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ABSTRACT

In the central nervous systems of animals like pigeons and locusts, neurons were identified which signal objects
approaching the animal on a direct collision course. In order to timely initiate escape behavior, these neurons
must recognize a possible approach (or at least differentiate it from similar but non-threatening situations),
and estimate the time-to-collision (ttc). Unraveling the neural circuitry for collision avoidance, and identifying
the underlying computational principles, should thus be promising for building vision-based neuromorphic ar-
chitectures, which in the near future could find applications in cars or planes. Unfortunately, a corresponding
computational architecture which is able to handle real-situations (e.g. moving backgrounds, different lighting
conditions) is still not available (successful collision avoidance of a robot was demonstrated only for a closed
environment). Here we present two computational models for signalling impending collision. These models are
parsimonious since they possess only the minimum number of computational units which are essential to repro-
duce corresponding biological data. Our models show robust performance in adverse situations, such as with
approaching low-contrast objects, or with highly textured backgrounds. Furthermore, a condition is proposed
under which the responses of our models match the so-called np-function. We finally discuss which components
need to be added to our model to convert it into a full-fledged real-world-environment collision detector.
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1. INTRODUCTION

It is essential to many animal species to recognize approaching predators early enough. Considering monocular
viewing, the information about an object which is available on an animal’s retina is the object’s subtended visual
angle ©, and its corresponding rate of expansion ©® when the object is moving in depth. Looming-sensitive
neurons could in principle use these variables to compute an imminent collision. In the locust, it has been found
that the lobula giant movement detector (LGMD) responds vigorously to approaching objects (as opposed to
receding ones).! The LGMD is a huge single neuron which is located in the third visual neuropile of the optic
lobe (or lobula), and forms together with the descending contralateral movement detector (DCMD) a neural
circuit which is involved in triggering escape behavior. However, the precise computation which is carried out
by the LGMD is matter of ongoing debate, since there exist two contrasting views about the respective roles
of feedforward inhibition on the one hand, and lateral inhibition on the other, in shaping LGMD responses.?™*
(i) Feedforward inhibition collects large-field information from the retina and synapses onto a single proximal
dendrite of the LGMD.> Excitatory inputs are provided by velocity signals from local movement detectors
into the fan-shaped distal part of the LGMD dendrite. LGMD responses to stimuli which simulate an object
approach could be fitted to the so-called n-function,’ which is defined as 5(t) = C © exp(—a®), where C' and
« are constants. The n-function reveals an activity peak as an object approaches at constant velocity: when
the object is far away © both is small and increases faster than exp(—a®©) decreases. This gives an overall
increase of n(t). When the object is near, however, the exponential suppression dominates, and 7(t) decreases.
Since the n-function peaks before collision for moderate speeds and object sizes, it was proposed that this peak
provides a cue for the timing of escape behavior,® where the activity peak occurs earlier for larger objects, with
shallower ascending-phase slopes.” If so, how is this computation implemented in the locust’s nervous system?
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Figure 1. The Rind et al. neural network.”!! The network consists of three layers of retinotopically organized
units as shown at the bottom of the figure. The plots show the temporal impulse response (”excitation”) of I-,E-, and
S-units. (Figure from Ref,? used with permission).

Recent evidence suggests that the multiplication of the excitatory input © with the inhibitory input exp(—a®)
is performed by logarithmically encoding both variables, then adding excitatory and inhibitory input within
the LGMD, and subsequently exponentiate the sum by voltage-dependent sodium conductances at the LGMD
axon.® The implementation of the n-function relies on postsynaptic feedforward inhibition, which represents one
interpretation of LGMD responses. In contrast, another interpretation is primarily based on (7) lateral inhibition,
which is presynaptic to the LGMD. To compute an LGMD response which is correlated with a looming object,
Rind and coworkers state that a critical race over the LGMD dendrites takes place between feedforward excitation
and laterally spreading inhibition.? Lateral inhibition is elicited by feedforward inhibition in a way that only if
an object’s angular size on the retina grows more rapidly than inhibitory waves could propagate laterally, then
excitation wins the race, and the LGMD eventually responds. In contrast, feedforward inhibition is activated
only at the end of an object approach, and truncates LGMD responses rather abruptly.® % According to this
view, feedforward inhibition cannot establish an activity peak in the LGMD response. Rind et al. claim that it is
lateral inhibition which implements the selectivity for objects moving in depth, and eliminates LGMD responses
to any sudden large-scale movement. Feedforward inhibition, on the other hand, is activated with some delay
when a large number of photoreceptors are excited within a short time interval, and establishes that LGMD
responses are larger for approaching objects than for receding ones. Taken together, Rind et al. state that
LGMD activity does not peak sufficiently early before collision, and therefore the LGMD responses are unlikely
to implement the n-function, as described in the first part of the introduction.

In contrast to both views, we show here that our parsimonious models based on lateral inhibition indeed generate
responses which look like an 7-function, and examine the conditions why this similarity is observed. However, it
turns out that the n-function is not approximated in a mathematical sense.

2. THE RIND ET AL. MODEL

Before we present our architectures, we give an overview over the original Rind et al. model® (figure 1), which
is a variant of a model previously presented by Edwards.'? The Rind et al. model was also implemented on a
robotic platform, where successful collision avoidance behavior was demonstrated within a closed environment!'!
(2). The model is composed of four retinotopically organized layers. Layer-1 (figure 1) represent the input into

286 Proc. of SPIE Vol. 5119

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 27 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



)

Figure 2. Lateral inhibition within the Rind et al. neural network.”!! This sketch visualizes the connectivity
pattern and corresponding time delays of the laterally inhibitory network. (Figure from Ref,'! used with permission).

the network, where P-units (figure 2) compute their output by subtracting the current luminance distribution
L (at time t) from a previous luminance distribution (at ¢ — At). Thus, these units will respond in a transient
fashion if an object (assuming that £ represents a real-world image at some time) appears on the L-array,
where the object must be darker than its respective background to elicit a corresponding OFF-response. An
OFF-response is equivalently generated at the disappearance of an object being brighter than its background.
The Rind et al. model in its present form is therefore ”blind” to ON-responses, that is the appearance (disap-
pearance) of objects which are lighter (darker) than their respective background. P-unit activity (corresponding
to the thresholded state variable or potential) is simultaneously fed into an excitatory layer (which is made up
of E-units), and an inhibitory layer (which consists of I-units). These layers are lumped together in layer-2
in figure 1. Layer-3 contains S-units, which receive direct excitatory input from the E-units. Activity from
inhibitory units (I-units) spreads laterally with delays At and 2A¢ before they inhibit adjacent S-units (indicated
by dashed lines in figure 2). A P-unit response at a given time ¢ and position can consequently suppress the
activity of adjacent P-units at future times ¢ + At and ¢t + 2A¢. This feature is crucial to implement ”a race
excitation against inhibition”,?> which increases the selectivity of the architecture to increases in the amount of
edge, and acceleration of those edges on the L-array.

The excitatory activity of all S-units converges onto a single lobula giant movement detector (LGMD) neuron
in layer-4. It receives feedforward inhibition from one F-unit, which by-passes layer-3, and directly inhibits the
LGMD neuron whenever the total number of activated photoreceptors exceeds a given threshold and photore-
ceptors are excited in a short time. The F-unit is important to establish selectivity for approaching over receding
objects,” and probably to suppress translatory components in the optic flow field as they may result from ego
motion.
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3. A COMPUTATIONAL APPROACH TO COLLISION AVOIDANCE

Our computational model departs in a number of points from the Rind et al. model. First we assume that all
neurons produce gradual suprathreshold responses, thus neglecting that S-units, the F-unit, and the LGMD fire
action potentials or spikes. E-units integrate P-unit activity in the Rind et al. model, what in computational
terms delays only the excitatory input of the S-units. These E-units are omitted in our architecture. Further-
more, simulations revealed that feedforward inhibition (mediated by F-units) failed to enrich the computational
capabilities of our network in a significant way. Specifically, we found no evidence of how feedforward inhibition
could increase the selectivity for approaching over receding objects, since it decreased all responses similarly
if, for instance, an activation threshold of 50% excitation was chosen, meaning that feedforward inhibition was
activated when half of the photoreceptors were activated within a short time interval. However, we only ex-
perimented with static (i.e. non-moving) backgrounds, and feedforward inhibition might turn out important
to suppress self-motion induced LGMD activity, which can result from a translating background. Nevertheless,
lateral inhibition in our architecture reaches the LGMD nearly instantaneously (i.e. without long delay), what
renders feedforward inhibition superfluous for the experiments considered here.

Our models are now formally introduced. Each model is defined by its specific mechanism which is used to
implement lateral inhibition:”inhibition by delay” or ”inhibition by diffusion”.

3.1. ON-OFF-neurons

ON-OFF units are known from the insect lamina of flies (e.g. Ref. 13). The membrane potential of an ON-
OFF-cell at position (i, ) at time ¢ is described by the state variable p;;(t), whose dynamics is governed by the
following differential equation

dpi;(t)
dt

Jiear, = 90 is the leakage conductance (or decay constant) which describes the total passive ion flow through
the cell membrane. V. = 0 is the resting potential (or leakage reversal potential) which the cell will adopt
if it does not receive any input. F.;, = +1 and E;;, = —1 are the excitatory and inhibitory synaptic batteries,
respectively, which confine a cell’s dynamic range to Ej, < pij < E¢p (as long as Viest €]Ei,, Eeg[). The values
have been chosen ”symmetrically” around V;.s; = 0 in order to make the ON-OFF-cells equally respond to the
contrast polarities ”bright object on dark background” and ”dark object on bright background”. The ON-OFF-
units replace the single-contrast-polarity P-units in the original Rind et al. model.. The input is provided by
luminance values £(¢) and £(t — 1), with 0 < £ < 1. In future versions of the model, the direct input by
luminance values has to be replaced by an explicit photoreceptor model, in order to include sensitivity changes
due to changes in ambient illumination (e.g. Ref. 14), as well as activity changes due to motion adaptation (e.g.
Ref. 15). The Rind et al. model does not include neither of the just described mechanisms.

The activity or response of an ON-OFF-cell is given by the full-wave rectified and thresholded membrane potential

Dij =7 ([pij -0 + [-py — 9]+) (2)

with a gain factor v = 150, a threshold © = 0.0005, and []" = max(-,0).

= Greak(Viest — Pij) + Lij(t)(Eew — pig) + L4 (t — 1)(Ein, — pij) (1)

3.2. Lateral Inhibition by Explicit Delay (”Inhibition by Delay”)

This mechanism is according to Rind et al.,'* and defines our first model, called ”inhibition by delay”. Originally,
P-unit activation excites inhibitory I-units (see figure 2). In our model, we feed ON-OFF unit activity p,; into
an inhibitory interneurons wy;

dw;; (t .
Czl]t( ) = gleak(vrest - wij) + Dij (Eex - wij) (3)
where greqr = 10, Viest = —0.001, and E.; = +1. Its activity is given by the half-wave rectified membrane

potential w;; = [wy]". Lateral inhibition is implemented by convolving (symbol ’®’) the response of an inhibitory
neuron wy; with a nearest-neighborhood kernel £; and a next-nearest-neighborhood kernel C, (figure 3)

uij(t) = Wyt — 1) @ Ky + dy5(t — 2) ® Ky (4)
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nearest neighbors next-nearest neighbors

Figure 3. Convolution kernels for nearest neighbors and next-nearest neighbors. The black squares in the left
image correspond to the value 0.6065, white corresponds to zero. The dark-gray squares in the right image correspond to
the value 0.3679, and the light-gray squares to 0.1353. White corresponds to zero.

where the convolution kernels K; and Ky are Gaussian-weighted (standard deviation one) annulus-like structures
centered at a position (i, j).

3.3. Lateral Inhibition by Diffusion (”Inhibition by Diffusion”)

Another mechanism to implement lateral inhibition is based on a diffusion layer or syncytium. The second model
based on this mechanism shall be called ”inhibition by diffusion”. A diffusion layer provides an alternative
biophysical mechanism to equation 4, and has the advantage that only next-neighbor interactions are required
to compute its state, which makes a possible VLSI implementation less complicated.

dsi; (t)
dt

where grear = 10, Viess = —0.001, and E., = +1. V? implements the Laplacian, and D = 150 denotes the
diffusion coeffcient. The output of the syncytium is given by 5;; = [s,-j]+, and therefore g;eq controls the spatial
extent of activity propagation. A difference between syncytium-mediated inhibition and ”inhibition by delay”
exists, however, due to the design of the convolution kernels (cf. figure 3). Obviously, if lateral inhibition is
triggered by an event at position (i, j), then ”inhibition by diffusion” inhibits this position, whereas ”inhibition
by delay” does not. In computational terms, nevertheless, this difference is negligible.

= Greak Vrest — 8ij) + Pij (Bew — si5) + D V55 (5)

3.4. Excitatory neurons

Our excitatory neurons represent the S-units of the Rind et al. model. Excitatory neurons receive direct excitatory
input from ON-OFF-cells, whereas in the Rind et al. model E-units are interposed between P-units and S-units
(see figure 2). Excitatory neurons are defined as

d’l)ij (t)
dt

where giear = 50, Viest = —0.001, E., = +1, and E;, = —0.33. [, = 1 and f;, are gain factors (or synaptic
weights). If Z;;(t) = ui;(t) (equation 4), then B4, = 100. If Z;;(t) = 8;;(t) (equation 5), then f3;, = 150. The
output is given by vy = [vij]+. The effect of increasing 3, is shown in figure 10.

= Gicak(Viest — Vi) + BeaDij (1) (Eew — vij) + BinZij (1) (Ein — vij) (6)

3.5. The LGMD neuron

The LGMD neuron integrates the activity of all excitatory units according to

&= Z U}j (7)
(2]

In contrast to the Rind et al. model, our LGMD neuron does not receive feedforward inhibition. The LGMD

dynamics obeys
di(t)

g = Tieor(Vrest = 1) + e E () (B = 1) (8)
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Figure 4. Temporal evolution of different model stages. A typical simulation run for a checkerboard object
approaching at 50 km/h or 13.9 m/s (ttc 240 msec). Row ”stimulus” shows the stimulus at different simulation times
given in milliseconds. Row ”ON-OFF ” shows corresponding responses of ON-OFF cells (equation 2), row ”excitatory”
shows responses of the excitatory neuron (equation 6) which undergoes lateral inhibition (row ”lat.inh”) by diffusion
(equation 5). In the first row, brighter colors denote higher luminance values. In all other rows, darker colors indicate
higher activity. All images were individually normalized such that the full dynamical range is shown.

and the final model output corresponds to the rectified state variable I(t) = [I(t)]". Parameter values are
Great, = 50, Viest = —0.001, E., = +1, and E;, = —0.33. e = 5 - 128%/n? is a gain factors, where n is the
number of rows or columns of the neuronal layers (we used n = 128 for input images of size 128 x 128).

4. METHODS

All differential equations were integrated using an explicit forth-order Runge-Kutta scheme with integration
step size At = 5 msec. Typical matrix size was 128 x 128 pixels. Most of the simulations were performed
with ”inhibition by diffusion” and ”inhibition by delay”, in order to verify the computational equivalence of
both mechanisms. Stimuli consisted of an ”object” defined by a foreground luminance patch which was scaled
according to physical movement in depth. The object was embedded in a background, which was held static
(i-e. non-moving). The default ”object” consisted of checkerboard on a uniform grey background. This implies
that the mean luminance value of the overall retinal image is constant during symmetrical object movement in
depth (background luminance was set equal to mean object luminance). Simulations were performed with four
velocities (25 km/h, 50 km/h, 75 km/h and 100 km/h)*. Object diameter was 5 cm for figure 7, 70 cm for
figure 8, and 35 cm for all other figures. Under the assumption that our stimulus was only projected onto a part
of a real animal’s retina, we set the visual angle simulated by our input image to 45 degrees (c.f. 100 degrees in
pigeons?). The initial distance of the ”object” was always set to 5 m, and the time-to-collision (ttc) for the four
velocities is 720 msec, 360 msec, 240 msec and 180 msec, respectively. A typical simulation run with the default
object/background combination is shown in figure 4.

*Corresponding to 6.9 m/s, 13.9 m/s, 20.8 m/s, 27.8 m/s.
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5. RESULTS
5.1. Does Our Computational Model Approximate an n-Function?

The left plot in figure 5 visualizes the n-function® for the simulation parameters given in section 4. The response
peaks of the n-function relative to ttc occur at -5 msec, -10 msec, -15 msec and -30 msec (i.e. before colli-
sion). Figure 6 (left) shows the corresponding LGMD responses for the ”inhibition by diffusion”-model (thick
curves) and the ”inhibition by delay”-model (thin curves). It appears that both of our models approximate
the 7-function, even though neither an explicit computation of the angular velocity © of the retinal image was
used, nor feedforward inhibition. How is this possible? Suppose that during an object approach, at some time
tpeak <ttc, the object cannot stimulate more retinal photoreceptors. Otherwise expressed, the angle subtended
by the object O (fpeqr) matches the angle of the maximally excitable retinal subregion: increasing © further has
no more effect. Since lateral inhibition is triggered by photoreceptor activity in a retinotopic way, it lags behind
excitation for ¢ < tpeqr. However, at t = tpeqk, N0 more excitation due to photoreceptor stimulation is generated,
and lateral inhibition catches up with excitation. This causes the decline of LGMD activity although the object
grows further until collision.

In the opposite case, when the approaching object is small enough such that ©(¢ = ttc) is smaller than the
maximally excitable retinal region, then the LGMD response cannot peak before ttc. Figure 7 shows that the
peaks of LGMD responses shift towards to ttc for smaller objects (size 5 cm), whereas response peaks shift away
from ttc for larger objects (figure 8, size 70 cm). In all, the interplay between the visual angle of an approaching
object subtended on the retina at ttc, together with the maximally excitable region of the retinal photoreceptor
array, determines whether or not the LGMD response peaks before ttc.

One further implication of this interplay is that increasing the strength of inhibition decreases LGMD responses,
but may shift the peaks away from ttc, what is shown in figure 10. To further investigate if our LGMD responses
actually approximate an n-function, we used different functions ©(t) (figure 9). This has the effect that also O(t)
changes, what may cause dramatically changes in the shape of 5(t) = C €] exp(—a®). In addition to the ”physi-
cal” approaching law ©(t) = atan(d/2D(t)) for constant velocity v (d object diameter, D(t) = Dy — vt remaining
distance, Dy initial distance), we tested our model with a linear function ©(t) o  (implying ©(f) =const.),
and an exponential function ©(t) o« exp(At) (with a constant A > 0). If our LGMD responses approximated
an n-function, then their shapes should match the theoretical predicted curves in figure 5 (right). Although
figure 6 (right) shows that the peaks of LGMD responses shift away from ttc, their shapes are quite different
from the theoretical predicions for the linear and the exponential functions. Summarizing so far, one can say
that LGMD responses in our model do not approximate an n-function in a mathematical sense, but under certain
circumstances the LGMD responses may turn out to be similar to an n-function.

5.2. Receding Objects, Low Contrast Objects, and Textured Backgrounds

Figure 11 shows LGMD responses to receding objects. The model reveals a strong initial response at the begin of
object recession, which is quickly suppressed by lateral inhibition. No prolonged LGMD responses are observed
as a consequence of the absence of feedforward inhibition, since all retinotopic positions are instantaneously
subjected to lateral inhibition. Notice, however, that our LGMD responses for receding objects are bigger in
amplitude than the corresponding approaches. In the sense of Rind et al., this means that our circuits show
no preference for approaching over receding objects. However, the initial configuration of all simulations with
receding objects was such that we started with an object at the retina. If we had done these simulations starting
with an approaching object which at ttc starts to recede, then we would have observed that the LGMD responses
due to recession are smaller in amplitude, since inhibition would have been present already from the approaching
phase. Then, our LGMD responses would have shown this just mentioned preference. Figure 12 shows responses
to an object at half contrast. Because no adaptive mechanisms were implemented at the photoreceptor level,
LGMD responses drop off accordingly. If, therefore, we detected imminent collision by monitoring if LGMD
activity exceeds a threshold, then we would have to chose the threshold value sufficiently low. Nevertheless,
this implies that collision would be detected earlier for approaching high-contrast objects. An adaptational
mechanism at the photoreceptor level could significantly reduce this problem, such that collision detection does
not strongly depend on object contrast. Figure 13 shows a simulation run with a noise patch as object embedded
in a noise background, where LGMD responses are also decreased, but object approach is signalled reliably.

Proc. of SPIE Vol. 5119 291

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 27 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



6. DISCUSSION AND CONCLUSIONS

We presented two computational models for signalling impending collision, where each of our models relied
on a different implementation of lateral inhibition. For the stimulus set which we used, the model based on
”inhibition by delay” represents a computationally equivalent approach to a previously suggested one by Rind
et al..>'  However, our ”inhibition by delay” model is parsimonious, since it uses only the crucial parts in
order to perform the same computation. Furthermore, it works with a more universal stimulus class, since it
signals approaching objects independent of contrast polarity, contrast strength and background. We compared
the ”inhibition by delay” model with our second model based on ”inhibition by diffusion”, and demonstrated that
both models are computationally equivalent. This makes the ”inhibition by diffusion” model interesting for a
possible implementation in VLSI, since it relies exclusively on nearest-neighbor interaction, whereas ”inhibition
by delay” involves in addition next-nearest-neighbor interactions. We furthermore derived a condition under
which our models generate LGMD responses which are similar to the n-function. This is generally the case if
an approaching object stimulates a subregion of the retinal photoreceptor array which, as the object continues
to approach, does not extend further. The stimulated region thus must be smaller than the object at ttc to
observe an activity peak in the LGMD response. However, our model does not approximate this function in a
mathematical sense, as one can verify by comparing figure 5 (right) with figure 6 (right).

Although our model robustly signals approaching objects embedded in non-moving backgrounds, the performance
drops with looming or translating backgrounds, since lateral inhibition due to background movement decreases
LGMD responses, and at the same time the sensitivity to approaching objects. Consequently, mechanisms for
motion adaptation (e.g. Ref 15) have to be included into the model, such that stationary moving backgrounds
are suppressed. Similarly, illumination adaptation, such as lateral inhibition in the retina, or gating of luminance
at the photoreceptor level (e.g. Ref 14), should be included to obtain LGMD responses which are largely
independent of the currently prevailing illumination conditions.
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Figure 5. Theoretical predictions. The 7-function (7(t) = C'© exp(—a®))® was proposed as a model for LGMD
responses. Left: 7-function as a function of time for different approaching velocities (see section 4). The response
maxima occur before ttc (see corresponding numbers in the figure headline). Right: n-function for different functions of
angular size O(t) (figure 9, see also section 5.1)
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Figure 8. Bigger object size. Bigger approaching objects (diameter 70 cm, thick curves) shift response peaks away
from ttc (see numbers in headlines) relative to smaller objects (diameter 35 cm, thin curves). Left: ”inhibition by delay”
Right: ”inhibition by diffusion”.
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Figure 9. Different functions for the angular size © of an object on the retinal array. In addition to the
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Figure 10. Increasing lateral inhibition by 50%. Increasing the strength of lateral inhibition shift LGMD response
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peaks away from ttc (thick curves). Thin curves correspond to default parameters (see figure 6). Left: ”inhibition by
delay” Right: ”inhibition by diffusion”.
o receding object o recedmg object
- [— 25kmn — 25kmh
o6k ........... ........... ........... e — 50 km'h — 50 km/h
: : : : — 75km/h |: — 75 km/h
05 ........... ..... 100 km/h ;. 100 km/h .
2 2
Soall M | &
oalf A S S S - S
01 E ........... s ........... ........... S
DEl 01 072 UTS Ui4 UTS UTB Di7 072 UTS Ui4 0s UTB Di7
time/secs time/secs

Figure 11. Receding objects. LGMD responses for receding objects with different velocities. Although no feedforward
inhibition is incorporated in our model, no prolonged responses are seen. Left: ”inhibition by delay” Right: ”inhibition
by diffusion”.
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Figure 12. 50% luminance contrast. LGMD responses for a low-contrast checkerboard object (thick curves), where

the contrast were half as strong as the full contrast checkerboard (thin curves). Left: ”inhibition by delay” Right:

”inhibition by diffusion”.
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Figure 13. Noise patch on noise background. LGMD response curves to a noise object embedded in a noise
background (thick curves). Thin curves correspond to default parameters (see figure 6). Left: ”inhibition by delay”
Right: ”inhibition by diffusion”.
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