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A recent theory of strong field spectroscopy~SFS! @R. I. Cukier and M. Morillo, Phys. Rev. B57,
6972~1998!, M. Morillo and R. I. Cukier, J. Chem. Phys.~110, 7966~1999!# is generalized to apply
to strong solute–solvent coupling. In SFS, a strong external field is used to connect, with the
transition dipole, two electronic states of a solute immersed in a medium. In contrast to weak fields,
z̄(t), the average population difference of the solute electronic states is changing significantly. For
resonant, strong fields,z̄(t) and the average absorbed power,P̄(t), exhibit oscillatory decays in time
that reflect the changingz̄(t) and the dissipation arising from the coupling to the medium. When the
solute–solvent coupling is relatively weak, the time evolution of the solvent only depends on the
initial solute state~autonomous behavior!. In this work, appropriate to strong coupling, we derive an
equation of motion for the solvent dynamics that depends on the solute’s instantaneous state
~nonautonomous behavior!. The consequences toz̄(t) andP̄(t) are explored. We find that instead
of equalizing the solute populations at long times, now the population is inverted relative to its
initial state. We also find that the degree of long-time population inversion can be controlled by
turning off the external field before the system has fully relaxed. ©1999 American Institute of
Physics.
@S0021-9606~99!50936-7#

I. INTRODUCTION

The interrogation by optical spectroscopy of a solute in a
solvent provides information on their interactions.1–6 Such
studies have been carried out in liquids,7–9 crystals,3,10

glasses,3,6,11 and proteins.12,13 The broadening of the optical
transition that is typically observed mirrors the differing lo-
cal environments that the solute experiences in the presence
of the solvent. When the solute’s electronic distribution is
quite different in the optically connected states, and when the
coupling of the solute charge distribution to the solvent is
strong, dramatic effects on the optical spectrum are
anticipated.2

Another aspect of the interaction of external fields with
atoms and molecules that is under intense study is the desire
to control the fate of some process in the moiety coupled to
the field. This may involve controlling the outcome of the
final state population in a chemical transformation,14–17 or
tunneling populations in two-level18–20 and multi-level
systems.21,22 For example, we have shown how the applica-
tion of suitable external electric fields can be used to create

and maintain desired populations of localized states in
hydrogen-bonded proton tautomers.19

The original studies of optical spectra were carried out
with weak external fields so that linear response theory
~LRT!23 could be applied.24–26Then, only the material prop-
erties are relevant, i.e., the linear susceptibility is indepen-
dent of the external field. Subsequently, various nonlinear
optical ~NLO! spectroscopic methods were developed to ob-
tain more detailed information about the material
properties.1–13 For example, because linear spectroscopy
cannot discriminate between homogeneous and inhomoge-
neous broadening mechanisms, hole-burning1,27 and echo4,28

experiments were developed to access the homogeneous con-
tribution to the linewidth. The NLO techniques are perturba-
tive in the external field strength and, with regard to the
analysis of such experiments, involve higher order suscepti-
bilities. Relating these susceptibilities to a microscopic
model of the material then introduces multi-point time cor-
relation functions, and leads to nontrivial analyses to connect
theory and experiment.2

In a recent series of articles29,30 we have introduced a
new, nonperturbative approach to optical spectroscopy, re-
ferred to as strong field spectroscopy~SFS!, that does not
rely on perturbation theory in the external field. A Hamil-a!Electronic mail: cukier@argus.cem.msu.edu
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tonian for a two-state system coupled to a solvent, modeled
as an oscillator bath, was analyzed.30 The coupling of the
external field to the transition dipole of the solute is suffi-
ciently strong that a perturbative analysis is precluded. We
obtained approximate equations of motion for this system
that were analyzed by a combination of analytic and numeri-
cal methods. The solvent was assumed to be classical and
that permitted its representation as a stochastic process. In
such solute–solvent coupled problems there are several key
parameters: the reorganization energyEr , the solvent relax-
ation timetc , and the temperatureT. Er measures the ener-
getic displacement of the solvent andtc is the solvent’s char-
acteristic relaxation time that gauge the response to the
solute’s differing electronic structure in its initial and final
states. The parameterD5A2ErkBT/ \2 is a bandwidth that
measures the ability of the thermal fluctuations to provide
differing solute–solvent interaction energies. When the cou-
pling to the external field is strong, the populations of the
two states are changing significantly. It is this changing
population that distinguishes SFS from LRT and NLO spec-
troscopy where, implicitly or explicitly, the assumption is
made of infinitesimal perturbation of the solute’s initial state
population. When the population is changing, we found that
the equations of motion previously obtained are valid for
\D,Er . This restriction leads to autonomous equations of
motion, whereby the solvent’s dynamics only depends on the
solute’s initial state. There is no feedback from the solute’s
changing state to the solvent’s dynamics. With this autono-
mous dynamics for the solvent, the analysis of its influence
on the solute dynamics is greatly simplified. For fast modu-
lation, Dtc,1,31,32 we were able to obtain essentially ana-
lytic results,29 while for slow modulation,Dtc.1, a numeri-
cal analysis was required.30 The ~time dependent! average

power absorbed by the sampleP̄(t) was evaluated. The spec-
trum of this quantity consists of three peaks: one at low
frequency and two centered on twice the applied frequency,
v0 , and symmetrically displaced from 2v0 in proportion to
the strength of the external field transition dipole coupling.
The widths of the peaks reflect the ‘‘dissipation’’~dephas-
ing! from coupling to the solvent.

The conditionEr,\D restricts the applicability of SFS
to nonpolar or weakly polar solvents, where the reorganiza-
tion energy is small compared with the thermal fluctuations,
i.e., Er /\D}AEr/kT,1.10 In polar solvents, the opposite
inequality is more likely to be obeyed.33 Thus, it is important
to extend our SFS to be applicable to this regime, and we do
so in this article. A new set of equations of motion are de-
veloped that can account for the dynamic feedback of the
solute’s changing population on the solvent’s evolution. The
solvent’s evolution is then nonautonomous, and this greatly
complicates the analysis. The consequences to the total sys-
tem’s evolution of this nonautonomous dynamics are pro-

found. Before, for autonomous dynamics, we found thatz̄(t)
showed an oscillatory decay to zero; ultimately the popula-
tions of the two states are equalized because of the decoher-
ence brought about by the solute’s interaction with the sol-

vent. Now, z̄(t) goes to a nonzero limit, thus providing
unequal populations of the electronic states. The power ab-

sorbed is also modified in a way that will be detailed below.
The feature that the long-time population is not equalized
suggests the interesting possibility of controlling the popula-
tion with the use of SFS. We shall see that this is indeed
possible, even though the solute is coupled to the solvent.
Clearly, controlling such populations in the presence of ther-
mal fluctuations is not as straightforward as for an isolated
solute.

The plan of the rest of this paper is as follows: In Sec. II,
we review the Hamiltonian appropriate to describe electronic
dephasing of a two-level system, representing the solute,
coupled to a solvent and to a strong external field. The new
equations of motion that are applicable to theEr.\D re-
gime are obtained. In Sec. III, the equations of motion are
analyzed by a numerical scheme appropriate to the solution
of nonautonomous stochastic differential equations. We dis-
cuss the implications of the solutions of the equations of
motion. In Sec. IV, we analyze a set of deterministic equa-
tions that follow from the stochastic set, to show that the
main features of the nonautonomous evolution is present
even when the fluctuations are ignored. In Sec. V, we show
how properly constructed external fields can control the sol-
ute’s long-time population. Our concluding remarks are pre-
sented in Sec. VI.

II. THE HAMILTONIAN AND APPROXIMATE
EQUATIONS OF MOTION

A model Hamiltonian that can be used to characterize
electronic dephasing is:24,34–36

H5(
j

pj
2

2mj
1

1

2
mjv j

2S qj2
g j

mjv j
2
szD 2

2
DG0

2
sz

12\b~ t !sx . ~1!

The solute has two electronic states here denoted by the kets
u0& and u1&. The solvent is represented by a set of indepen-
dent harmonic oscillators whose origins depend substantially
upon the electronic state of the solute. These shifts reflect the
differing interaction energies between the two charge distri-
butions of the solute with the solvent. Thes i ( i 5x,y,z) are
the Pauli spin operators. Once the solute is reduced to only
two active states it can be described by a spin variable, and
we shall use solute and spin language interchangeably. The
external field–solute interaction energy is defined by
2\b(t)5^0um̂u1&•E(t), wherem̂ is the solute’s dipole mo-
ment operator andE(t) is the external field. The quantity
DG0 is the standard free energy difference between reactants
and products. Themj ’s andv j ’s are, respectively, the oscil-
lator masses and frequencies, and theg j ’s are the solute–
solvent coupling constants. Using the Heisenberg equation of
motion for the operatorO,

i\Ȯ5@O,H#, ~2!

we obtain for the Pauli operators the equations

ṡx~ t !5
2

\ (
j

g jqj~ t !sy~ t !1
DG0

\
sy~ t !,
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ṡy~ t !524b~ t !sz~ t !2
2

\ (
j

g jqj~ t !sx~ t !2
DG0

\
sx~ t !,

~3!

ṡz~ t !54b~ t !sy~ t !,

and for the oscillators’ variables,

q̇ j~ t !5
pj

mj
; ṗ j~ t !52mjv j

2qj~ t !1g jsz~ t !. ~4!

The solvent–solute coupling,
2
\

( jg jqj (t), can be written as

2

\ (
j

g jqj~ t !5
2

\ F(
j

g jqj~0!cosv j t1
g j pj~0!

mjv j
sinv j tG

1E
0

t

ds
Ervc

\
e2vc(t2s)sz~s!. ~5!

In writing Eq. ~5! we have assumed an infinite number of
oscillators for the solvent representation. That is, we have
introduced the spectral densityJ(v),37

(
j

g j
2

mjv j
2
cosv j t→

2

pE2`

`

dv
J~v!

v
cosvt. ~6!

We shall assume that the coupling constants and the solvent
frequencies are distributed with the Debye spectral density,38

J~v!5S Er

2 D vtc

11~vtc!
2
u~v!. ~7!

With this assumption,

(
j

g j
2

mjv j
2
cosv j t→

Er

2
e2vct, ~8!

and leads to the last term in Eq.~5!. Note that Eq.~5! sepa-
rates terms that depend on the oscillators initial conditions
from those that do not. This separation will be important to
the end of constructing an appropriate thermal ensemble. The
following transformations of the coupling energy are useful:

2
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Er

\
e2vct
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0

t

ds
Ervc

\
e2vc(t2s)sz~s!. ~9!

By adding and subtracting the same quantity, Eq.~5! now
can be re-cast as

2

\ (
j

g jqj~ t !5h~ t !1
Er

\
~e2vct21!

1E
0

t

ds
Ervc

\
e2vc(t2s)sz~s!1

Er

\
. ~10!

The last term of the previous formula can be combined with
the standard free energy difference to yield\v05DG0

1Er , the vertical electronic excitation energy between the
~solvated! statesu0& andu1&. We have also introducedh(t),
which is given by

h~ t !5
2

\ F(
j

g j S qj~0!2
g j

mjv j
2D cosv j t

1
g j pj~0!

mjv j
sinv j tG . ~11!

As we shall see below,\h(t) is the appropriate energetic
coupling to characterize an autonomous process. The prop-
erties of the solute only enterh(t) through the~initial! dis-
placement of the oscillators to the valuesqj (0)5g j /mjv j

2

that represent their equilibration to the solute’su0& state.
Now define an interaction energy\j(t) according to

j~ t !5h~ t !1
Er

\
~e2vct21!

1E
0

t

ds
Ervc

\
e2vc(t2s)sz~s!. ~12!

Besides the solute dependence ofh(t), j(t) has the addi-
tional dependence on the history of the value ofsz(t), the
Heisenberg operator for the solute population difference. The
nonautonomous character of the solvent’s energy evolution
comes from the final two terms in Eq.~12!. After these trans-
formations we have the still exact Heisenberg equations of
motion,

ṡx~ t !5„j~ t !1v0…sy~ t !,

ṡy~ t !524b~ t !sz~ t !2„j~ t !1v0…sx~ t !, ~13!

ṡz~ t !54b~ t !sy~ t !,

with j(t) given by Eq.~12! above.
The quantities of direct interest are the instantaneous

population difference between the electronic states,z(t), and
the power absorbed by the solute from the external field,
P(t), respectively, whose expectation values are

^z~ t !&5Tr„r~0!sz~ t !… ~14!

and

^P~ t !&5Tr„r~0!2\ḃ~ t !sx~ t !…, ~15!

where the trace is overall the degrees of freedom, as indi-
cated with the notation̂¯&. Because the Hamiltonian is
explicitly time dependent, due to the~classical! external
field, we have writtenr(0) in Eqs.~14! and ~15! to empha-
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size that the expectation values of the dynamical variables in
the Heisenberg picture at timet are taken with the functional
form of the initial density operator.

Before the external field is turned on, the solvent is
equilibrated to the solute’s initial state,u0&. Thus, an appro-
priate initial ensemble is equilibrium of the solvent condi-
tional on this solute state:

r~0!}expH 2bF(
j

pj
2

2mj
1

1

2
mjv j

2S qj2
g j

mjv j
2
szD 2G J

3~ 1̂1sz!. ~16!

To make progress with this nonlinearly coupled quantum
mechanical system, one needs to introduce simplifying as-
sumptions. We shall assume that the solvent oscillators may
be treated classically. The use of a classical bath is appropri-
ate for b\vm,1, wherevm is a characteristic solvent fre-
quency. For polar solvents, where the relevant modes that
couple to a charged solute are the orientational dipoles of the
solvent, the characteristic frequencies are less than
100 cm21, and the use of a classical bath is a good approxi-
mation at conventional temperatures.33 With the initial en-
semble considered here, it is straightforward to show that the
Hamiltonian version ofh(t) is equivalent to a Gaussian sto-
chastic process of zero average and exponential correlation
function,39–41

^h~ t !h~0!&5K~ t !5D2e2t/tc, ~17!

characterized by the strengthD5A2ErkBT/\2, and correla-
tion timetc51/vc . Thath(t) has zero average is due to our
having defined it as the fluctuation away from the valueEr .
The above stationary, Markovian, and Gaussian process is
known as an Ornstein–Uhlenbeck~OU! process,42 and can
be generated by the solution of the equation

ḣ~ t !52vch~ t !1w~ t !, ~18!

where w(t) is a zero-average white noise with correlation
function ^w(t)w(s)&52D2vcd(t2s). The initial value
h(0)5h of h(t) is distributed according to the Gaussian
distribution,

W~h!5
1

A2pD2
e2h2/2D2

. ~19!

This expression is the classical analog of the initial distribu-
tion given in Eq. ~16!. It describes the classical solvent
equilibrated to the initial solute state,u0&. The formulation of
the stochastic processh(t) as a differential equation has
proved to be very useful in our approach to SFS. For obtain-
ing the new results that require a solution with the stochastic
processj(t), it will be essential.

Another approximation we shall use is to assume that
j(t) depends on the expectation value ofsz(s). This time
dependent mean field approximation has been used repeat-
edly in the literature to analyze the influence of classical
variables on the tunneling of quantum objects.43 With this
assumption, quantum fluctuations in spin space that might be
important at low temperatures or very strong bath–spin cou-

plings are neglected. The analysis of the validity of this as-
sumption in the context of strong field spectroscopy will be
presented elsewhere.44

Denote the initial state matrix elements of the compo-
nents of the spin operators asz(t)5^0usz(t)u0&, x(t)
5^0usx(t)u0&, and y(t)5^0usy(t)u0&. Averaging the set,
Eqs. ~12! and ~13!, with the initial oscillator distribution in
Eq. ~16!, and taking the trace over only the spin variables,
yields the stochastic differential equations,

ẋ~ t !5@v01j~ t !#y~ t !,

ẏ~ t !52@v01j~ t !#x~ t !24b~ t !z~ t ! , ~20!

ż~ t !54b~ t !y~ t !,

wherej(t) is a stochastic variable given by

j~ t !5h~ t !1
Er

\
~e2vct21!1E

0

t

ds
Ervc

\
e2vc(t2 s)z~s!

5h~ t !1E
0

t

ds
Ervc

\
e2vc(t2s)@z~s!21#. ~21!

The nonautonomous character of the solvent evolution is evi-
dent in Eq.~21!. The stochastic variablej(t) depends on the
solute population differencez(t) in a convolution form with
the solvent’s relaxation functione2vct. It is worth noticing
that we get a closed set of equations for the indicated matrix
elements of the Pauli operators. This is a consequence of
assuming thatj(t) depends only onz(s) and not on the full
Pauli matrix. With these approximations, the power absorbed
also turns out to be a stochastic function of time,

P~ t !52\ḃ~ t !x~ t !. ~22!

Before analyzing the implications of Eqs.~20! and~21!,
we shall indicate how these equations of motion reduce to
those that we previously obtained. If the external field is
sufficiently weak thatz(t)'1 during a large time interval of
interest, then Eq.~21!’s second equality shows thatj(t) is
just the OU processh(t). The stochastic process represent-
ing the solvent dynamics is now independent of the spin
dynamics. All the consequences of LRT, conventionally ob-
tained by the use of the Golden Rule of time dependent
perturbation theory, can also be obtained from Eq.~21!.29,30

Note that this conclusion is independent of the relative sizes
of Er and \D. For SFS, wherez(t) does change signifi-
cantly, if D.Er / \, then the last term on the rhs of the
second equality in Eq.~21! can also be neglected with re-
spect to the first one and once more we go back to an au-
tonomous bath. The demonstration of this result relies on
estimating the sizes of the terms that contribute to Eq.~21!.
The first term is of orderD. The second is of orderEr /\. If
we assert thatz(t) oscillates with a frequency that is essen-
tially the Rabi frequency, 2b0 , then the integral in the third
term may be evaluated. For largeb0tc , the ratios of the
second and third terms to the first term then are, respectively,
AEr /kT andAEr /kT/(b0tc). For Er /\D5AEr /2kT,1 and
for b0tc.1, as is readily achieved for the strong fields con-
sidered here, the second and third terms may be neglected
relative to the first term in Eq.~21!. Thus, in both these
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cases, LRT and SFS withD.Er / \, the bath behavior is
autonomous and the task of obtaining equations of motion
for the averages over the stochastic process can be achieved
under some suitable approximations.29,30

III. ANALYSIS OF THE NONAUTONOMOUS
EQUATIONS OF MOTION

The nonautonomous system of equations of motion in
Eqs.~20! and~21! is much more difficult to analyze than the
autonomous equations. Even for the autonomous system, the
analytic scheme we developed is only qualitatively accurate
for slow modulation (Dtc.1), and the analysis still re-
quired some numerical calculations. Fortunately, the stochas-
tic methods we45 and others46 have developed to solve sto-
chastic differential equations of the autonomous variety can
be adapted to the nonautonomous equations. Toward this
goal, we first recast the integral equation forj(t) as a differ-
ential equation. Taking time derivatives in Eq.~21! produces

j̇~ t !52vcj~ t !1w~ t !1
Ervc

\
„z~ t !21…. ~23!

This last equation together with Eqs.~20! comprise a set of
stochastic equations that are to be solved with the initial
conditionsx(0)5y(0)50,z(0)51 andj(0)5h(0) drawn
from the Gaussian distribution given in Eq.~19!. To integrate
the set of equations, we have used a stochastic Runge–Kutta
algorithm of second order in the noise and the deterministic
parts.46 For each initial value ofj(0), Eqs.~20! and~23! are
solved for a realization of the white noisew(t). The scheme
is repeated for otherj(0) values drawn from the Gaussian
distribution in Eq. ~19!. The number of initial conditions
generated to get reliable statistics is chosen accordingly to
the width,D, of that distribution. We have constructed his-
tograms for the generated initial distribution ofh values to
compare with the theoretical expression in Eq.~19!. Taking
into account the definition of the white noise strength in
terms ofD and vc , the generation of as many white noise
realizations as of initial conditions also guarantees that, ex-
cept if vc is very large, we have a reliable numerical ap-

proximation of the white noise. The time evolution of the
averages, denoted bȳ (t), is obtained by summing over the
white noise realizations that are generated from all the initial
conditions.

In order to demonstrate the character of the nonautono-
mous predictions, and how they differ from those of the au-
tonomous equations of motion, it is useful to first focus on
the behaviors ofx̄(t), ȳ(t), and z̄(t). After discussing this
behavior, we shall investigate the average power absorbed,
P̄(t). Figs. 1–4 displayx̄(t), ȳ(t), z̄(t), and j̄(t) for a va-
riety of Er values. The parameter values are chosen to be
representative of a polar solvent at conventional tempera-
tures~cf. Sec. VI!, where a classical treatment of the bath is
appropriate. All the figures use parameter values that are
scaled by the transition frequencyv0 . We have setv051,
so that different energetic scales of, e.g., reorganization en-
ergy can be compared on a common basis. Features of these
plots, and others that we have generated that are of interest,
are the following. For large times,z̄(t) oscillates around 0 if
Er!\D and around a nonzero value ifEr>\D. The fre-
quency of those oscillations is 2v0 . When Er!\D these

FIG. 1. The averagesx̄(t), ȳ(t), z̄(t), j̄(t) for Er50, b050.1, D50.15,
vc50.015, andV5v051.0.

FIG. 2. The averagesx̄(t), ȳ(t), z̄(t), j̄(t) as in Fig. 1 but forEr50.05.

FIG. 3. The averagesx̄(t), ȳ(t), z̄(t), j̄(t) as in Fig. 1 but forEr50.4.

5412 J. Chem. Phys., Vol. 111, No. 12, 22 September 1999 Cukier, Denk, and Morillo



fast oscillations are hardly noticeable as they are of a much
smaller amplitude than the slower Rabi oscillations around
zero. These fast oscillations are more clearly seen whenEr

>\D. The center of those oscillations is more negative asb0

is increased. Keeping the field strength large and fixed, and
varying Er , one observes that the shift of the center of os-
cillations towards negative values is not monotonous with
Er . For instance, ifb050.1 the center shifts fromz̄0

'20.1 for Er50.1, to z̄0'20.6 for Er50.4, to z̄0'

20.45 for Er50.7. ~The notationā0 , with a any relevant
variable, designates the long-time average over the oscilla-
tory behavior.! For large times,j̄(t) decays to almost zero if
Er!\D and to a nonzero negative value ifEr>\D. With
regard to the other spin components,x̄(t) and ȳ(t) show
oscillations around zero for long times. The frequency of the
oscillations isv0 , and their amplitudes depend onb0 and
Er . For a givenEr , the amplitude of the oscillations in-
creases withb0 . For a fixed value of the field strength, the
amplitude of thex̄(t) oscillations first increases asEr in-
creases from zero to a certain value, and then the amplitude
decreases asEr is further increased.

Turning now to the average power,P̄(t), obtained by
the stochastic simulation of Eq.~15!, it proves useful to ana-
lyze the power spectrum, obtained from the Fourier trans-
form of P̄(t). The power spectrumuP̄(v)u2, with v the
transform parameter, is shown in Fig. 5. There are several
peaks in the spectrum: a low frequency large peak and three
peaks at higher frequencies. The high-frequency peaks ap-
pear because we are not cycle averaging over the external
field frequency,V. The positions of the peaks are controlled
essentially byb0 , except for the one at 2V. The asymmetry
in the heights of the two side peaks around the one at 2V is
more pronounced asEr increases. The distance between
them is basically given by 4b0 . The width of all the peaks
also depends onEr . The properties of the low-frequency
peaks and the two side ones can be obtained from the ap-
proximate expressions that we obtained before in the case of
an autonomous bath, whereEr,\D.29,30 When the medium
feels the feedback of the spin dynamics, our approximate

expressions lose their validity. Still, the locations of the
peaks are not substantially altered, and their widths increase
modestly with respect to the autonomous case. That the au-
tonomous and nonautonomous power spectra are quite simi-
lar is a useful observation. We have recently shown that SFS
can be used to circumvent inhomogeneous broadening
effects.47 That is, the dissipative information contained in the
widths of these power spectra is still related to the homoge-
neous parameters of the problem. For example, for fast
modulation, the width of the power spectrum is still given by
the homogeneous dissipation parameter,D2tc . These nu-
merical findings illustrate that there are effects on the spec-
trum that reflect the autonomous and nonautonomous re-
gimes. Nevertheless, the effects are not too significant unless
Er is very large, and the autonomous analysis that we previ-
ously obtained can be a guide in interpreting the new results.

The key feature thatz̄(t) is negative and substantially
different from zero at long times forEr.\D @and whenb0 is
sufficiently large as to drivez̄(t) significantly# is a manifes-
tation of the dynamical feedback from the spin to the bath as
represented by thej(t) stochastic process. If the dynamics
are autonomous, the dephasing from the bath is symmetri-
cally disposed. That is, the modulation of the transition fre-
quency of the solute by the solvent is as likely to increase as
it is to decrease. Consequently, the phase mixing responsible
for z̄(t)’s damping will lead to equality of the population of
the two states. Indeed, at least for fast modulation where an
analytic approach was feasible, we were able to show that
z̄(t) obeyed a damped harmonic oscillator equation of
motion.29 The nonautonomous dynamics is radically differ-
ent. To explore this difference, we now discuss the case of
weak noise, where the noise term is negligible in Eq.~21!.

IV. THE DETERMINISTIC LIMIT

The qualitative features of the stochastic equation solu-
tions when nonautonomous behavior is important are already
evident in a set of deterministic equations obtained by drop-
ping the white noise term in thej(t) evolution equation. In
particular, the long-time behavior can be clarified by solving

FIG. 4. The averagesx̄(t), ȳ(t), z̄(t), j̄(t) as in Fig. 1 but forEr50.7.

FIG. 5. Power spectrum of the power absorbed for the parameter values
b050.1,v05V51.0,D50.15,vc50.015, and several values of the reor-
ganization energy,Er . As Er increases, there are changes in the relative
intensities of the peaks, but their positions and widths are quite similar, at
least for smallEr .
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these deterministic equations. An estimate of the conditions
under which the noise term in Eq.~23! can be neglected is
the following: Using the definitiont̃ 5vct in Eq. ~21! pro-
duces

j̇~ t̃ !52j~ t̃ !1
A2Dvc

vc
x~ t̃ !1

Er

\
~z~ t̃ !21!, ~24!

where ^x( t̃ )x&5d( t̃ ). Here D is the strength of the white
noise that is obtained from the other parameters of the bath
asD5D2vc . Then, the white noise term is negligible with
respect to the third term if

AD

vc
,

Er

\
or D,

Er

\
.

This condition indicates when the effect of the reorganiza-
tion energy is more important than the stochastic nature of
the bath, these fluctuations being characterized by the
strength of the noise. The deterministic limit is favored when
the j(t) process is strongly nonautonomous. In the opposite
extreme, the autonomous process has no such limiting, de-
terministic behavior because, if the noise is neglected in the
autonomous process,h(t) is zero, and the spin only exhibits
Rabi oscillations.

The deterministic approximation to the equations of mo-
tion of Eqs.~20! and ~23! is

ẋ~ t !5@v01j~ t !#y~ t !,

ẏ~ t !52@v01j~ t !#x~ t !24b~ t !z~ t !,
~25!

ż~ t !54b~ t !y~ t !,

j̇~ t !52vcj~ t !1
Ervc

\
„z~ t !21….

It is readily verified thatx2(t)1y2(t)1z2(t) is constant in
time. Even though the noise has been neglected, there is still
relaxation in the dynamics ofj(t) due to the2vc term on
the right hand side of its evolution equation. This term makes
the bath dissipate any energy transferred to it from the spin
through the population difference. Even with this simplifica-
tion to a deterministic process, Eq.~25! cannot be solved
analytically. The numerical solution of the deterministic
equations of motion in Eq.~25! for a few parameter values is
shown in Fig. 6. Additional data is presented in Table I.

Based on an extensive set of numerical solutions, we
observe the following features that will aid in understanding
the deterministic behavior: After a transient time,x(t) and
y(t) oscillate with frequencyv0 and amplitudes that de-
crease asEr increases. The out-of-phase~with respect to the
external field! component,y(t), always oscillates around
zero, but the center of oscillations ofx(t) shifts from zero to
some other value asEr increases. For example, when we
takeb050.15,vc50.2 andEr<0.7, corresponding to strong
nonautonomous behavior,x(t) eventually oscillates around a
nonzero value with very small amplitude. At long times,z(t)
oscillates with frequency 2v0 and an amplitude that de-
creases asEr increases. The center of oscillations, call itz0 ,
moves towards a more negative value asEr increases. Once
Er is large enough that the alluded shift ofx(t) takes place,

the amplitude of thez(t) oscillations is very small. At long
times, j(t) oscillates with frequency 2v0 and very small
amplitude around a negative valuej0 that decreases asEr

increases. At long timesj0'Er(z021). OnceEr is suffi-
ciently large, whereby the center of oscillation ofx(t) shifts
from zero to some other value,j0521.

Before analyzing the implications of the above behavior,
let us consider an approximation that one might think would
be useful but, in fact, leads to incorrect conclusions. Never-
theless, it is quite instructive. The integral form of the evo-
lution of j(t) given in Eq. ~21!, and the fact thatj0

'Er(z021) holds after a transient time, as evident in Figs.
1–4 and 6, suggest that a time local version of this equation
would be useful. The local relation,

j~ t !5~12e2vct!Er@z~ t !21#/\, ~26!

follows from thej(t) equation in Eq.~21!, if we assume that
z(t)’s behavior is slow relative to that of exp(2vct). Using
this local relation in the spin equations of motion of Eq.~25!
the solution is~off-resonant! Rabi oscillations. Even if one
were to assert that the behavior ofj(t) is a damped oscilla-
tion, and used this in the spin equations of Eq.~25!, Rabi

FIG. 6. Deterministic values ofx, z, j for b050.15,vc50.2,v05V51.0
and Er50.4 ~solid line!, Er50.7 ~dotted line!, andEr50.8 ~dashed line!.
The plots do not show the details of the large frequency oscillations. The
lowest left panel shows the large frequency oscillations ofx, z (Er50.4) for
long times.

TABLE I. Results of deterministic equations forb050.15;vc50.2; v0

5V51.0.a

Er x0 Ax y0 Ay z0 Az j0 Aj

0.05 0 0.9 0 1 20.1 0.1 20.05 ;0
0.1 0 0.8 0 0.95 20.38 0.1 20.14 ;0
0.2 0 0.5 0 0.8 20.7 0.1 20.35 ;0
0.4 0 0.1 0 0.6 20.9 0.1 20.76 ;0
0.7 0.8 0 0 0.2 20.4 0.05 21 ;0
0.8 20.95 0 0 0.15 20.25 0.05 21 ;0

aAi and i 0 denote amplitudes and center of oscillations of thei 5x,y,z,j
variables.
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oscillations would result. Thus, in order to obtain the correct
damped oscillatory solution exhibited in Figs. 1–4 and 6, it
is essential to incorporate the time nonlocal character of
j(t).

The energy of interaction between the solvent and sol-
ute, j(t), decays because it is the convolution of the sol-
vent’s attempt to decay toward equilibrium according to
exp(2vct) and the population differencez(t). The solvent is
continuously trying to adjust toz(t), andz(t) is being driven
by the external field at a frequency connected to the instan-
taneous state of the solvent. It is this convolution structure
that then leads to the observed decaying behavior. The non-
autonomous character of the connection betweenj(t) and
z(t)’s dynamics then shows that ifj(t) decays, so mustz(t).
Therefore,z(t) must exhibit both oscillation and decay.

The numerical solutions show thatz(t) approaches a
steady value for long times. We can identify a steady state
behavior from the equations of motion by introducing cycle-
averaged values ofx(t), y(t), z(t), and j(t) according to
x̄ c, ȳ c, z̄ c, and j̄ c. The average is carried out over the pe-
riod of the external field frequencyV. If Er is sufficiently
large then, as noted above, the scale of oscillation inz andj
is small. This permits us to obtain the steady state, cycle-
averaged version of Eq.~25! as

ẋ̄ c505v0ȳ c1jy c'j̄ cȳ c,

ẏ̄ c5052@v0x̄ c1jx c#24b~ t !z c'2v0x̄ c2 j̄ cx̄ c,
~27!

ż̄ c5054b~ t !y c,

j̇̄ c5052vcj̄
c1

Ervc

\
~ z̄ c21!.

From the fact thatȳ c50, the ẋ̄ c equation is satisfied. Since

b(t) is out of phase withy(t) the ż̄ c50 equation is satisfied.

If, as assumed,z(t) is almost constant, theẏ̄ c equation then
gives the key result,

j̄ c52v0 . ~28!

Finally, according to thej̇̄ c50 equation,z̄ c exists and, with
the use of Eq.~28!, its value is

z̄ c512
\v0

Er
. ~29!

For sufficiently largeEr , as in Fig. 6, this behavior is veri-
fied. If we consider thatEr,\v0 , as a normal regime of
behavior in optical spectroscopy, thenz̄ c,0 follows, and
corresponds to a partial population inversion.

The analysis leading to Eq.~28! does not hold whenEr

is smaller. The oscillations are too large to permit separating
the cycle-averages that appear in Eq.~27! into products of
cycle averages. Nonetheless, that cycle-averaged steady
states are possible is evident from the analysis. Thatz̄ cÞ0 is
not surprising since the nonautonomous equations of motion
are nonresonant in character. For the nonstochastic version
of the autonomous equations of motion, the cycle average
behavior ofz(t) will also be nonzero for off resonance. What

is completely different is thatz(t) has a damped oscillatory
behavior forEr.0, while for Er50, z(t) will oscillate with
the same amplitude for all time. The convolution structure of
the interaction energy\j(t) provides a damping mechanism
for j(t), and the feedback betweenj andz ‘‘slaves’’ the spin
to the bath, soz(t) also decays to produce a cycle-averaged
steady state. Proving thatz̄ c,0 in general does not seem
possible, though the data presented in Fig. 6 and Table I do
show that it is true. Interestingly, thez̄ c behavior is not
monotonic with increasingEr , but rather exhibits a maxi-
mum z̄ c'21 at intermediateEr values.

Let us now compare the results of the deterministic and
stochastic solutions of the equations of motion. Figure 7
shows that as the noise increases from zero, for the determin-
istic case, toD50.0002 toD50.002, the behavior of the
stochastic averages is a damped version of the deterministic.
Note thatD does not have to be particularly large in order to
suppress the initial oscillations inj̄(t). The behavior ofz̄(t)
is similar. The long-time behavior of the three curves is quite
similar; thus emphasizing again that the origin of the nonzero
value ofz̄ c is the nonautonomous average behavior. That is,
the fluctuations are not very important to this long-time be-
havior.

V. POPULATION CONTROL

Controlling outcomes of various chemical processes is a
natural goal when external fields are applied to matter.14–17

Within the context of tunneling processes described as
two-level18–20or few-level systems,21,22 most work has been
concentrated on the gas phase. We have studied the role of a
solvent in attempts at control of the fate of tunneling reac-
tions and, not surprisingly, the solvent fluctuations tend to
destroy the ability to control the populations.40,45 In view of
the results of the previous section, where the deterministic
solution is close to the stochastic one, it is natural to see if
the population differencez̄(t) can be controlled by the use of
an appropriate external field. All the above simulations have
kept the field on for times long compared with the relaxation

FIG. 7. j̄(t) and z̄(t) for D50.0, 0.0002, and 0.002, withEr50.7, b0

50.1,vc50.2, andV5v051.0. The damping of the initial oscillations for
DÞ0.0 is evident. The long-time deterministic and stochastic behavior is
similar, emphasizing the decisive role of the nonautonomous feedback.
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time of the system. In Fig. 8 we show the consequences of
turning off the field before relaxation is complete. It is evi-
dent that as soon as the field is off, bothz̄(t) and j̄(t) cease
their time evolution at the value they had when the field goes
off, toff . This behavior is readily obtained from the determin-
istic equations of motion in Eq.~25!. When the field is turned
off @b(t)50#, ż50 andz(t)5z(toff)5zoff , for t.toff . Then
the j(t) equation becomes

j~ t !5j~ toff!5joff5
Er

\
~12e2vct!~zoff21!'

Er

\
~zoff21!.

~30!

The last relation holds fort@1/vc , which is a short time on
the scale oftoff . Oncej is constant, the spin equations of
motion for x(t) andy(t) correspond to harmonic oscillators
of frequencyv01joff . Thatj(t) does not cut off sharply at
toff just reflects the fact thattoff is not much greater than
1/vc for the parameters used to generate Fig. 8 (1/vc510.0
and toff525.0!. For the stochastic equations of motion in
Eqs.~20! and ~21!, a similar analysis can be carried out for
each realization of the stochastic trajectory with a fixed ini-
tial value j(0). Again for times t@1/vc , it leads to the
samej(toff)5(Er / \)(zoff21) relation and this will be the
case for allj(0) values. Thus, the same behavior as for the
deterministic case will result for the stochastic solution.
These results suggest that iftoff is chosen beforez(t) reaches
its limiting value, then the population can be controlled by
the choice oftoff . The stochastic equations of motion have
the advantage over the deterministic ones in that there is
much more damping of the initial oscillations for the sto-
chastic; therefore, the population can be better controlled in
the ~realistic! stochastic situation. The combination of fluc-
tuations and nonautonomous behavior is responsible for the
ability to select a target population.

VI. CONCLUDING REMARKS

The parameter values used to generate Figs. 1–6 were
chosen to be representative of a polar solvent. For example,

if the transition frequencyv0 is taken as 1000 cm21, then
D5150 cm21, and Er ranges from 100– 700 cm21 ~scaled
units Er50.1– 0.7). This choice ofEr values, spanning the
autonomous to nonautonomous range, is typical of polar sol-
vents. The relaxation timetc is about 350 fs, which is rep-
resentative of fast polar solvent relaxation. Notice that once
the value ofD is fixed, varying the value ofEr implies a
change in the temperatureT. With the figures quoted above,
the temperatures are still larger than\vc so that the classical
approximation for the bath intrinsic fluctuations remains
valid. The results presented in Figs. 1–6 are representative of
what is obtained, so slower relaxation times and changes in
Er do not alter our conclusions. Increasingv0 to
10,000 cm21 scalesD up to 1500 cm21, and even hereEr

.D is not unphysical, as reorganization energies of this
magnitude are readily achieved in polar solvents when the
electronic structures of the ground and excited states are sub-
stantially different.

In SFS there is a clear distinction between the dynamics
of the solute and solvent demarcated by the conditionEr less
than or greater than\D. In the former case, the evolution of
the solvent is autonomous, while in the latter it is nonauto-
nomous. The initial condition of bath equilibrium conditional
on the initial solute state,u0&, is the sole influence of the
solute on the solvent in the autonomous evolution. When the
solute population is hardly changing, as assumed in LRT, the
initial condition z(0)51 is approximately true for all rel-
evant times, and the autonomous equations of motion should
hold for all relative values ofEr and\D. In SFS, where the
population difference is being driven away fromz(0)51 by
the action of the~strong! external field, the analysis in Sec. II
shows that forEr,\D, autonomous dynamics still is a good
approximation; the fluctuations dominate the bath evolution.
Conversely, whenEr.\D, the nonautonomous character is
important, and leads to the new behavior.

The prime manifestation of the nonautonomous behavior

is the relaxation ofz̄(t) to a negative long-time average
value. The population is being inverted in this sense in con-
trast with the autonomous behavior where the populations of
the two states equalize. The way this comes about is quite
roundabout, as evidenced by the requirement of a nonlocal
relation betweenz(t) andj(t) that is given in Eq.~21!. As
noted in Sec. IV, if a local-in-time relation betweenz(t) and
j(t) is assumed, there will be only oscillatory behavior. And
the oscillation frequency can be thought of as analogous to
what would be obtained for an off-resonant Rabi oscillator.
The convolution structure in Eq.~21! represents the delay in
the response of the energetic coupling\j(t) to the con-

stantly changing population difference,z̄(t). The population
difference is always being driven by the external field; thus
j(t) must always try to re-equilibrate to the instantaneous
value of z(t), with the solvent response time measured by
vc .

The analysis of what we referred to in Sec. IV as the
deterministic equations of motion, Eq.~25!, shows that the
above-noted behavior is evident even when the fluctuations,
with strength measured byD, are weak compared with the
average valueEr . Note that in theh(t) stochastic process,

FIG. 8. z̄(t) and j̄(t) with the field on for times long compared with the
system relaxation time and cut-off attoff525.0, for Er50.7, vc50.1,
D50.387,b050.15, andV5v051.0. When the external field is cut-off, the

evolution of z̄(t) stops completely andj̄(t) essentially stops evolving, as
proved in Sec. V.
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the average is zero because we have definedh as a fluctua-
tion away fromEr . This is the most useful choice when the
initial condition is the solvent equilibrated to stateu0&. The
long-time behavior of the system is dominated by the non-
autonomous character of the equations of motion, versus
their stochastic character.

The procedure used in Sec. II to separate the interaction
energy\j(t) into parts that depend on the bath initial coor-
dinates and momenta, relative to the solute’s initial state, as
in Eqs.~12! and~11!, is responsible for the relatively simple
form of the equations of motion in Eq.~13!. Combined with
the bath initial condition in Eq.~16!, describing the solvent
equilibrated to the solute’su0& state, this formulation is the
most direct one to deal with the population evolution as
driven by the external field and by the coupled spin and bath
dynamics. With the introduction of a classical treatment of
the solvent and the mean-field approximation for the spin
dynamics in the bath evolution, Eqs.~20! and~23! show that
a stochastic process formulation is still feasible even for the
nonautonomous dynamics.

From a computational viewpoint, the stochastic formula-
tion is much easier to deal with than the Hamiltonian one.
Integrating the four equations of motion is efficiently carried
out by the method of generating a white noise realization for
each initialj5h value, and adding the results from trajecto-
ries generated with the Gaussian distribution ofh ’s. Analyti-
cally, thej(t) process is much harder to deal with than the
stationary, Markovian~so, exponentially correlated! and
Gaussianh(t) process. Indeed,j(t) is not a stationary pro-
cess; j(t1)j(t2)Þj(t11t)j(t21t), nor is its correlation
function exponential. The feedback from the spin variable
precludes a simple description of the stochastic properties of
j(t), and this prevents an analytic approach based on sto-
chastic process theory.
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