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We discuss the effects of a strong external field on the optical transition between two electronic
states of a solute immersed in a medium. The solute states may be weakly or quite strongly coupled
to the medium. The electronic dephasing process is characterized via the power absorbed by the

solute. The average absorbed powét) for resonant, strong fields exhibits an oscillatory decay in
time, reflecting the finite change in the population difference of the electronic states, and the
dephasing arising from the coupling to the medium. The coefficierl{)fdepend on the detuning

from resonance as well as the coupling strength between the external field and the solute’s transition
dipole. Our method is nonperturbative in the external field strength and shows that the spectral line
shapes can be systematically altered by the application of a strong external field. We also show that

for strong but off-resonance field®(t) returns to the linear response regime. 1®99 American
Institute of Physicg.S0021-960809)51816-3

I. INTRODUCTION on rates of thermal charge transfer reactions, at#igtand
low temperature&? without relying on a perturbation expan-
sion in the external field.

In a recent articlé® we introduced a new nonperturba-

Optical spectroscopy of probe moleculésolutes in
condensed medigolvents provides a wealth of information

on the interaction between the solute and the sol¥eht, .. : .
tive approach to optical spectroscopy that relies on a strong,

whether the solvent is a liquftii°a crysta®!'a glass**?or ; . )
. 1314 . . o resonant external field to drive the system beyond the linear
a protein.>~"*The broadening of the optical transition reflects . .
response regime. We shall refer to this spectroscopy as

the dephasing arising from th? coupling (.Jf the solute to ItSstrong field spectroscogBFS. The coupling of the external
many-degrees-of-freedom environment. Line shapes are paj- ) . . ) e
. . field to the solute’s transition dipole moment is sufficiently
ticularly broad when the two states of the solute have quite . ) ; .

. . . . Strong that it changes the solute’s electronic-level population
different electronic structures, and there is substantial coux. S

. e . difference by a finite amount. The average power absorbed
pling of these differing charge distributions to the solvent.

We shall refer to this dephasing mechanism as dissipation iRY the soluteP(t) is a function of time, and depends on the
the following, although it should be noted that it does notéxternal field strength in a characteristic fashiérhe aver-

require nuclear motion. This is why the line shape for elec-29€ IS over the medium fluctuationdhis contrasts with a
tronic dephasing can be quite broad. weak field, where the linear susceptibility is constant in time,

The original approaches to studying optical transitions2d does not depend on the external field strength. We ana-
were based on Linear Response TheRT) (equivalently, lyzed the time dependence 6i(t) for the case of weak
Fermi's golden ruleand provide the material properties via coupling between the solute and the solvent, as it is ame-
the linear susceptibility. In the linear response regime ther@able to an essentially analytic treatment. Weak coupling
is a close connection between optical spetétg., for inter- ~ corresponds to the fast modulation regime introduced to lin-
valence bandsand nonradiativetherma) electron transfer ~€ar spectroscopy by, e.g., Kubblt is defined in terms of the
ratest>~!" as the information is contained in a spectral den-characteristic coupling strength=2E kgT/%°, with E,
sity (lineshapg that depends on the strength of the dissipathe reorganization energy angdthe medium relaxation time.
tion and the detuning of the transition frequency from theln the fast modulation regimé& 7.<<1. In this regime, simple
applied field frequencythe latter being zero for a thermal expressions for the coefficients of the time depende(t)
process More recently, various forms of nonlinear spectros-could be obtained. These coefficiehté Eq.(28) below] are
copy have been developed. They are based on either perturerentzian line shape functions with center frequencies
bative expansions in the strength of the external field, involvshifted from the usual detuning between applied and transi-
ing nonlinear susceptibilities?® or on nonpertubative tion frequencies by the strength of the external field solute
analysis of the density matri%:'° We have recently studied coupling. The Lorentzian’s widths reflect the strength of the
the role of strong constant and time dependent external fielddissipation appropriate to this fast modulation situation. The

0021-9606/99/110(16)/7966/11/$15.00 7966 © 1999 American Institute of Physics
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dependence of these coefficients on the external fieldnal electron transfer reaction, as we assume that it is much
strength provides a potential method to manipulate the fresmaller than the term 7(t) responsible for an optical
quency regime for which the power absorbed will be maxi-transition® (The formal similarity between optical spectros-
mal. copy for electronic dephasing and charge transfer reaction
In this article, we develop our strong field, nonperturba-kinetics has often been exploitéd?>251§ Because the elec-
tive spectroscopy to be applicable to slow modulation, whereronic dephasing is rapid on nuclear motion time scales, we
A7.>1. Examination of typical solute-solvent energetics in-neglect the effects of vibrational dephasing as well as vibra-
dicates that the slow modulation regime is more likely to betional population relaxation.
obtained than the fast modulation regime in most condensed The reduction of Eq(1) to a stochastic set of equations
phase systems. We will show that while the resulting expresef motion can be carried out in a manner similar to the one
sion for P(t) is numerically different than for fast modula- we used to analyze charge transfer reactfdngsing the
tion, the difference does not alter the conclusion that thdieisenberg equation of motion for the operatar
power absorbed can be manipulated with strong external

fields. inO=[0O,H], 2
The above considerations pertain to resonant behavior,

when the external field’s frequency is tuned to induce maxiwe obtain for the Pauli operators the equations

mum power absorption by the solute. Once off-resonance,

the strong external field is not effective in inducing transi- o,(t)=4b(t)oy(1),

tions in the solute. We will show how nonresonant SFS will

then essentially return to the linear response regime. 2
The plan of the rest of this paper follows: In Sec. [l we  0y(1)=—4b(t)o,(t) - gE ;9 () o (1)

introduce a Hamiltonian appropriate to a two-state solute .

coupled to a solvent such that the solvent’s equilibrium po- AGy

sition may be significantly altered by the presence of the two TR ox(t), ©)

solute charge distributions. A reduction to a stochastic set of
equations of motion for the solute’s density matrix is carried

AG
out, with the solvent providing a classical stochastic process 7

as a high temperature approximation. In Sec. lll we summa-
rize our previous work on resonant SFS for fast modulation
between the solute and solvent, and then analyze the no
resonant case to show how a form of linear response theo
is obtained. The slow modulation case is discussed in Se

2
(0= 5 2 7 (D00 + == 0y(0).

YVe will assume that the solute is initially in the ground

7

ectronic staté0) and that the temperature is high enough
d the solvent frequencies low enough for the solvent de-

IV. In Sec. V, we summarize our results and suggest futurgrees of freedom to be treated classically. Furthermore, we
directions for this strong field spectroscopy shall assume that the solveshtnamicsis independent of the

quantum state of the solute. This assumption will limit the
applicability of our approach to solute-solvent couplings that
are not too strong, as we shall discuss further below. The
equations of motion for the solvent variables will be obtained
from the Hamiltonian describing their interactions with the

Il. THE MODEL

A model Hamiltonian that can characterize electronic

dephasing is: solute in its initial, ground state, namely,
p2 1 Yi 2
H=E —]+—m-a)-2(q-——1(r 2 2
~ om. 2 1Y ' m 29z p; Vi
i i j @ Howr= > 2_rrj1-+§mjw12 qj——m_J.2 . (4)
i i j 9
- @U +2hb(t)o (1)
2 ‘ - It then follows from Hamilton’s equations that
The solute has two electronic states denoted by the |Rets
and|1). The solvent is represented by independent harmonic _ 7h
. - . igi(t)= i1 9i(0)— ——=|cosw;t
oscillators whose origins depend substantially on the elec- ; 79 2 LRI mjwj2 i
tronic state of the solute. These shifts reflect the differing )
interaction energies between the two charge distributions of n 7P;(0) sinwt +E 7 (5)
the solute with the solvent. The; (i=X,y,z) are the Pauli jwjz ! ] mjw]-z'

spin operators. The external field-solute interaction energy is

defined by Zb(t)=(0|x|1)-E(t), where is the solute’s Note that the last term in the above expression is half the
dipole moment operator arid(t) is the external field. The reorganization energf,. The reorganization energy is the
guantityAG, is the standard free energy difference betweerdifference between the solvent potential energy with the sol-
reactants and products. Thg's and w;’s are, respectively, ute in state|1) and the solvent still in the equilibrium con-
the oscillator masses and frequencies, and1tfie are the figuration for the staté¢0), and the equilibrium potential en-
solute-solvent coupling constants. Notice that we are neergy of the solvent with the solute in statg). In other
glecting the tunnel splitting energy that could induce a therwords, E, is
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0 Y| 0 Y| where A= \2E, kgT/#? characterizing the strength of the
Er=Hpan 9 mw? bat qJ:—zm_w_ solute-solvent coupling, and. characterizing the solvent’s
] 1

relaxation, as defined in Sec. I. This is the model that we will
Y| use here; more complex models can be introduced at the
:22 Mo (6) expense of a more numerically intensive calculation.
! The equations of motion in Eq10) coincide with those
The equations of motion for the spin operators then can bebtained from the stochastic Hamiltonian,
written as

h
T () =4b(t)ay (1), Hstocri= — 5 (wo+ (1)) 07+ 2b(1) 0, 13

) —_ab E/+AG, where the solvent dynamics is replaced by the classical sto-
ay(t)= =4b(t) o(t) = ————o(t) = (1) (1), chastic process(t). This can be immediately seen by sim-
(7) ply writing the density operator as a linear combination of

Pauli operators
E,+AG

()=~ 0y () + (D)o (1), (1) = {1+ x(D o+ y(D oy + 2(0) ). (14)

where It is straightforward to verify thag(t) represents the differ-
ence in population of the two electronic levels, whilg) is
proportional to the electronic polarization. Inserting Ety)
into the Liouville equation results in the stochastic equations
of motion for the time dependent coefficient§t), y(t),
X(t). It should be pointed out that the above stochastic de-
scription relies on the consideration of the solvent variables
) - o as classical variables whose motion is not affected by the
In an optical transition, the solvent is initially at thermal gpin gynamics. Of course, the initial condition, where the
equilibrium with respect to the initial electronic state. Thusggyent is equilibrated to the solute in stdl is accounted
an appropriate initial condition is given by the density operatyr The restriction to a solvent dynamics that is independent
tor of the solute means that the reorganization energy cannot be
1 o too large. A quantitative measure of this restriction is that
pinizae‘BHbaﬂO)(OL (9  E,/A%r<13 Using the connection betweenhandE, given
after Eq.(12) this meansyE,/2kgT<<1 and limits reorgani-
with C the normalization constant. The average of Ef).  zation energies to the scale of 100 cmFor typical solvent
involves a trace over the sggboluteé and over the solvent relaxation timesy., there is still a wide range of parameter
variables. Definingz(t) =(0|o,(t)|0), X(t)=(0|o(t)|0)  space wherg/E,/2kgT<1 and the slow modulation condi-
andy(t)=(0|o(t)|0), and carrying out the trace over the tion of A7.>1 is met. IfE, is large compared ta then the

7i
5 | Cosw;t

2
nm=g;yﬂmw%

i(0
4 Bl ;sinwjt
j @i

: )

spin, provides the set of equations buildup of quantum fluctuations during the dynamical evolu-
) tion will be reflected in the solvent dynamics. There will be
2(t)=4b(t)y(1), a complex coupling between the solvent and spin dynamics,
()= —4b(1)z(t) — (wo+ 7())X(1), (10) and an analytic approach will be extremely challenging. We
stress that the preceding connection between the mechanical
X(1) = (wo+ 7(t))y(1), Hamiltonian and the stochastic model is correct for small

_ 0 . _ .. values ofby, where the populatioa(t) is hardly changing.
wherefimg=E,+AG" is the energy difference in the optical |, is whenz(t) is changing significantly anH, is large in the

transition. The functiom(t) depends upon the initial values above sense that there can be a feedback from the solute to
of the solvent variables. The solvent variables are onIy[he solvent dynamics

known in terms of the probability law characterizing the con- The instantaneous power absorbed by the solute from the
ditional thermal equilibrium. The probability distribution of external field is

the solvent can be obtained by taking the trace over the spin

operator in Eq(9). Then, (t) is a Gaussian stochastic pro- Pt)=Tr p(t)zﬁb(t)gx, (15)

cess with zero average and correlation function )
where the trace is over all the degrees of freedom. In the

4kBTz 7,—2 coSe t 11 §tochastic description,_we inseﬁ(t_) as give_n by Eq(14)

n? 4 mjwjz it into Eq.(15). Thus7(t) is a fluctuating quantity. Its average,
) o P(t), follows directly from Eqs(14) and(15). Then,

where(---) represents an average taken with the initial en- = _

semble. The form oK(t) depends upon the distribution of P(t)=2hb(t)x(1), (16)

frequencies and coupling strengths. A useful model, cor-

responding to a Debye spectrdft®?%is

(n(H)n(0))=K(t)=

wherex(t) represents the stochastic averagex(. Thus
our first task is to obtain appropriate expressions for the av-
K(t)=A%e Y7, (12 erages. This is done in the next section.
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IIl. EQUATIONS FOR THE AVERAGES the limit of very weak fields one neglects the time evolution

_ i ) of z(7) by setting it equal to its initial value. Then the linear
For weak external_ﬂelds, appr_opr_late_ to the linear re'response theory result is recovered. Namely,
sponse theor{L RT) regime, the distinction is made between

fast and slow modulation on the basis of the quantity,
being small or large, respectively. These fast and slow modu-
lation regimes lead to Lorentzian and Gaussian line shapes,
respectively, as is well known in NMR and in optical line- Xe—fjdslfildszm4b(7)
broadening studies. The different regimes are accessible via

a common formalism, as shown by, e.g., Kif8dor strong (g

Plri(t)=— 2ﬁb(t)[ Jotdrsinwo(t— 7)

. (22

rom Egs.(17) with the initial conditions considered and the
ssumptions about averages of products mentioned above, it
follows that

external fields and fast modulation we previously develope
equations of motion for the average values€), y(t) and
z(t) based on a perturbation expansion Av..? This
method was also used by us to study thermal charge transfer
reactions in the presence of a strong external fedohd by
others to study aspects of optical transitidhgvhen the cou-
pling is strong, it is not feasible to obtain equations of mo- Xe*fidslfildm(sl)msyz 7)4b(7),
tion for the averages. Since we want to develop a common .
formalism for fast and slow modulatlon we now introduce Vit)= _f d 7 coswg(t—17)
another procedure to analyze both regimes. This method re- 0
lies on a decoupling approximation that, as we shall see, N
leads to the same results as obtained by the perturbation in x e~ lda dsnsunsIz 1) ab( 1), (23
A7, method. For slow modulation, we validate the results of . —_
; S . Z(t)=4b(t)y(t).

the decoupling approximation by a numerical method.

It is convenient to define the variables =x*iy and As noted above, we will consider tha{t) is an Ornstein—

X(t)=— JOthSinwo(t— 7)

rewrite Eq.(10) in terms of these new variables as Uhlenbeck process with correlation function given by Eq.
. . : 12). Then,
b (1)=~i(wo+ v, (1)~ 14b()2(1), (2.
) , , — s s, p(sp) () — @ (A7) [ (t— ) 7g+e "D e g
v_(t)=i(wo+ n)v_(t)+idb(t)z(1), 17) e [Hdal A5 n(sy) = g~ (A l(t=nlrcte 1_(24)
Z(t)=—12b(t)(v+ () —v_(1)). The averaged equations of motion in E3) are suitable to
Formal solution of the first two equations with the initial investigate the influence of strong external fields for the two
conditionv .. (0)=0 leads to the noise average limiting cases of fast and slow modulation, as we show in the
. following two sections.
v_+(t)=—if dre 1wt Dg 197 1)ab( 7). (18)
0
. . L IV. FAST MODULATION
We will assume that the stochastic proceés) within the
integrand can be replaced by its noise average so that In the limit of short correlation timer, and/or small
. _ coupling strength\, whereA 7.<1, Eq.(24) can be approxi-
—i[tdsn(s)5( 1)~ @i/ dsu(s
e A9z 1)~ A7 7). (19 mated by
This is the decoupling approximation noted above. Further- e,f;dslfildszm%e,d(t,ﬂ’ 25)

more, as the stochastic procegd) is Gaussian, the average
of the exponential can be expressed in terms of the secorihered=A?r; is assumed to be small compared with. It

cumulant®® Then, measures the strength of the solute-solvent interaction giving
. rise to the dissipation. By taking time derivatives of E28),
vL(t)= _iJ dreiwot=ng=Idsy S tds,n(sp n(sy) it is easy to check that the averages satisfy the equations of
0 motion
Xz(7)4b(7). (20) X(t) = woy(t) —dx(1),
Taking into account that(t) =Rev,(t), the noise averaged V(1) =— wex(t) —dy(t) —4b(t)z(t), (26)

power absorbed is . _
t Z(t)=4b(t)y(t),
P(t)=—2ﬁb(t)“’ d7sinwg(t—17) with initial conditionsx{(0)=y(0)=0 andz(0)=1. These
0 equations of motion are the same as those obtained by the
P perturbation theory® Although Eqgs.(26) can be readily in-
x e~ Tr9sl dsnsun(sz( ryap(7) | (21)  tegrated numerically, insight can be gained by carrying out
an approximate analytical treatment. This case has been pre-
This expression relates the instantaneous average power gibusly treated by S for external sinusoidal field$(t)
the solute with the noise averaged population difference. Ir=bgy cosQt with frequencies() that are close to the fre-
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guency of the optical transitiom,. Here we will just quote where thes. = wy* () are the detuning frequencies. Thg

the results. The population difference is given by and Js appearing in the above expressions are defined in
q terms of the integrals

Z(t)=e 9 cosw,t+ z—wlsinwlt , (27a ) .
where I(v)= fo dte 92 cog vt) = 22
wy=/Ab— (d/2)2. (27b i}
In obtaining Eq.(273 we have assumed a sufficiently strong ~ J(¥)= Jo dte”"2sin(vt) = (TZ)VZ‘F_VZ (29

external field such thaty>d/2, leading to an underdamped
oscillator behavior forz(t). Using this expression in Eq. We refer to thd’s andJ's as the spectral densities; they are,
(21), the power absorbed by the solute can be expressed agspectively, the real and imaginary parts of the one-sided

Papdt)
(1/2)%(2bo)2Q

=2e 9 C,cosw t+C; sinw t]+e 92
X[C, 0820 + wq)t+Czc0920 — wq)t

where

1
C0=Z[|(5_—w1)—|(5++w1)+|(5_+wl)—|(5+—w1)]

1
—iZ[J(5,+w1)—3(5,—wl>—J<5++w1>

2(,()1
+3(6: —wy)],
d 1
C1=2—w1Z[I(5_—w1)—|(5++wl)+|(5_+wl)
1
10—y ]+ 7[I(6-+ 01) —I(6-~wy)
—J(0; +01) +I(6y —w1) ],
1 d
C2=—§[|(5—w1)—|(5++w1)+ 2—(1)1.](5,—0)1)

2

d
+Tl\](5++w1)

1 d
C3=—§ |(5,+(x)1)—|(5+—0)1)—2—(1)13(5,4-0)1)

d
- 2_0)1‘](5+_w1)

1 d

d
+2—wl|(5++a)l)

1 d

d
- z_u)lJ(5+_wl)

Fourier transform of the relaxation kernel exqg(t/2), evalu-
ated at the indicated frequencies.

In the fast modulation limit, the LRT result for the
power follows directly from Eq.(22), which shows that

P r1(t) is a periodic function, and its cycle average

_ QO (2710 __
(Prr) = . fo dtPgr(t) (30

provides the conventional result

(PLrr)=341(2bo)2Q[1(5_)—1(8:)]. (3D

The system’slinearn susceptibility,( P, gr)/ 3% (2bg)%Q, is
independent ob,, of course. The spectral densityv), cf.
Eq. (29), is a Lorentzian with broadening given by the dis-
sipationd=A27,, reflecting the solute-solvent interaction.

The approximate result of E28) shows that a Fourier
transform ofP(t) will lead to lines broadened by the dissi-
pation,d, centered at the frequencieg and 2+ w;. The
spectral densities are displaced by~2b, [cf. Eq. (273]
with respect to the weak field valupsompare Eq(31) with
Eq. (28)], suggesting that the line shapes can be manipulated
by the application of strong external fields.

Of interest is an indication of the duration of the external
field required to obtain these strong field results. One might
expect that the external field should be on for a time longer
than the inverse of the dissipationdl/as this will insure
that the field will be on during the lifetime af(t), cf. Eq.
(273. To investigate this issue, we numerically solve Eq.

(26) and construcﬁ(t) for an external field of the form

b(t)=b, cog Qt)e /27, (32)

where 7 is a time characterizing the external field envelope.

Results forP(t) with =100, 10, and 1 are displayed in Fig.
1. Ther=100 value is essentially the same as that obtained
for the field on for all time; a low frequency peak shifted
from zero by D, and a peak split by 12, around 2v,. The
7=10 plot shows that the shift from zero and the split peak
are gone, indicating that the field is on for a time interval
smaller than the inverse dissipation, and a basically linear
response result is being obtained. For 1, note that the
scale of the power absorbed is much smaller than for the
larger 7 values, as expected. Since the dissipation is an elec-
tronic dephasing effect, and this is quite fast in typical sol-
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P Piw) o X(1)+2 dX(t) + (0§ + d?)X(t) = — 4bowy COSQUZ(1),
80 15 T=10
60 = 1000 60 =100 25 = - —
o 1 I y(t)+2dy(t) + (w§+d)y(t)
051152253 051152253 051152253 d
== g (4b(1)z(1) — dab(tjz(t), (33

FIG. 1. Power spectrunf(w), of P(t) for the indicated values of, the
width parameter for the duration of the external field, cf. BB), for wg 2(t) =4b0 COSQtV(t).
=1.0,0=1.0, andd=0.05. Time is measured in units ofd4. As 7 de-

creases, the strong external field effect vanishes and becomes appropriate\'bge may neglect the first derivativeﬂt) on the r.h.s. of the
what would be obtained by linear response theory. . .
equation fory(t) in Eqg. (33), as far from resonance(t)
varies slowly. The resulting equation is solved approxi-

i mately by writingy(t) =y, (t)z(t) and neglecting transient
vents, the external field does not have to be on for very 10NGacts. The result is

in order to produce the full strong external field effect.

The analytic expression that we presented above is for 4bo() _ T
resonant behavior, defined to iBe =0(Q = wy). Actually, yi(H= [(wg—92)2+4d202]1/28m Q=5 +h
resonance could be considered to be detunifgs: 2bg
=0. To investigate this feature we plot in Fig a series of 4bod .
— — sin(Qt+ B), 34
Fourier transforms of(t). The strong field effect discussed [(05—02)%+4d20%])2 "\ AL (39

above is in evidence not only faf_ =0, but also for fields
that satisfys_+2b,=0. This result shows that there is a WNere
kind of linear response behavior in evidence, as the low- 2dQ
frequency behavior has a peak at zero frequency. Neverthe- cosf= (02— 027+ 4 2077
less, the strong field effect is still well in evidence. We also (g
display results for detunings outside the resonance width to w2— 02
show how the linear response regime is regained, including sing= 0
the high-frequency behavior. The limit of the resonance be-
havior should be for detunings, now including the strongyyging this approximate form fai(t) in the third equation in
field effect of 2oy, that are outside the width,d/ In fact,

: i Eq. (33) produces
the displayed results for the nonresonant behavior are gener-

(35

[(wg_w2)2+4 dZQZ]l/Z'

ated not by numerical solution of the equations of motion but | (4bg)?

rather from the following analytic approach. 2(t)= [(w2_92)2+4d292]1/2[0052 Qt(-Qcosp
Far from resonance one expects that the population dif- 0

ferencez(t) changes slowly. This is the case when- w, +dsing) +cosQt sinQt() sing—d cosp)]

+2by>d. For the purposes of this analysis, it is convenient XZ(1). (36)

to recast the averaged equations of mofigq. (26)] as
This equation can be integrated to yield

_ (4bg)®  d(wg+Q?) sin 20t
80 Inz(t)=— 2 2\2 202 t+
6 @ 2 [(wg—Q9)+4d°O°] 2Q
22{ i (4by)?  w2—02(1+2d?)
3 4 [(w5—Q?)?2+4d%02?]
b > X (cos 20t—1). (37)
P(w) 20 © 1: ©
» 10 The coefficients of the sinusoidal terms ofz{t) are small
5 5 compared with the term linear in Thus, keeping just this
1 2 3 " 0.5 1 1.5 2 2.5 3 3.5 term, We have
g;:i At)~e At (38)
:Z @ ﬁf; © with
0.5 1 1.5 2 2.5 2 0.5 1 1.5 2 2.5 3 B (4b0)2 d(wg+92) 39
v w 2 [(05—0P2+4d%0° (39

FIG. 2. Power spectrun‘i_?(w), of77(t). _(a) ‘Resolnant behavior is defined as  Note thatA<d. Thus the time decay of the population dif-
@o=0=1.(b) and(c) Resonant behavior is definedag—1=2b,=0, for ¢ 0506 for off-resonance fields will be much slower than the
2by=0.05, respectively(d) and (e) The power spectrum away from reso- . .

nance, with D,=0.1, respectively, that coincides with the result expectedd€cay for a field of the same strength and with a resonant

from linear response theory. frequency, as expected.
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Now inserting the above approximate expression for theontribution of the population difference comes from the av-
population difference into Ed23), and substituting this into erage ofz(t) over an external period. Then, we can replace
the instantaneous power absorbed expression(Hg), we the above equation by its cycle average as
obtain

_ S04 — _ 2|~ —A2722_ 0
Papdt) Z(t)=—(2bg) fo dre z(t— 7). (45)

— . * 7d7. .
(12%(2bg)200 4sttf0 dre” “"sinwgT

In contrast to the fast modulation case, it is not possible to
X cosQ(t— r)Z(t— 7) rewrite Eq.(45) as a damped oscillator. Nevertheless, the
fact that in both cases there is a rapidly decaying kernel in
the respective integral equations suggests that an approxi-
mate damped oscillator should be an appropriate solution. To
verify that this is a viable procedure, we solve E45) by

=e AYsin(20t)[I(wo—Q;d—A) +I(wo+ Q;d—A)] Laplace transformation techniques. Accounting for the initial

=4 sithe*A‘f dre” @A 7sinwer cosQ(t— 7)
0

+(1—cog2Qt)[1(wo— Q:;d—A) condition, the Laplace transform is
+1(we+Q;d—A) T} (40) %(s)= i ' 46
The spectral densitidg v) andJ(v) are defined in E¢(29). s+M(s)

This result indicates that the solute absorbs power at zergnere
frequency and at frequeney~ (). Then, if we average over

a cycle of the external field, we find that, for off-resonance
and strong fields, the net power absorbed is given by an
expression that essentially coincideA<€d) with the one

obtained from LRT, as in Eq31). V2
43D =(2bo)22—: eSZ’ZAzerfc(

M(s)=(2by)? f dte Ste2%%2
0

(47)

v2 A)

and erfc is the complementary error function. The inversion
of this expression has to be done numerically. We have used
We will now focus our analysis on the slow modulation available Fortran routiné&to numerically evaluate the func-

regime defined byA 7.> 124 that is favored by increasing the tion W(x)=e ~ erfe(—ix) and perform the inverse Laplace
solute-solvent coupling, i.e., largEt values, or more slowly transform of the previous expression.

relaxing solvents with their longer, values. For nonpolar or The numerical results and the above analysis do suggest
weakly polar solvents in simple or complex liquids, and for that an effective oscillator solution of E¢15) of the form

V. SLOW MODULATION

many glasses, where the coupling between the solute and A
solvent is via lattice deformatioriphonong, the slow modu- Z(t)=e M| cosQ t+ Q—sinﬂlt) (48)
lation regime is the appropriate one. Linear response analysis !
leads to a Gaussian line shape function for absorgfion, provides a suitable approximation. The paramexef3d; can
1 )2 be determined by inserting E48) into (45). This leads to
1,(Q)= ex;{ _ (@o , ) ) (42) the algebraic equations
J27A 2A

Q,ReG=NImG,

2

A
0+ = (2by) (Im G+ Q—lReG>

In the slow modulation regime,
e—f:_dslfildszn(sl) n(sz)%e—Az(t—r)ZIZ (42)

is to be used in Eq(23). Near resonance, the expression forwhere®
y(t) can be simplified by neglecting the contribution of fast

oscillations. By also taking into account the rapid decay of J dte~ (A%t nt+iQqt
the integrand, we have
7(t)=—2bocosﬂtf dre 2727t — 7). (43 == \/7 (\+i09)27202 o g _ (it . (49
0 v2ZA
Using this expression in the third equation of EB3), we  The parametera, Q, can then be obtained from the solu-
find tions of this system by a root finding technique for given
_ , m 2.2 values ofA andb,. In Fig. 3, we plot the evolution af(t)
#(t)=—8bg cos Qtfo dre " ""z(t— 7). (44 as given by the numerical inversion of E@6) and by our

trial solution Eq.(48), for A=0.15, by=0.15, and forA
The solution of the last equation with the initial condition =0.15, by=0.07. The simple form in Eq48) reproduces
z(0)=1 is to be inserted in the expression for the powerquite faithfully the numerical results. The behaviorz{f) is
absorbed. The resulting expression suggests that the mathen essentially that of a damped oscillator with the devia-
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P(w)
0.3 bp=0.10
0.25
0 0.2
z (t) 0.15
0.1
0.05
AA
0.5 1 1.5 2 2.5 3
P (w)
0.3 bp=0.15
0.25
0.2
0.15
Z(t) 0.1 { A
0.05 J
Wu’)"&o 8C 100 120 140 s 1 15 2J\25 30)
-0.2 : t . .
\/ P (w)
0.35
FIG. 3. The average population differenzg) for slow modulation. The 0.3 bg =0.20
parameter values are for resonance, wilh=Q=1.0, and for(a) A 0.25
=0.15,by=0.15, and forb) A=0.15,by=0.07. These results show that the )
effective oscillator solution in Eq48) agrees quite well with those from the 0.2
numerical Laplace inversion of E46). 0.15
0.1
0.05 J
tions evident, as expected, at the shortest times. The damping o5 1 1.5 2 25 3Y

depends on the ratid/b,, while the frequency is propor-

tional tob,. Table | displays the dependencexoindQ; on  FIG- 4. P(w), the power spectrum d®(t) in the slow modulation regime,
A andb for the parameters,=1.0,(2=1.0, A=0.15, and the indicateld, values.
O .

o . The plot is qualitatively similar to the fast modulation result.
The formal similarity between the relaxation of the
population difference as given by E@®8) in the slow modu-

lation limit and that of Eq(273 in the fast modulation case, .
allows us to write an approximate expression for the noise Jy(v)=Im \/Eie(wiy)zmz erid — N+iv
averaged power absorbed that is formally identical to Eq. ! 2A Vv2A

(28) with d/2 and w, replaced by and Q 4, respectively. ) — —
The coefficientsC; , i =0,5 will now be expressed in terms N Fig. 4, we presen®(w), the power spectrum d(t), for

of spectral functions; andJ; that will differ from those in  the parameters=1.0,Q2=1.0,A=0.15, for a number of
Eq. (29), as they reflect the Gaussian nature of the relaxatioffo values. Besides the low-frequency peak, we find two

kernel. They are given by the real and imaginary part of themaller peaks displaced bybg with respect to the detuning,
function G defined in Eq(49), namely, 6_. The plot is qualitatively similar to the one obtained in

the fast modulation case. If the external field is reduced so

.(v)=Re \/Eie()\JriV)z/ZAz erid — Ntiv thatb, is_ smf'iller than the (_:oupling strengihone goes back
v VA |’ to the situation well described by LRT. Thus we have dem-

onstrated that, as in the fast modulation case, we may ma-

(50) . = - :
nipulateP(t) by the application of a strong external field.
TABLE I. Values of\ and€); for A=0.15 andA =0.32 The decoupling approximation used in EQ9) is of

uncertain quality when applied to the slow modulation re-
A bo A 2 gime of this section. As a way of validating it, we return to
0.15 0.07 0.0824 0.1750 the unaveraged equations of motion in EGL). These sto-
0.15 0.10 0.0531 0.2492 chastic equations can be solved numerically by generating
0.15 0.15 0.0231 0.3476 trajectoriesx(t), y(t), andz(t) for different realizations of
0.15 0.20 0.0079 04379 the noise,n(t), and averaging over a suitable ensemble of
0.15 0.25 0.0018 0.5284 e i~

initial conditions. We developed the methodology for carry-
0.3 0.10 0.2196 0.1999 ing this out for the Ornstein—Uhlenbe¢®U) noise process
g-g 8-;3 8-1822 g-i;gg in another context* It can be adapted to the problem at
03 0.25 0.0715 0.6008 hand. Briefly, the procedure to integrate the stochastic equa-

tions of motion is as follows. A fourth order Runge—Kutta
3All quantities in units ofw, . integrator is used to advance the solutions of E6) for
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P(o)

ki (wo =)
0.4 Power Spectrum (a) 6'2
0.3 53
5
0.2 45
4
0.1 35
-0
A 0.2 0.3 0.4 0.5 “e
05 1 15 2 25 3°©9 .
FIG. 6. A plot of I,(v) versus the detuning_, for wy=1.0 andA
=0.15,by=0.15. The shape resembles a Marcus plot of rate versus driving
force.
<P>(0)
0.4 Power Spectrum (b) define w} by wf=0Q-2by, and scanw, in the rangeo
0.3 —A<wg<wgj+\, then thewy values will be within the
' resonant width, required to be in the strong field regime.
0.2 Once thew, values are away from resonance, the linear re-
sponse regime is regained, and this can be detected in terms
0.1 of the conventional Gaussian result, cf. E41). Figure 6
| A provides a plot of thé(») function that contributes to the
05 1 15 2 25 39 C; coefficients versus the detuning. . This plot, in fact,

looks quite similar to a Marcus plot in having a peak at the
FIG. 5. (a) P(), the power spectrum GF(t) as obtained from the analytic g frequency and falling off to either side of this frequency.
method (b) (P)(w), the power spectrum d¢fP)(t) as obtained by stochastic The |,(v) factor is present in both the low-frequenay; ,
simulation. The parameters are,=1.0, =10, A=0.15 w.=1/7c  gnd high-frequency, @+ w,, terms that contribute to the
=0.015, andby=0.20. . . .

slow modulation version of Eq(28). Consequently, this

Marcus behavior can be accessed in either frequency regime.

each time step. A stochastic term is added at each step witlh cONCLUDING REMARKS
its statistical properties described by the OU process. The )
OU process is generated by solving a Langevin equation N this paper, we showed how the use of a monochro-
with a delta-correlated noise term. This will ensure that thgMatic strong, resonant external field can be used to investi-
correlation function ofy(t) has the desired statistical prop- 92t€ the electronic dephasing of a solute in a condensed me-
erties given by Eq(12). The procedure is carried out for a dium- The strong field can drive(t), the solute electronic
sufficient number of trajectories to yield the average behay!€Vel population difference, away from its initial value suffi-
ior. ciently to lead a significant time dependenceR{t), with

The result of such a stochastic simulation, along with theCi coefficients that reflect the strength of the external field’s
analytic result, is shown in Fig. 5 for the parametarg  coupling to the solute’s transition dipole moment. In prin-
=1.0, 0=1.0, A=0.15, w.=1/7,=0.015, andby=0.20. ciple, measurement of the time dependence of the power
The agreement of the stochastic simulatjéig. (5b)] with absorbed for varying external field strengths could be used to
the analytic resul{Fig. 5@)] is quite good. Note thab, manipulate where the resonant behavior occurs.
=0.20 is a rather large external field, so the decoupling pro- A result that follows from our analysis in Sec. IlI, and
cedure is only of moderate accuracy. There are discernablat we previously explore®f,is an equation of motion ap-
differences in the widths of the lines, and the stochastic avProach to linear response theory. If the time dependence of
erage does have an additional peak at twice the resonaneét) is exponential, then the ratiB(t)/z(t) will lead to the
frequency. We comment on the difference in widths in Secresult of linear response theory. Usually, LRT is derived by a
VI. The “extra” small peak at twice) can be traced to the Golden Rule, initial rate calculation, in contrast to this dy-
analytic approaches’ extension of the time integral to infinitynamical method.
in, e.g., Eq.(43). For strong damping, where the time inte- Oncez(t)'s decay is oscillatory, the strong field effects
gral rapidly converges, the additional peak should have smalkill be in evidence. While the fast modulation case lends
weight, as found in Fig. ®). itself to a more transparent analysis, we found that the slow

In optical spectroscopgand in the related thermal elec- modulation case does lead to qualitatively the same behavior.
tron transfer rate measurement “Marcus” plotl>—a plot ~ That is, the time dependence involves the same frequencies
of the spectrunirate constantas a function of reaction free in both fast and slow modulation; just the coefficients
energyAGgy—can be used as an aid in determining the reorchange. Furthermore, we were able to demonstrate that a
ganization energyk, . An analogous strategy is useful here. strong, but nonresonant, external field provides essentially
It is simplest to scam values for a fixed, values. Theb,  the same result as linear response theory would predict.
value should satisfy 2,>A to make sure that the under- Our method of derivation relies on the decoupling ap-
damped oscillator solution of E¢48) is appropriate. If we proximation introduced in Eq(19). This approximation
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leads to the same results as the equation of motion methadous” solvent, that is, one whose dynamics is independent
for fast modulation. The equation of motion method is aof the instantaneous solute state, is no longer tenable. The
perturbation expansion it 7..32333123For slow modula- restriction to reorganization energies that sati&fy Az <1
tion, we are not aware of an analytic method that can justifylimits the applicability of this work to electronic dephasing
the approximation. Therefore, we used a stochastic simuldn nonpolar and weakly polar solvents or to solutes whose
tion method to carry out the OU noise average. The resultsharge rearrangement upon excitation is modest. In order to
essentially coincide with those obtained from the decouplingxtend our work to polar solvents and larger changes in elec-
approximation. The difficulty with an analytic approach is tronic structure upon optical excitation, we have developed
the absence of a perturbation parameter. For a weak externaéw equations of motion that can account for the “nonauto-
field, where LRT is obtained, the decoupling approximationnomous” solvent behaviol’ Here, the stochastic process
does lead to the well known optical or thermal charge transthat represents the solvent dynamics is explicitly coupled to
fer results?’ In the LRT regime, the decoupling procedure the solute’s state. While this coupling will probably preclude
can be justified by projection operator methd8ighat the an analytic theory, the stochastic simulation method used
decoupling method is accurate provides an essentially an@bove will permit us to extend SFS to the strong coupling
lytic approach, with its attendent physical insight, into SFS.regime.
A close examination of the analytic and stochastic results ~ The rapidity of electronic dephasing permits its approxi-
does reveal that the irreversible electronic dephasing thanate separation from the effects of vibrational dephasing and
leads to the widths of the lines in Figs@band Sb) are not  population relaxation. However, as vibrational dephasing
quite the same. It is difficult to know whether this is a failure and population relaxation are key pathways for longer time
of the decoupling approximation, or the other Scale couplings to solutes, their effects should be included in
approximations—the average over the high-frequency oscilthis formulation of spectroscopy. Another direction for fu-
lations and the introduction of the effective oscillator—thatture study is the use of more sophisticated solvent fluctuation
we use to generate Fig. 5. Thus we plan to use the stochasg@rrelation functionsK(t). Polar and nonpolar solvent cor-
method to refine the results presented herein. Furthermoréglation functions are known to be better characterized by
once external fields that are nonsinusoidal are used, obtaifultiple relaxation times, and they also have contributions
ing analytic results becomes quite difficult and, naturally, theffom inertial motion. As the averaged equations of motion
stochastic averaging method can deal with any form of thevé have obtained are integro-differential equations, their so-
external field. lution for various forms oK (t) should be amenable to nu-
The electronic dephasing studied here is a purely cohefMerical integration schemes.
ent process. That is, we assume that the time scale under
study is shorter than the time scale for motion along the twdACKNOWLEDGMENTS
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