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We study the behavior of the reorganization energy for simple charge transfer reactions in mixtures
of dipolar hard sphere fluids by Monte Carlo simulation. The static dielectric constants of the
solvents are also obtained from the simulation. They are used as input in the reorganization energy
expressions provided by the Marcus theory and the mean spherical approximation. Thus, a
comparison between the values obtained from the theoretical expressions and our simulation results
is possible. The dependence of the reorganization energy with the mixture composition and the
influence of preferential solvation effects is also discussed. ©1999 American Institute of Physics.
@S0021-9606~99!51401-3#

I. INTRODUCTION

Electron transfer~ET! reactions in polar solvents are im-
portant in many biological and chemical processes. Solvent
fluctuations provide the transition state configurations for the
solvent–solute system necessary for the ET. Marcus1–4 has
given a physical picture for ET reactions, describing the mul-
tidimensional free energy surfaces of the product and reac-
tant states as parabolic surfaces in terms of a suitable reac-
tion coordinate. He related the activation free energyDG‡ to
the reaction free energyDG and the solvent reorganization
energyl. Marcus also derived a simple expression forl,
based on a macroscopic treatment of the solvent. The reor-
ganization energyl is then given in terms of the static and
optical dielectric constants of the solvent and a geometrical
factor.

Although the dielectric continuum model~Marcus for-
mula! provides an adequate qualitative description of the re-
organization energy, its quantitative predictions are often
times at variance with the experimental findings.5–7 Molecu-
lar descriptions of the solvent are, in principle, capable of
overcoming some of the difficulties associated with a mac-
roscopic treatment of the solvent. The mean spherical ap-
proximation ~MSA! treatment of the reorganization energy
recognizes the solvent molecularity by describing the solvent
molecules as hard spheres with point dipoles in their centers.
Within the MSA, an expression forl has been developed
that includes the hard sphere radius of the solvent
molecules.8,9

The need for a microscopic description is of particular
interest in mixtures of polar solvents. For most mixtures one
observes a nonideal~nonlinear! behavior of the solvation en-
ergy of an ionic or dipolar solute with respect to the molar
fractions of the species present in the solvent.10 This behav-

ior is usually termed as preferential solvation. For ET reac-
tions in mixtures of polar solvents, one might also expect an
influence of preferential solvation effects on the solvent re-
organization energyl. Both optical11 and thermal12,13 ex-
perimental data of ET reactions in mixtures of water and
organic cosolvents show a behavior ofl that cannot be ex-
plained with a continuum model of the solvent. Analytical
approximations for the microscopic description of the solva-
tion energy in polar mixtures have been presented in the
literature.10,14

In this paper we will investigate the behavior of the re-
organization energyl in polar solvents by means of Monte
Carlo ~MC! simulations. A quantitative prediction of experi-
mental data12,13 would require very sophisticated simulation
techniques. At this point we are rather interested in the gen-
eral behavior ofl. For this reason we have adopted a simple
solvent model, with as few adjustable parameters as possible.
Our solvent will be modeled either as a pure solvent or as a
binary mixture. In both cases we will consider dipolar, non-
polarizable hard sphere molecules. The solute consists of two
charged hard spheres. We will study charge separation and
charge recombination processes for this system. As the sol-
vent molecules are considered nonpolarizable, the optical di-
electric constant will beeopt51 for all solvents. In order to
compare the numerical results forl with the theoretical pre-
dictions, we need to evaluate the static dielectric constant.
Extensive simulations have been carried out in order to de-
terminee0 for our different solvent models.

The outline of the paper is as follows: In Sec. II we
describe our solvent model and review the most important
simulation details. In Sec. III we discuss the evaluation of
the dielectric constants for the solvent models used in this
work. In Sec. IV, the application of the MC technique to the
calculation of free energy surfaces for charge transfer reac-
tions is summarized. The results are presented and discussed
in Sec. V. A comparison with the theoretical results as ob-a!Electronic mail: denk@cica.es
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tained for the continuum solvent model~Marcus! and the
microscopic description~MSA! is made. Finally, Sec. VI
contains some concluding remarks.

II. MODEL AND MC SIMULATIONS

Our solvent is modeled as a liquid of dipolar, nonpolar-
izable hard sphere molecules. Two solvent moleculesi andk
interact via a long ranged dipole–dipole interaction:

Vi ,k5
mi–mk

r ik
3

23
~mi–r ik!~mk–r ik!

r ik
5

r ik>2r s ~1!

and a repulsive short ranged interaction~the hard sphere po-
tential,Vi ,k5` for r ik5ur iku5ur i2rku,2r s). Here,r s is the
radius of the hard spheres,mi is the dipole moment andr i is
the position of moleculei .

In this work we study pure solvents and binary mixtures
of dipolar hard sphere fluids. The radius of the solvent mol-
ecules is taken to be the same for all solvent components. A
packing fraction ofh50.417 corresponding to a dense liquid
was used in all simulations. The polarity of a pure solvent
will be expressed in terms of the dimensionless parameter

y5
4pm2r

9kBT
, ~2!

wherer is the density of the liquid. A mixture of two sol-
vents will be composed of two species, the less polar species
L, characterized by its polarityyL , and another speciesH
with a higher polarityyH . The composition of the mixtures
will be described by the molar fractions of the more polar
speciesf H throughout this work.

Periodic boundary conditions with the minimum image
convention15,16 were applied to a cubic simulation box of
side lengthL. This method requires the use of a cutoff for
the long ranged dipolar interactions. In order to account for
the contributions beyond the cutoff radiusr c<L/2 we have
adopted the generalized reaction field method.17 We consider
the moving boundary dielectric implementation, i.e., the sub-
system inside the cutoff sphere around each molecule is
thought to be immersed in a continuum dielectric character-
ized by a macroscopic static dielectric constanteRF. A mol-
ecule interacts directly with all molecules inside its cutoff
sphere via Eq.~1! and with the reaction field. The reaction
field at the center of moleculei due to the molecules inside
the cutoff sphere surrounding it is proportional to the total
dipole moment inside its cutoff sphere16

mi–Ei
r5

2~eRF21!

2eRF11

1

r c
3
mi• (

r ik<r c

mk5ami• (
r ik<r c

mk , ~3!

where we have defined a screening constanta. Summing up
all terms contributing to the total potential energy we obtain

Etot5
1

2 (
kÞ i ,r ik<r c

Vi ,k
dd2

1

2
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i
m i

2 ~4!

with an effective interaction energy

Vi ,k
dd5

mi–mk~12ar ik
3 !

r ik
3

23
~mi–r ik!~mk–r ik!

r ik
5

. ~5!

The last term in Eq.~4! describes the constant self-
interaction of the molecules with their own reaction fields.
The form of the effective interaction in Eq.~5! is very con-
venient for computational purposes. The inclusion of the re-
action field only requires two extra floating point operations
for each evaluation of the interaction energy, which renders
this method computationally feasible, even for relatively
large systems. It has been shown that the computationally
more expensive Ewald summation technique yields equiva-
lent results for the dielectric constant when applied to similar
systems.18,19 Analogous conclusions have been drawn for
free energy calculations of ionic hydration.20

System configurations were generated in the following
manner: starting from a given configuration, a molecule was
selected randomly. It was displaced from its initial position
in a cube of side lengthDx with a uniform distribution. Now,
a rotational axis (x, y or z) was selected at random and the
dipole orientation of the molecule was rotated by a uniformly
distributed angle in the range2Df<f<Df around this
axis. The parametersDx andDf were adjusted to reach an
acceptance ratio of approximately 30%. The implementation
of the simulation is along the lines of the standard Monte
Carlo techniques.15,16

III. DIELECTRIC CONSTANT

The application of the statistical mechanical theory of
the dielectric constant21,22 to finite size simulation systems
with boundary conditions requires some modifications. This
issue has been lucidly addressed by Neumann.18 From his
analysis it follows that the static dielectric constante0 in the
reaction field~RF! geometry is given by

e05
2eRF~11z!11

112eRF2z
, ~6!

with

z5
4p

3

b^M2&

L3
53ygK . ~7!

Here^M2& is the configurational average of the squared total
dipole moment of the system andb51/kBT. We have also
indicated the relation ofz with the polarityy and the Kirk-
wood g factor gK5^M2&/Nm2. The dielectric constanteRF

that characterizes the reaction field was determined self-
consistently in the simulations, so thateRF'e0 for all sol-
vents.

The solvent molecules were initially prepared in an fcc
structure and the system was then allowed to relax during
53106 MC configurations. Mean values were obtained from
NMC553108 subsequent MC configurations, except where
otherwise stated. In order to obtain an estimate of the statis-
tical errors, we calculated mean values ofz over blocks of
106 configurations. We carried out various tests to check the
convergence of the values of the dielectric constant obtained
in our simulations. In Fig. 1 we show the running averages of
e0 for two solvents withy52.18 andy52.90 for two differ-
ent values of the maximum rotational angleDf. In the case
of the solvent with the higher polarity, the values ofe0 con-
verge very slowly. Even forNMC553108 configurations we
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still find a deviation ofDe051.6 between the two simula-
tions ~theoretically, the simulation results should be indepen-
dent ofDf). The statistical errors estimated using the block
averages wereDe050.4 for simulation~a! andDe050.5 for
simulation ~b!. This indicates that, even with 53108 MC
configurations, the phase space of this highly polar system
has not been sufficiently explored to obtain precise values of
e0 . The deviation of the two curves will be used as an esti-
mate for the error of the dielectric constant~approximately
3%! for solvents with high polarity. Solvents with lower mo-
lecular dipole moments show a much faster convergence of
e0 . For solvents with a dielectric constante0<30 we found
23108 MC configurations to be sufficient to determinee0

with a relative error of approximately 3%.
We have also studied the dependency ofe0 on the sys-

tem size. Simulation~a! of Fig. 1 was repeated for a system
with N5864 particles; the resulting value ofe0 is shown in
Table I @simulation~e!#. The results indicate thate0 is inde-
pendent of the size of the system forN>256 within the error
limits.

As already mentioned, the parametereRF was adjusted
self-consistently by repeating each simulation, using the re-
sult e0 of a simulation as an input parametereRF in the next
simulation. In all cases, it was sufficient to repeat each simu-
lation only once, ase0 depends very weakly oneRF. In
simulation~f! ~see Table I! we have repeated simulation~b!
with eRF558. The results are practically identical.

The dielectric constante0 was then determined for a
pure solvent over a wide range of values of the molecular

polarity y. A system withN5256 particles was used in these
simulations and the mean values ofe0 were obtained after
53108 MC configurations. For the highest polarity,y
53.0, we increased the number of MC configurations to
NMC5109 for the reasons mentioned above. The results are
shown in Fig. 2.

The theory of liquids provides various approximations
for the structure of the dipolar hard sphere fluid.23 Of par-
ticular interest is the so-called MSA, as it provides analytical
expressions for the correlation functions and the dielectric
constant.24 We find it instructive to compare our simulation
results with the MSA theoretical predictions. The pair distri-
bution function can be expanded as23

h~1,2!5hS~R!1hD~R!D~1,2!1hD~R!D~1,2!, ~8!

whereD~1,2! is the cosine of the angle formed by the dipole
orientations of two molecules and2D(1,2)m2/R3 is the
dipole–dipole interaction as defined in Eq.~1!. The MSA
provides the functionshS(R),hD(R) andhD(R) in terms of
the radial distribution function~rdf! of the Percus–Yevick
~PY! solution for hard spheres at different densities.

In Fig. 3 we show the radial distribution function
gS(R)5hS(R)11 for a highly polar solvent (y53.00). Sol-
vents with a lower polarity have a very similar rdf with a
slightly lower main peak. The MSA result forgS(R) ~also
shown in Fig. 3! is just the PY rdf for hard spheres at density
r and does not depend on the molecular polarity. Although
the agreement is globally good, there are deviations between
the MSA and the simulations. In the region close to contact,
the MSA subestimates the value ofgS(R), which is of pri-
mary importance for many thermodynamic properties of the
liquid. It also predicts a somewhat slower decay from the
peak value to the first minimum when compared with the
simulations.

The dielectric properties of the solvent are related to
hD(R), which describes the angular correlation of two mol-
ecules at a given distanceR. The dielectric constante0 is

FIG. 1. Running averages ofe0 for ~a!,~b! y52.90 and~c!,~d! y52.18. The
systems were simulated with two different values of the maximum rotational
angleDf5p/2 ~a! and ~c! andDf51.0 ~b! and ~d!.

FIG. 2. The static dielectric constante0 for a pure solvent. The error bars of
the simulation results indicate the estimated relative error of 3%~see main
text!. The solid line is a fourth degree interpolation polynomial. The dotted
line corresponds to the theoretical result as obtained from the MSA.

TABLE I. Dielectric constants obtained for solvents withy52.90
~a!,~b!,~e!,~f! andy52.18 ~c!,~d!

e0 NMC N Df eRF

~a! 59.68 53108 256 p/2 70
~b! 58.05 53108 256 1.0 70
~c! 28.29 53108 256 p/2 30
~d! 29.05 53108 256 1.0 30
~e! 58.41 23108 864 p/2 70
~f! 58.78 53108 256 1.0 58
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determined by the polarityy and the Kirkwoodg factor gK

@see Eq.~6!#. The Kirkwood g factor gK can be obtained
from hD(R) by integration

gK511
4pr

3 E
0

`

hD~R!R2 dR. ~9!

In Fig. 4 we showhD(R) for a highly polar solvent (y
53.0) as obtained from our simulations and the correspond-
ing MSA result. The MSA does not provide a good approxi-
mation tohD(R) as it underestimates the angular correlation.
This results in an underestimation ofgK and thuse0 . This
deviation is more pronounced for solvents with a high polar-
ity ~see Fig. 2!. But, even for solvents with the lowest polar-
ity under consideration in this work, the MSA result for
hD(R) does not agree with the simulation data. The dielectric
constant as obtained by the MSA gives a good approxima-
tion to e0 only for solvents withgK'1. These limitations of
the MSA are well known and more sophisticated theories
based on the hypernetted chain~HNC! approximation pro-
vide much better angular correlation functions and dielectric

constants for dipolar hard sphere fluids. Comparisons of the
MSA and other theories can be found in the literature.23,25–33

Let us now consider the case of binary solvent mixtures.
We study two different types of mixtures:~A! mixtures with
two components of similar polarities (yH53.0 and yL

52.18), and~B! mixtures whose components are of rather
different polarity (yH53.0 andyL50.75). For each type of
mixture, the dielectric properties will only depend on its mo-
lar composition~defined by the molar fraction of speciesH,
f H), if the temperature is held fixed. This gives us the pos-
sibility of studying two quite different mixtures, spanning a
wide range of dielectric constants. The simulation procedure
is the same as for pure solvents, and the dielectric constant is
evaluated by using Eqs.~6! and ~7!.

In Fig. 5 we show the dielectric constants as obtained for
the simulated compositions of mixtures of type~A! and~B!.
The values ofe0 for the pure solvents (f H50 and f H51)
were taken from the simulations described above~see Fig.
2!. For both mixtures we observe an almost quadratic depen-
dence of the static dielectric constant on the molar fraction
f H . This behavior can be understood by noticing that in the
case of a binary mixture,^M2&/N is to a good approximation
a quadratic function of the molar fractionf H . For e0

'eRF, it follows from Eq. ~6! that the dielectric constant is
essentially a linear function ofz, which in turns is propor-
tional to ^M2&/N as can be seen in Eq.~7!.

IV. REORGANIZATION ENERGIES

A. Calculation of the reorganization energy
from molecular simulations

In Sec. III we have analyzed the dielectric behavior of
dipolar hard sphere solvents. We will now study the situation
when a solute is immersed in the solvent. Our aim here is to
study the energetics of thermal charge transfer reactions be-
tween two solute molecules in the presence of a polar sol-
vent. We have adopted a simple model for the solute: The
solute consists of two hard sphere molecules~donor and ac-
ceptor! with given radii r d and r a separated by a fixed dis-

FIG. 3. The radial distribution functiongS(R) (R5r /2r s) for a solvent with
y53.00 ~filled circles!. The dotted line representsgS(R) as obtained from
the MSA.

FIG. 4. The angular correlation functionhD(R) for a highly polar solvent
(y53.0, filled circles!. The dotted line corresponds tohD(R) as provided by
the MSA.

FIG. 5. Static dielectric constante0 for binary mixtures of dipolar hard
spheres withyL52.18 @mixture ~A!, circles# and yL50.75 @mixture ~B!,
squares# in terms of the molar fractionf H . In both casesyH53.0. The solid
lines represent quadratic interpolation polynomials.
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tanced. The donor and acceptor in the reactant state carry a
chargeqd andqa , respectively; a negative net charge trans-
fers from the donor to the acceptor. We will consider the
reaction coordinate of this process in terms of a charging
parameterj, so that

qd~j!5qd1je, ~10!

qa~j!5qa2je. ~11!

Here,e is the elementary charge~that we will take as posi-
tive!. The reactant state of the solute is given byj50, while
the product state is obtained by settingj51. In this work we
have studied two typical transfer reactions:~i! a charge re-
combination~CR! processqd52e andqa51e and ~ii ! the
inverse process, a charge separation~CS! process (qd5qa

50). The rates of these processes are governed by an acti-
vation free energy law. Marcus1–4 obtained for the nonadia-
batic electron transfer rate

ket5
k

A4pl/b
exp~2bDG‡!, ~12!

where the activation free energyDG‡ is defined as

DG‡5
~DG1l!2

4l
. ~13!

Here, k is a matrix element describing the electronic cou-
pling between reactant and product state, andDG and l
denote the free-energy change of the reaction and the reor-
ganization energy, respectively. Equation~12! was derived
under the assumption of a classical solvent that responds
linearly to a redistribution of charges.

The procedure used for the evaluation of reorganization
energies in charge transfer reactions from simulations is well
documented.34–36 Here we will briefly indicate the main
points. LetHj denote the solvent–solute interaction energy
for a solute state characterized by the charging parameterj
and a certain fixed solvent configuration. The energy gap
DV5H12H0 describes the energy difference between prod-
ucts and reactants for a given configuration of the solvent.
An electron transfer will take place only for solvent configu-
rations that fulfill the conditionDV52Ei ~Frank–Condon
principle!, where Ei is the intrinsic energy difference
between the gas phase electronic structures of the initial
and final state of the solute. Let us define the random vari-
able D5DV, with a probability law given by pj(D)
5^d(D2DV)&j , where the angular brackets indicate an
equilibrium average taken with a canonical distribution de-
scribing a system at temperatureT and HamiltonianHj . The
rate of the ET process is proportional to the probability den-
sity p0(2Ei) of the energy gapDV having a value2Ei .
This probability distribution corresponds to a solvent in ther-
modynamical equilibrium with the reactant state of the sol-
ute, j50.

The main problem in simulations lies in the construction
of this probability density as the entire phase space of the
solvent degrees of freedom has to be explored. This is an
impractical task, and one resorts to a free energy perturbation
method,34 which is based on the following. For a given value

of the fractional charge parameterj, DV is sampled around
a valueDj with a distribution that is approximated very well
by a Gaussian

pj~D!5
1

A2psj
2

e2~D2Dj!2/2sj
2
. ~14!

Various statesj of the solute are simulated, each simulation
providing a probability distributionpj(D) aroundDj . These
distributions can be pieced together34 to yield the distribution
p0(D) over a wide range of valuesD. Zhou and Szabo35

have proposed a simplified method that permits obtaining
p0(D) by simulating only two states of the solute:j50 and
j51. In their work, the reorganization energy is given by

l5D02DG10, ~15!

with the free-energy difference between statej and the reac-
tant state of the solute

DGj05E
0

j

dj8 Dj8 . ~16!

The mean value of the energy gapDj for a certain value of
the charging parameterj can be obtained by a cubic inter-
polation polynomial inj, where all coefficients are deter-
mined by the mean valuesD0 and D1 and the dispersions
bs0

2 andbs1
2 in the reactant and product state, respectively.

Inserting the polynomial expression of Zhou and Szabo in
Eqs.~15! and ~16! leads to

lCR5 1
2 ~D02D1!1 1

12 ~bs0
22bs1

2!, ~17!

lCS5 1
2 ~D02D1!2 1

12 ~bs0
22bs1

2!. ~18!

As pointed out by Zhou and Szabo, the accuracy of the in-
terpolation polynomial approximation forDj can be checked
by carrying out an additional simulation forj51/2. The
value of the energy gapD1/2 obtained is then compared to the
value provided by the interpolation formula. We found a
deviation of less than 1% for all cases considered here. From
the interpolation polynomial, the probability densityp0(D)
can also be constructed.35

B. Simulation details

The inclusion of the charged solute particles in the simu-
lation introduces a difficulty when dealing with systems of
finite size: The orientation of the dipole moments of the sol-
vent molecules is anisotropic and the periodic replication of
the central simulation cell does not represent a physical pic-
ture of the solvent. This issue has been widely discussed in
the literature37 and various methods have been developed to
avoid periodic boundary conditions~pbc! for such systems.
Spherical simulation cells in conjunction with a suitable
method to avoid self-polarization on the surface of the cell
are usually employed.38

We have considered simulations with periodic boundary
conditions and within a spherical geometry. In the pbc simu-
lations, the charge–dipole interactions can be described via
an effective interaction potential that includes the reaction
field in a similar manner to Eq.~5!:
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Vi , j
qd5qi S 2

r i j
2a Dmj–r i j , ~19!

wherea is the screening constant as defined in Eq.~3!. The
solute charges interact with all dipoles inside their corre-
sponding cutoff spheres. The cutoff radius for the charge–
dipole interactions was set to be the same as for the dipole–
dipole interactions.

In the spherical model, the simulation cell is a spherical
vessel with the solute situated at the center of the vessel.
Each molecule interacts with all molecules inside the vessel
and electrostatic interactions are taken fully into account@set
a50 in Eqs.~5! and~19!#. The simulation sphere is divided
into two regions: an inner sphere, where the molecules are
allowed to move and rotate and an outer shell, where the
molecules are kept fixed during the simulation. The mol-
ecules constituting the outer shell are situated initially in a
fcc structure with randomly distributed dipole moments. The
fixed dipoles in the outer shell prevent an unphysical polar-
ization of the dipoles close to the surface of the vessel. A
correction to the energy gapD0 has to be applied in the case
of the spherical model. Contributions from the solvent out-
side the sphere can be partially taken into account by con-
sidering the sphere to be immersed in a continuous dielectric
medium with dielectric constanteout. The influence of this
dielectric medium is not taken into account during the simu-
lation ~as it would require the full solution of the Laplace
equation inside the sphere for each configuration!, but its
effect on D0 may be estimated by electrostatic consider-
ations. For a CR process, the contributions toD0 from out-
side the simulation cell with radiusR are

D0
out5

2~eout21!

2eout11

~ed!2

R3
, ~20!

whered is the distance between the solute charges.
We studied the dependency ofD0 on the size of the

system for both models. A highly polar solvent (y52.90)
was used to solvate two solute ions with equal radiir d5r a

5a51.44 Å, chargesqd52e, qa51e and separated by a
distance ofd56 Å. The solvent radius was set to be the
same as the solute radius and a packing fraction ofh
50.417 was used.

In the case of the pbc geometry we simulated systems
with N5246 490 854 solvent molecules. The cutoff radius
for the dipole–dipole and charge–dipole interactions was set
to r c5min(L/2,8r s) for each system, whereL is the side-
length of the cubic simulation cell. For the system withN
5854 solvent molecules we conducted a simulation with the
full cutoff r c5L/2 in order to check the influence of the
reduced cutoff onD0 .

In the spherical geometry we simulated the same system
with a total ofNtot5673 solvent molecules. In this case, the
radius of the inner sphere~where the molecules are allowed
to move! was varied. The results are combined in Table II.

For small system sizes, the two geometries produce quite
different values for the energy gapD0 . The pbc simulations
overestimateD0 , whereas the spherical model results in too
small values for the gap. As the system size increases, both
models yield similar results. As the size of the outer shell in

the spherical model decreases~last value in Table II!, the
polarization of the cell surface results in lower values for
D0 . The reduced cutoffr c58r s511.52 Å for the pbc system
with N5854 solvent molecules gives practically the same
value forD0 as the system withr c5L/2514.75 Å.

Although the spherical geometry permits the usage of
smaller system sizes, we have opted for the pbc geometry
with N5854 solvent molecules and a reduced cutoffr c

58r s for our simulations. Our choice is based on the fact
that the spherical model was not able to reproduce the dielec-
tric constant of the solvent. Thus the usage of a single ge-
ometry for the determination of both the dielectric constant
and the reorganization energy is clearly preferable. The pbc
geometry also allows us to calculate the solvent radial distri-
bution functions. With our choice of the system size and the
cutoff radius, a molecule close to the simulation cell bound-
ary only interacts with a small fraction of the periodic im-
ages of the solvent molecules in the first solvation shell.

When applying the conventional Monte Carlo method
for creating system configurations~translation and rotation of
a molecule! in the case of mixtures, we noticed a very slow
relaxation of the system. If a charged solute is present, the
initial fcc structure of the solvent relaxes rapidly to a situa-
tion where the solute is solvated by the molecules that are
initially in the vicinity of the solute. Thus, the molar compo-
sition of the first solvation shells depends on the initial po-
sitions of the two species within the fcc grid. The high den-
sity of solvent molecules close to the solute now renders a
restructure of the solvation shell extremely difficult. If the
two components of the mixture are equally sized, one can
adopt a much more efficient method for creating configura-
tions: The conventional ‘‘move’’ is alternated with a
‘‘swap’’ of molecules: two molecules of different species are
selected randomly. Now, the identities of the molecules are
interchanged, i.e., the dipole moment of the two molecules is
changed. We only change the absolute values of the dipole
moments; the dipole orientations are not altered. Each new
configuration is generated either by a move or by a swap and
the probability for a swap was set to 10%.

V. RESULTS AND DISCUSSION

The reorganization energieslCR and lCS for a charge
recombination and a charge separation process have been

TABLE II. Values of D0 for pbc and the spherical model. The solvent and
solute parameters are specified in the main text. For the spherical modelN
refers to the number of molecules that are allowed to move. In this geometry
the total number of molecules was held fixed atNtot5673.

N D0 ~kcal/mol! r c Geometry

246 226.9 r c5L/2 pbc
490 223.1 r c58r s pbc
854 221.9 r c58r s pbc
854 222.1 r c5L/2 pbc
239 217.9 ¯ spherical
371 222.4 ¯ spherical
521 223.5 ¯ spherical
593 218.6 ¯ spherical
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calculated for various solvents using the methods described
above. The solute consists of two hard spheres with radius
r d5r a5a51.44 Å and distanced56 Å.

A. Pure solvents

We first study the case of ET reactions in pure solvents.
We have considered solvents with polaritiesy in the range of
0.75<y<3.0. The solvent radius was chosen to be the same
as the solute radius. A packing fraction ofh50.417 and a
temperature ofT5300 K was used in all simulations.

We will compare our simulation data with the reorgani-
zation energy expressions provided by the Marcus theory
and the MSA. In the Marcus continuum description, the re-
organization energy for a charge transfer of an elementary
charge between two equally sized solute molecules of radius
a at a distanced in a nonpolarizable solvent with static di-
electric constante0 is given by

l5e2S 12
1

e0
D S 1

a
2

1

dD . ~21!

The MSA theory takes into account the molecular aspect of
the solvent. In the case of infinitely separated charge centers
(d→`), the reorganization energy is just the sum of the
solvation free energies of the two ions8,9

l5e2S 12
1

e0
D 1

a~11d!
. ~22!

Here,d is a correction to the solvated ion radius, which to a
very good approximation is given by39

d53r s /a~1081/3e0
1/622!21. ~23!

If the distance between the ions is not infinite, the inclusion
of the ion–ion interaction in Eq.~22! within the framework
of the MSA would require the knowledge of the mean ion–
ion potential. We will approximate this term by the screened
interaction in a continuum dielectric medium, as it has been
done by others.36 The inclusion of this term in Eq.~22! re-
sults in

lMSA5e2S 12
1

e0
D S 1

a~11d!
2

1

dD . ~24!

We should keep in mind that this approximatelMSA does not
emerge from a purely microscopic picture of the solvent, as
its influence on the ion–ion interaction is taken into account
by a continuum description. This is expected to be a good
approximation, as long as the distance of the ions is suffi-
ciently large.

When evaluating Eqs.~24! and~23!, we have to provide
the solute radiusa, the ion distanced, the solvent radiusr s

and the static dielectric constant of the solvente0 . The latter
may be obtained directly from the MSA, using the following
relations:23

3y5
~114j!2

~122j!4
2

~122j!2

~11j!4
,

~25!

e05
~114j!2~11j!4

~122j!6
.

For comparison with experimental data it is often more con-
venient to use the experimental value ofe0 in Eqs.~24! and
~23!.

We will thus compare three theoretical expressions with
our simulation data:~a! the Marcus expression Eq.~21!, ~b!
the ‘‘consistent’’ MSA result as given by Eq.~24! using the
solvent polarityy in order to determinee0 from the MSA and
~c! the ‘‘experimental’’ MSA resultlMSA

ex , using the dielec-
tric constants as obtained from the simulations in Eq.~24!.
The results are shown in Fig. 6, where we represent the re-
organization energy versus the Pekar factor 121/e0 . In this
representation, the Marcus result@Eq. ~21!# is a straight line.

We find thatlCS.lCR for all simulated pure solvents.
Similar results have been obtained by other authors for com-
parable systems.36 This is due to the combination of two
effects:34,40 First, the free energy surfaces are not strictly
parabolic, as it would be required by linear response theory.
Second, even if the deviations from parabolic surfaces are
small, the curvature of the parabolas may be different in the
reactant and product states. Both features give rise to a dif-
ferent reorganization energy for the charge separation and
charge recombination processes.

The Marcus expression forl results in an overestimation
of the reorganization energy. Equation~21! gives l(y
53.0)5172.6 kcal/mole for the solvent with the highest po-
larity. In the plot we have scaled the corresponding curve to
coincide with lMSA

ex at this polarity. This is equivalent to
using an effective ion radius ofa52.0 Å in Eq. ~21!. When
the geometric factor is adjusted in this way, the continuum
description still does not describe well the overall behavior

FIG. 6. Reorganization energies for a pure solvent. The squares represent
lCS, the circles correspond tolCR as obtained from the simulations. The
dashed line is the result as obtained by the continuum description~Marcus!
scaled to coincide withlMSA

ex for the highest polarity. The dotted line cor-
responds to the theoretical MSA result for the simulated system. The MSA
resultlMSA

ex , usinge0 as obtained from the simulations as an input param-
eter, is represented by the solid line.
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of the reorganization energy. This feature is expected. The
expression forl in the continuum description, Eq.~21!, in-
dicates that the reorganization energy depends only one0 for
fixed radii and separation distance and this dependence is
very weak.

For the MSA results, we find a much better agreement
between the theoretical expressions and the simulation data.
The theoretical MSA result~b! gives good agreement for
small polarities, but underestimates the reorganization en-
ergy for high polarities. This is not surprising, as it is well
known that the MSA underestimates the dielectric constant
for high solvent polarities. This results in an underestimation
of the Pekar factor 121/e0 on one hand and of the geometric
factor 1/a(11d) on the other.

The MSA expressionlMSA
ex with e0 taken from the simu-

lation data yields reorganization energies which are close to
the simulation results for the charge recombination process.
By construction, the MSA does not distinguish between the
charge recombination and charge separation processes,
which as shown by the simulation results, have different re-
organization energies. Thus, the good agreement oflMSA

ex

with the results for the charge recombination process in the
case presented is probably fortuitous. However, this expres-
sion describes the overall shape of both curves much better
than the Marcus approximation. The theoretical expression
for l within the framework of MSA includes the geometric
factor 1/a(11d) which depends one0 via Eq. ~23!. The
ability of lMSA

ex to reproduce the trend of the simulation data
for both processes suggests that the inclusion of this geomet-
ric factor is an important correction to the Marcus expression
for the reorganization energy, Eq.~21!. The geometric factor,
as given by the MSA, can be interpreted as an effective
solute radiusa(11d) and is a consequence of the solvent
molecularity in the MSA picture. This emphasizes the need
for a molecular description of the solvent, even in the case of
pure solvents.

From these results one may be tempted to conclude that
the MSA is able to predict the solvent structure around the
solutes. We are currently examining this question for single
ions in solution. Preliminary results indicate that the polar-
ization density of the solvent around an ion is not very well
represented by the MSA expression. However, the free en-
ergy of solvation, given as an integral over the polarization
density, is predicted quite well by the MSA expression.

B. Mixtures

We will now proceed to the case of binary mixtures of
polar solvents. We have calculated the reorganization energy
for the two mixtures studied in the previous section@mixture
~A! with similar polarities of the two components:yH53.0
andyL52.18 and mixture~B! with rather different polarities
of the two components:yH53.0 andyL50.75#. The results
for mixture ~A! are shown in Fig. 7 and for mixture~B! in
Fig. 8.

When the solute is not preferentially solvated by one of
the two components of the mixture, one would expect a lin-
ear behavior of the solvation energy, as the molar fraction of
the components is varied.10 For nonpolarizable solvents, the

theoretical expressions for the reorganization energy reduce
to a solvation energy in the limitd→`. Thus, a linear~or
close to linear! dependence ofl on the molar fractionf H

would indicate that no preferential solvation is present in the
process. For both mixtures we observe deviations from a
linear behavior in the reorganization energy. In mixture~A!
we observe an almost linear behavior forlCS, while all val-
ues oflCR for the mixtures lie above a straight line connect-
ing the results for the pure solvents. For mixture~B! this
behavior is much more pronounced. When adding a small
molar fraction of the component with the higher polarity, the
reorganization energy shows a drastic increase, and very
quickly the reorganization energyl reaches a value close to
that of the pure solvent (f H51). As it was already observed
for mixture ~A!, the reorganization energy for the charge
recombination processlCR deviates more from the linear

FIG. 7. Reorganization energies for mixture~A! (yH53.0 andyL52.18).
The squares representlCS, the circles correspond tolCR. The linear depen-
dence, as expected in the limitd→` for ideal solvation, is represented as a
dashed line for each case. Thex symbols represent the MSA resultslMSA

ex .

FIG. 8. Reorganization energies for mixture~B! (yH53.0 andyL50.75).
The squares representlCR, the circles correspond tolCS. The solid lines
connecting the data points have been obtained by spline interpolation. The
linear dependence, as expected in the limitd→` for ideal solvation, is
represented as a dashed line for each case. Thex symbols represent the
MSA resultslMSA

ex .
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behavior thanlCS. By contrast with the results obtained for
the pure solvents and mixtures of type~A!, in mixture~B! we
observe a range of molar fractions wherelCR.lCS.

The drastic increase in the reorganization energy as a
small amount of high polarity solvent is added, especially in
the case of solvents of rather different polarities, can be
qualitatively explained by noticing that the concentration of
high polarity solvent molecules around the ions is much
larger than the average bulk concentration indicated by the
nominal molar fraction. Thus, quite a substantial amount of
free energy is required to reorganize the solvent upon the
transfer of the electron, as compared with the amount needed
to reorganize the low polarity solvent. Once the solvation of
the ions by the high polarity solvent is essentially completed,
the addition of extra high polarity solvent does not add much
to the energetic changes. This qualitative picture is corrobo-
rated by the exploration of the composition of the solvation
shells around the solute ions.

In Fig. 9 we show the ion solvent rdfgid(R) for mixture
~B! with f H50.52 around a neutral solute molecule. The rdf
for both components is very similar. When the solute is
charged, the solvent structure around the ions changes dras-
tically as shown in Fig. 10. The solute is almost entirely
solvated by the species with the higher polarity. Note that
this rdf has been obtained from a simulation where two sol-
ute ions at a fixed distance ofd56 Å are present. Then, the
solvation shell around one of the ions influences the rdf
around the other ion. This is probably the reason for the
structure showing up in the second solvation shell.

In the case of pure solvents the MSA yields a good de-
scription ofl for the entire range of values of the dielectric
constant. In Figs. 7 and 8 we have also plotted the values of
lMSA

ex for the corresponding mixtures, using the values ofe0

from Fig. 5. We see that this approximation does not match
the molecular simulation results. This is not surprising, as the
bulk dielectric constant of the solvent mixture was used as an
input parameter for the MSA expression. As we have ob-

served above, the solute is preferentially solvated by the
more polar species of the mixture. This renders the use of a
macroscopic constant, describing only bulk properties, ques-
tionable. As mentioned before, more complete analytical
treatments have been introduced in the literature,10,14 to de-
scribe solvent behavior in ET reactions in binary mixtures.
Comparison of our numerical results and these analytical ap-
proaches will be made elsewhere.

As we have observed above, quite different polarities of
the two solvent species are necessary to make preferential
solvation effects on the reorganization energyl important.
On the other hand, one might expect a weaker influence of
preferential solvation even for solvents with rather different
polarities when the electric field created by the ion charges at
the solute surface is sufficiently low. To explore this point,
we have increased the radius of our solute molecules toa
52.88 Å ~leaving fixed all other parameters! and repeated
the simulations with mixture~B! for three molar fractions:
f H50.0, f H50.14 andf H51.0. This solute geometry should
resemble more closely a typical situation for ET reactions
involving more complex solute molecules. The results are
shown in Table III.

For the bigger solute we findlCR'lCS for all composi-
tions of the mixture. The curvatures of the Marcus free en-
ergy surfaces are equal in the product and reactant state. For
this solute geometry the Marcus formula, Eq.~21!, should
give better estimates forl. The electric field on the surface
of the ions is smaller by a factor of 4 than in the case of the

FIG. 9. Ion–solvent radial distribution functions for a mixture of type~B!
with f H50.52. The solute is neutral,q50. The solid line represents the rdf
for the solvent species with the higher polarity. The dotted line corresponds
to the species with the lower polarity. Radial distances are given in reduced
units R5r /2r s .

FIG. 10. Same as Fig. 9, but for a charged solute molecule,q5e.

TABLE III. Reorganization energies for a solute witha52.88 Å andd
56 Å in a mixture with components of polarityyL50.75 andyH53.0. The
continuum approximationlMarcus was obtained from Eq.~21! and lMSA

c is
given by Eq.~26!, using the dielectric constant as obtained from the simu-
lations as an input parameter.

f H

lCR

~kcal/mol!
lCS

~kcal/mol!
lMarcus

~kcal/mol!
lMSA

c

~kcal/mol!

0.00 31.1 32.4 50.0 28.6
0.14 37.7 37.1 51.9 30.3
1.00 45.2 44.9 59.0 40.5
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smaller solutes. Consequently, the system is now more
within the limits of linear response theory. Also, the con-
tinuum approximation should work better as the sizes of the
solvent molecules is now half the size of the solute ones.
Indeed, we find that the Marcus formula now gives better
values forl. The values oflMarcus are still larger than the
ones obtained from the simulation results, but there is a bet-
ter agreement than in the case of the small solute. When
applying MSA theory to this solute geometry, the approxi-
mation used in Eq.~24! ~the solute–solute interaction is de-
scribed by the screened 1/d term! becomes questionable. For
charge centers at contact the following expression for the
reorganization energy has been considered in the literature:41

lMSA
c 5e2S 12

1

e0
D 1

2a~11d!
. ~26!

We have used this expression for the values oflMSA
c shown

in Table III. The MSA now underestimates the reorganiza-
tion energy but it still gives a reasonable approximation to
the simulation results.

The charged ions are still preferentially solvated by the
more polar species. This leads to a nonlinear increase in the
reorganization energy, as a small molar fraction of the com-
ponent with the higher polarity is added. If we consider the
relative increase of the reorganization energy,p5(l@ f H#
2l@ f H50#)/(l@ f H51#2l@ f H50#), we find that the mix-
ture with a molar fractionf H50.14 has a value ofp50.47
~charge recombination! instead ofp50.14 as it would corre-
spond to a linear behavior. As expected, this increase is not
as drastic as in the case of small solutes, where we get
p@ f H50.14#50.89 for the charge recombination process.

VI. CONCLUDING REMARKS

In this paper we have considered several aspects of the
energetics of electron transfer reactions in solutions of pure
solvents and mixtures. In particular, we have focused on the
evaluation of the reorganization energy by means of Monte
Carlo simulations and a comparison of the simulation results
with those provided by the Marcus formula and the MSA.

The analytical expressions for the reorganization energy
require the knowledge of the solvent dielectric constant.
Thus, our first task has been the calculation~via MC simu-
lation! of this quantity for solvents modeled by nonpolariz-
able hard spheres with ideal dipole moments. The MSA de-
scription of the dielectric constant seems to be adequate for
solvents of low polarity, but its predictions do not compare
favorably with the simulation results as the solvent polarity
increases. An analysis of the radial and angular correlation
functions~cf! indicates that even though the MSA prediction
for the rdf is a good one, the one for the angular correlation
function is not. As the angular correlations are of prime im-
portance for the dielectric constant, it is not surprising that
the MSA fails to describe the dielectric constant of high po-
larity liquids.

Reorganization energies for CS and CR thermal pro-
cesses in pure solvents have been calculated from the simu-
lation data. The continuum description yields the well known
Marcus formula for the reorganization energy in terms of the

product of a geometrical factor and the Pekar factor. The
continuum description results do not match the simulation
data even if the geometrical factor is adjusted. The MSA
includes relevant aspects of the microscopic description of
the solvent and it leads to an approximate formula involving
solute radii which depend on the dielectric constant. In par-
ticular, a good agreement between the MSA predictions for
the reorganization energy and the simulation results is ob-
tained if one uses the values of the solvent dielectric constant
obtained in the simulations. Nonetheless, the MSA does not
describe properly the structure of the solvation shell around a
solute ion. The simulations show thatlCS.lCR.

The importance of a microscopic description of the sol-
vent response to the transfer of charge between solute reac-
tants and products is very vividly shown by the consideration
of solvent mixtures. The analytical theories requiring as in-
put the dielectric constant of the solvent fail completely
when applied to charge transfer processes in liquid mixtures.
Our results show that the solvent with higher polarity very
efficiently solvates the solute ions, even if its molar fraction
is very small. This preferential solvation has profound influ-
ences on the dependence of the energetics of the transfer
process with respect to the mixture composition as mani-
fested in Figs. 7 and 8. The influence of preferential solva-
tion is diminished when the size of the solute is increased
while keeping its charge fixed. For both mixtures considered,
the preferential solvation seems to have a stronger influence
on the charge recombination process.
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Vega, and F. Sa´nchez, Ber. Bunsenges. Phys. Chem.101, 1452~1997!.
14L. Zusman, J. Chem. Phys.102, 2580~1995!.
15D. Frenkel and B. Smit,Understanding Molecular Simulation~Academic,

San Diego, CA, 1996!.
16M. P. Allen and D. J. Tildesley,Computer Simulation of Liquids, 1st ed.

~Clarendon, Oxford, 1987!.

482 J. Chem. Phys., Vol. 110, No. 1, 1 January 1999 Denk et al.



17I. G. Tironi, R. Sperb, P. E. Smith, and W. F. van Gunsteren, J. Chem.
Phys.102, 5451~1995!.

18M. Neumann, Mol. Phys.50, 841 ~1983!.
19C. Millot, J.-C. Soetens, and M. T. M. Costa, Mol. Simul.18, 367~1997!.
20G. Hummer, L. R. Pratt, and A. E. Garcı´a, J. Phys. Chem.100, 1206

~1996!.
21H. Frohlich,Theory of Dielectrics, 2nd ed.~Oxford University Press, Ox-

ford, 1958!.
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