XC.
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Figure 14. (a) Experimental data for dM/dT and χP vs. T curves from the analysis of approach to
saturation and ∆SM(T) curves for Fe75Nb10B15 partially amorphous alloys as a function of the crystalline
fraction (shown in percent in the legend). (b) Experimental peak temperatures for dM/dT, χP, and
∆SM(T) curves (upper panel); mean Curie temperatures, 〈TC〉 (middle panel); and standard deviation,
∆TC, (lower panel) of the DTT from Equations (13)–(15), as a function of the crystalline fraction.
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Figure 14b (upper panel) shows the dependence of the different experimental peak temperatures
as a function of XC. From these experimental data, the parameters of the DTT, 〈TC〉, and ∆TC can be
obtained applying Equations (13)–(15) for each sample. 〈TC〉 is shown in the middle panel of Figure 14b
and ∆TC in the lower panel of Figure 14b as a function of XC.

Two set of results can be obtained either using Equation (13) combined with Equation (15) or
using Equations (14) and (15). Both practical combinations yield the same 〈TC〉 values (between the
error bars) and it is clear that, as milling time increases and XC decreases, 〈TC〉 increases. This is due to
the progressive increase in Fe content in the amorphous matrix (in agreement with the general case
shown in Figure 1) as the α-Fe crystallites disappears.

Concerning ∆TC, this parameter does not show a clear trend due to the large relative error bar.
However, when ∆TC is represented as a function of 〈TC〉 (Figure 15), excluding the extreme data
(XC ≤2% and XC =68%), a certain correlation between both magnitudes could be inferred. As milling
progresses and XC decreases, the DTT describing the amorphous phase would become broader.
This can be understood after considering the compositional profile of Nb in Fe-based nanocrystalline
systems, where Nb piles up at the boundary of nanocrystals [90]. Therefore, a higher XC implies closer
nanocrystals. This leads to a larger overlapping between the compositional profiles and yields a thinner
compositional distribution, implying a smaller ∆TC. This is schematically described in Figure 16.

Metals 2020, 10, x FOR PEER REVIEW 16 of 24 

 

Figure 14. (a) Experimental data for ݀ܯ/݀ܶ and ௉ vs. ܶ curves from the analysis of approach to 
saturation and ∆ܵெ(ܶ)  curves for Fe75Nb10B15 partially amorphous alloys as a function of the 
crystalline fraction (shown in percent in the legend). (b) Experimental peak temperatures for ݀ܯ/݀ܶ, 
௉, and ∆ܵெ(ܶ) curves (upper panel); mean Curie temperatures, 〈 ஼ܶ〉 (middle panel); and standard 
deviation, ∆ ஼ܶ , (lower panel) of the DTT from Equations (13)–(15), as a function of the crystalline 
fraction. 

Two set of results can be obtained either using Equation (13) combined with Equation (15) or 
using Equations (14) and (15). Both practical combinations yield the same 〈 ஼ܶ〉 values (between the 
error bars) and it is clear that, as milling time increases and ܺ஼ decreases, 〈 ஼ܶ〉 increases. This is due 
to the progressive increase in Fe content in the amorphous matrix (in agreement with the general case 
shown in Figure 1) as the α-Fe crystallites disappears.  

Concerning ∆ ஼ܶ, this parameter does not show a clear trend due to the large relative error bar. 
However, when ∆ ஼ܶ  is represented as a function of 〈 ஼ܶ〉 (Figure 15), excluding the extreme data 
(ܺ஼ ≤2% and ܺ஼ =68%), a certain correlation between both magnitudes could be inferred. As milling 
progresses and ܺ஼ decreases, the DTT describing the amorphous phase would become broader. This 
can be understood after considering the compositional profile of Nb in Fe-based nanocrystalline 
systems, where Nb piles up at the boundary of nanocrystals [90]. Therefore, a higher ܺ஼  implies 
closer nanocrystals. This leads to a larger overlapping between the compositional profiles and yields 
a thinner compositional distribution, implying a smaller ∆ ஼ܶ . This is schematically described in 
Figure 16. 

 
Figure 15. ∆ ஼ܶ  versus 〈 ஼ܶ〉 using Equations (13) and (15) (black squares) and Equations (14) and (15) 
(red circles) for Fe75Nb10B15 partially amorphous alloys. Extreme data for ܺ஼ ≤ 2% and ܺ஼ = 68% are 
excluded. 

Figure 15. ∆TC versus 〈TC〉 using Equations (13) and (15) (black squares) and Equations (14) and (15)
(red circles) for Fe75Nb10B15 partially amorphous alloys. Extreme data for XC ≤ 2% and XC = 68%
are excluded.Metals 2020, 10, x FOR PEER REVIEW 17 of 24 

 

 
Figure 16. Schematic view of the broadening of the amorphous compositional profile dependence 
with the crystalline fraction. Solid red lines correspond to the total compositional profile, whereas 
dashed black lines correspond to the compositional profiles for isolated nanocrystals. 

Differences between average values of ∆ ஼ܶ, < ∆ ஼ܶ >, obtained using ௜ܶ௡௙ (< ∆ ஼ܶ > = 31 ± 6 K) 
and using ெܶ஼ா (< ∆ ஼ܶ > = 32 ± 5 K) are smaller than the error bar. It is worth mentioning that the 
experimental value of the field exponent of ∆ܵெ௣௞  (after correcting impurities and demagnetizing 
field), ݊ = 0.757 ± 0.012 [81], is clearly above 0.67 (the theoretical value for a Weiss model). From 
[74], a ∆ ஼ܶ~20 K can shift ݊ from 0.67 to ~0.8, for MF models. 

5.2. Half-Heusler MnCo0.8Fe0.2Ge Intermetallics 

MnCo0.8Fe0.2Ge intermetallics were obtained from controlled crystallization of a mechanically 
amorphized alloy, which was produced after 50 h of milling. Figure 17a shows the XRD patterns of 
samples heated at 20 K/min in argon up to the different indicated temperatures. Figure 17b shows 
the crystal size and the lattice parameters of the crystalline phase as a function of the annealing 
temperature. XRD results were analyzed by Rietveld fitting (Goodness of fit below 1.8). The samples 
are single phase and the crystal size increases as annealing temperature increases. Figure 18 shows, 
as an example, the magnetization curves at different temperatures for a MnCo(Fe)Ge sample heated 
up to 723 K at 20 K/min.  

 

 

(a) (b) 

Figure 16. Schematic view of the broadening of the amorphous compositional profile dependence with
the crystalline fraction. Solid red lines correspond to the total compositional profile, whereas dashed
black lines correspond to the compositional profiles for isolated nanocrystals.



Metals 2020, 10, 226 17 of 23

Differences between average values of ∆TC, 〈∆TC〉, obtained using Tin f (〈∆TC〉 = 31± 6 K) and
using TMCE (〈∆TC〉 = 32 ± 5 K) are smaller than the error bar. It is worth mentioning that the
experimental value of the field exponent of ∆Spk

M (after correcting impurities and demagnetizing field),
n = 0.757 ± 0.012 [81], is clearly above 0.67 (the theoretical value for a Weiss model). From [74],
a ∆TC ∼20 K can shift n from 0.67 to ~0.8, for MF models.

5.2. Half-Heusler MnCo0.8Fe0.2Ge Intermetallics

MnCo0.8Fe0.2Ge intermetallics were obtained from controlled crystallization of a mechanically
amorphized alloy, which was produced after 50 h of milling. Figure 17a shows the XRD patterns of
samples heated at 20 K/min in argon up to the different indicated temperatures. Figure 17b shows
the crystal size and the lattice parameters of the crystalline phase as a function of the annealing
temperature. XRD results were analyzed by Rietveld fitting (Goodness of fit below 1.8). The samples
are single phase and the crystal size increases as annealing temperature increases. Figure 18 shows,
as an example, the magnetization curves at different temperatures for a MnCo(Fe)Ge sample heated up
to 723 K at 20 K/min.
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Figure 19a shows the dM/dT at µ0H = 0 T, the χP, and the ∆SM(T) curves for samples obtained
after heating at different temperatures (indicated in the legend) at 20 K/min. Crystallization of the
amorphous phase produced by mechanical alloying occurs at ~550 K. Above this temperature, the only
change in the microstructure between the different samples is the crystal size, which almost linearly
increases from 14 to 38 nm with the heating temperature in the explored range [91].

No clear trend is observed in the experimental peak temperatures (Figure 19b, upper panel) with
the annealing temperature of the different samples (i.e., with the crystal size) being the differences
smaller than the error bars. However, a clear difference between T and the other two experimental
values indicates the existence of a DTT. The estimate average value 〈∆TC〉 ∼ 10 K (using both Tin f
and TMCE) does not show any trend with the experimental crystal size. TC can be tailored in these
compositions by changing the Fe content [92,93], which could be the source of the DTT. This value is
clearly smaller than that previously found for the amorphous matrix in FeNbB, which is in agreement
with a more restricted composition in the crystalline phase. Moreover, as there is no dependence on the
crystal size, the presence of a crystal size distribution can be discarded as responsible for the existence
of the DTT.
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Figure 19. (a) Experimental data for dM/dT and χP curves from the analysis of approach to saturation
and ∆SM(T) curves for half-Heusler MnCo0.8Fe0.2Ge intermetallics obtained after heating at different
temperatures (indicated in the legend) at 20 K/min. (b) Experimental peak temperatures for: dM/dT,
χP and ∆SM(T) curves (upper panel); mean Curie temperatures, 〈TC〉 (middle panel); and standard
deviation, ∆TC, of the DTT (lower panel) from Equations (13)–(15), as a function of the annealing
temperature for MnCo(Fe)Ge alloy.

Concerning the parameters of the DTT in the frame of Weiss model (Figure 19b, middle and lower
panels), the differences between using Equation (13) in combination with Equation (15) and the results
using Equations (14) and (15) are smaller than error bars.

The experimental values of n could be taken as the slope of a linear fitting of ln
(
∆Spk

M

)
vs. ln(H)

(for 1 ≤ µ0H ≤ 1.5 T to prevent demagnetizing field effects). However, the average over the different
samples is n = 0.799 ± 0.015, much higher than those expected for pure phases, which agrees with
the existence of a DTT. In fact, taking into account Equation (11), the exponent of a pure phase npure
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cannot be directly obtained by a linear fitting of ln
(
∆Spk

M

)
vs. ln(H) when a DTT exists, as there is

an extra term proportional to ∆TC. When this fact is taken into account, an average value over the
different half-Heusler samples yields npure = 0.65± 0.04, which is in the range of values corresponding
to Weiss model.

6. Conclusions

During the production of experimental samples, the presence of compositional inhomogeneities,
disordering, and distribution of crystal sizes or stress fields can lead to the presence of a distribution
of transition temperatures (DTT). Concerning those transitions implying a change in the magnetic
properties of the system, the presence of a DTT leads to deviations from the predictions derived from
models of pure single phases. In this work, some of these effects are summarized.

From the study of the temperature dependence of the approach to saturation curves, saturation
magnetization and paramagnetic susceptibility can be experimentally obtained. The shift of the
peak temperatures of these two magnitudes has been analyzed for different model systems (Weiss,
Heisenberg, Ising, and Bean and Rodbell) and we have proposed a set of equations to estimate the
parameters of the DTT from these shifts.

The results were applied to two different series of alloys, partially amorphous Fe-Nb-B and
MnCo(Fe)Ge half-Heusler alloys, for which a mean field model describes the experimental data. It is
pointed that the proposed equations depend on the assumed model but the study of the variation
of other magnetic properties, such as the magnetocaloric effect, could help to elucidate the most
appropriate model to describe our system.
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