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of dipolar hard sphere solvents: A Monte Carlo study
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We study the behavior of the reorganization energy for simple charge transfer reactions in mixtures
of dipolar hard sphere fluids by Monte Carlo simulation. The static dielectric constants of the
solvents are also obtained from the simulation. They are used as input in the reorganization energy
expressions provided by the Marcus theory and the mean spherical approximation. Thus, a
comparison between the values obtained from the theoretical expressions and our simulation results
is possible. The dependence of the reorganization energy with the mixture composition and the
influence of preferential solvation effects is also discussed 1989 American Institute of Physics.
[S0021-960629)51401-3

I. INTRODUCTION ior is usually termed as preferential solvation. For ET reac-
tions in mixtures of polar solvents, one might also expect an
Electron transfe(ET) reactions in polar solvents are im- influence of preferential solvation effects on the solvent re-
portant in many biological and chemical processes. Solvergrganization energy.. Both opticat' and thermdf® ex-
fluctuations provide the transition state configurations for theyerimental data of ET reactions in mixtures of water and
solvent—solute system necessary for the ET. Mdféusas  organic cosolvents show a behavior)othat cannot be ex-
given a physical picture for ET reactions, describing the mulplained with a continuum model of the solvent. Analytical
tidimensional free energy surfaces of the product and reaggpproximations for the microscopic description of the solva-

tant states as parabolic surfaces in terms of a suitable reagon energy in polar mixtures have been presented in the
tion coordinate. He related the activation free enek@y* to  Jiteraturel®14

the reaction free energ&G and the solvent reorganization In this paper we will investigate the behavior of the re-
energy\. Marcus also derived a simple expression Xor  organization energy in polar solvents by means of Monte
based on a macroscopic treatment of the solvent. The reotarlo (MC) simulations. A quantitative prediction of experi-
ganization energy is then given in terms of the static and mental dat¥** would require very sophisticated simulation
optical dielectric constants of the solvent and a geometricalechniques. At this point we are rather interested in the gen-
factor. eral behavior of\. For this reason we have adopted a simple
Although the dielectric continuum modéMarcus for-  solvent model, with as few adjustable parameters as possible.
mula) provides an adequate qualitative description of the reour solvent will be modeled either as a pure solvent or as a
organization energy, its quantitative predictions are ofterinary mixture. In both cases we will consider dipolar, non-
times at variance with the experimental findifgéMolecu-  polarizable hard sphere molecules. The solute consists of two
lar descriptions of the solvent are, in principle, capable ofcharged hard spheres. We will study charge separation and
overcoming some of the difficulties associated with a mactharge recombination processes for this system. As the sol-
roscopic treatment of the solvent. The mean spherical apzent molecules are considered nonpolarizable, the optical di-
proximation (MSA) treatment of the reorganization energy electric constant will bes,,=1 for all solvents. In order to
recognizes the solvent molecularity by describing the solvengompare the numerical results forwith the theoretical pre-
molecules as hard spheres with point dipoles in their centergjictions, we need to evaluate the static dielectric constant.
Within the MSA, an expression fox has been developed Extensive simulations have been carried out in order to de-
that includes the hard sphere radius of the SOWenEermineeo for our different solvent models.
moleculed’® The outline of the paper is as follows: In Sec. Il we
The need for a microscopic description is of particularyescribe our solvent model and review the most important
interest in mixtures of polar solvents. For most mixtures on&;jmy|ation details. In Sec. IIl we discuss the evaluation of
observes a nonideghonlineay behavior of the solvation en-  {he dielectric constants for the solvent models used in this
ergy of an ionic or dipolar solute with respect to the molaryyork. In Sec. IV, the application of the MC technigue to the
fractions of the species present in the solVérkhis behav-  cajcyiation of free energy surfaces for charge transfer reac-
tions is summarized. The results are presented and discussed
dElectronic mail: denk@cica.es in Sec. V. A comparison with the theoretical results as ob-
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tained for the continuum solvent mod@arcug and the The last term in Eq.(4) describes the constant self-
microscopic descriptiofMSA) is made. Finally, Sec. VI interaction of the molecules with their own reaction fields.

contains some concluding remarks. The form of the effective interaction in E¢p) is very con-
venient for computational purposes. The inclusion of the re-
II. MODEL AND MC SIMULATIONS action field only requires two extra floating point operations

for each evaluation of the interaction energy, which renders
this method computationally feasible, even for relatively

large systems. It has been shown that the computationally
more expensive Ewald summation technique yields equiva-
lent results for the dielectric constant when applied to similar

Our solvent is modeled as a liquid of dipolar, nonpolar-
izable hard sphere molecules. Two solvent molecubasdk
interact via a long ranged dipole—dipole interaction:

M (i) (e i)

Vig=——>5—-3 = M= 21 (1)  systemg®!® Analogous conclusions have been drawn for
Fik Mk free energy calculations of ionic hydratiéh.
and a repulsive short ranged interactigime hard sphere po- System configurations were generated in the following

tential, V; =% for ry =|ry|=|ri—r/<2ry). Here,rgis the ~ manner: starting from a given configuration, a molecule was
radius of the hard sphereg,; is the dipole moment and is ~ selected randomly. It was displaced from its initial position
the position of moleculé. in a cube of side length x with a uniform distribution. Now,

In this work we study pure solvents and binary mixtures@ rotational axis X, y or z) was selected at random and the
of dipolar hard sphere fluids. The radius of the solvent mol-dipole orientation of the molecule was rotated by a uniformly
ecules is taken to be the same for all solvent components. Aistributed angle in the range A¢<d¢=<A¢ around this
packing fraction ofp=0.417 corresponding to a dense liquid axis. The parametersx andA ¢ were adjusted to reach an
was used in all simulations. The polarity of a pure solventacceptance ratio of approximately 30%. The implementation

will be expressed in terms of the dimensionless parameter Of the simulation is along the lines of the standard Monte

) Carlo technique$>*®
_Amucp

~ 9KkgT ’ @

wherep is the density of the liquid. A mixture of two sol-
vents will be composed of two species, the less polar speciqﬁe
L, characterized by its polarity, , and another specidd
with a higher polarityy,,. The composition of the mixtures
will be described by the molar fractions of the more polar
speciesf throughout this work.

Periodic boundary conditions with the minimum image
conventior®!® were applied to a cubic simulation box of 2ep(1+0)+1

lll. DIELECTRIC CONSTANT

The application of the statistical mechanical theory of
dielectric constaft? to finite size simulation systems
with boundary conditions requires some modifications. This
issue has been lucidly addressed by Neunt&rffrom his
analysis it follows that the static dielectric constagtin the
reaction field(RF) geometry is given by

side lengthL. This method requires the use of a cutoff for €0~ 1+2epe— ¢ ®
the long ranged dipolar interactions. In order to account for . h
the contributions beyond the cutoff radins<L/2 we have wit
adopted the generalized reaction field methodle consider 2
: o et e 4w B(M*)
the moving boundary dielectric implementation, i.e., the sub- {= 3 T =3Yy0k - )

system inside the cutoff sphere around each molecule is
thought to be immersed in a continuum dielectric characterHere(M?) is the configurational average of the squared total
ized by a macroscopic static dielectric constegt. A mol-  dipole moment of the system ang= 1/kgT. We have also
ecule interacts directly with all molecules inside its cutoff indicated the relation of with the polarityy and the Kirk-
sphere via Eq(1) and with the reaction field. The reaction wood g factor gy =(M?)/Nu?. The dielectric constantgg
field at the center of moleculiedue to the molecules inside that characterizes the reaction field was determined self-
the cutoff sphere surrounding it is proportional to the totalconsistently in the simulations, so thete~ €, for all sol-
dipole moment inside its cutoff sphéfe vents.
2em—1) 1 The solvent molecules were initially prepared in an fcc
LE=— N —au - structure and the system was then allowed to relax during
#E 2epet1 rgﬂl rakzérc =k rikzirc e ) 5x 10° MC configurations. Mean values were obtained from
Nyc=5x%10° subsequent MC configurations, except where
otherwise stated. In order to obtain an estimate of the statis-
tical errors, we calculated mean values{obver blocks of
1 D a1 S 2 10° configurations. We carried out various tests to check the
Vik— 3@ — K ) convergence of the values of the dielectric constant obtained
) o ) in our simulations. In Fig. 1 we show the running averages of
with an effective interaction energy €, for two solvents withy=2.18 andy=2.90 for two differ-
. _ .3 L " ent values of the maximum rotational angleb. In the case
V?‘I‘(zﬂ' Mk(ls ari) —3(M' r'k)éﬂk i) , (5)  of the solvent with the higher polarity, the valuesegfcon-
' Fik Fik verge very slowly. Even foNyc=5X 10° configurations we

where we have defined a screening constanBumming up
all terms contributing to the total potential energy we obtain

Eior=

2k¢i,riksrc




J. Chem. Phys., Vol. 110, No. 1, 1 January 1999 Denk et al. 475
80.0 T T 80.0
60.0
a
60.0 @) S
(b)
W o 40.0
40.0 ]
20.0
(d
{©
20.0 : : : : 0.0 ‘ . . . ‘
0.0 1.0 2.0 8.0 4.0 5.0 705 1.0 15 2.0 25 3.0

MC configurations/ 10° y
FIG. 1. Running averages ef, for (a),(b) y=2.90 and(c),(d) y=2.18. The
systems were simulated with two different values of the maximum rotational
angleA¢=mn/2 (a) and(c) and A¢=1.0 (b) and(d).

IG. 2. The static dielectric constagy for a pure solvent. The error bars of
he simulation results indicate the estimated relative error of($8 main
text). The solid line is a fourth degree interpolation polynomial. The dotted
line corresponds to the theoretical result as obtained from the MSA.

still find a deviation ofAeg=1.6 between the two simula-
tions (theoretically, the simulation results should be indepen-
dent of A ¢). The statistical errors estimated using the blockpolarityy. A system withN= 256 particles was used in these
averages werd €,=0.4 for simulation(a) andAe;=0.5 for  simulations and the mean values &f were obtained after
simulation (b). This indicates that, even with>510° MC ~ 5x10® MC configurations. For the highest polarity,
configurations, the phase space of this highly polar systers-3.0, we increased the number of MC configurations to
has not been sufficiently explored to obtain precise values dfl,,c=10° for the reasons mentioned above. The results are
€o. The deviation of the two curves will be used as an estishown in Fig. 2.
mate for the error of the dielectric constaapproximately The theory of liquids provides various approximations
3%) for solvents with high polarity. Solvents with lower mo- for the structure of the dipolar hard sphere fl&idOf par-
lecular dipole moments show a much faster convergence afcular interest is the so-called MSA, as it provides analytical
€o. For solvents with a dielectric constagy<30 we found  expressions for the correlation functions and the dielectric
2x10° MC configurations to be sufficient to determieg  constanf* We find it instructive to compare our simulation
with a relative error of approximately 3%. results with the MSA theoretical predictions. The pair distri-
We have also studied the dependencyg@bn the sys-  bution function can be expandedfas
tem size. Simulatiorfa) of Fig. 1 was repeated for a system
with N=864 particles; the resulting value e§ is shown in
Table I[simulation(e)]. The results indicate that, is inde-

pendent of the size of the system f¢e 256 within the error whereA(1,2) is the cosine of the angle formed by the dipole

limits. _ _ orientations of two molecules ané D(1,2)u?/R® is the
As already mentioned, the parametg: was adjusted  ginole_dipole interaction as defined in EG). The MSA

self-consiste_ntly b)_/ repeating each simulatior!, using the "€ rovides the functionsis(R),h,(R) andhp(R) in terms of
sult ; of a simulation as an input parametgy in the next  he radial distribution functior(rdf) of the Percus—Yevick
simulation. In all cases, it was sufficient to repeat each SimUipy) solution for hard spheres at different densities.
lation only once, ase, depends very weakly orge. In In Fig. 3 we show the radial distribution function
simulation(f) (see Table)lwe have repeated simulatigh) gs(R)=hg(R) +1 for a highly polar solventy=3.00). Sol-

with ege="58. The results are practically identical. vents with a lower polarity have a very similar rdf with a
The dielectric con;tanto was then determined for a slightly lower main peak. The MSA result fg<(R) (also

pure solvent over a wide range of values of the moleculaghon in Fig. 3is just the PY rdf for hard spheres at density

p and does not depend on the molecular polarity. Although

the agreement is globally good, there are deviations between

h(1,2=hg(R)+h,(R)A(1,2+hp(R)D(1,2), (8

TABLE 1. Dielectric constants obtained for solvents with=2.90

(a),(b),(e),(f) andy=2.18(c),(d)

the MSA and the simulations. In the region close to contact,
the MSA subestimates the value @§(R), which is of pri-

€0 Nue N Ad €RF mary importance for many thermodynamic properties of the
@ 59.68 5x 106 256 2 70 liquid. It also predicts a somewhat slower decay from the
(b) 58.05 5<10° 256 1.0 70 peak value to the first minimum when compared with the
(c) 28.29 5<10° 256 w2 30 simulations.
g ég:gi zig: ggi jlg 73(? The di'electric properties of the solvent' are related to
) 58.78 B¢ 108 256 1.0 58 hA(R), which describes the angular correlation of two mol-

ecules at a given distand®. The dielectric constang, is
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FIG. 3. The radial distribution functiogg(R) (R=r/2r) for a solvent with FIG. 5. Static dielectric constand, for binary mixtures of dipolar hard

y=23.00 (filled circles. The dotted line represengs(R) as obtained from spheres'W|thyL=2.18 [mixture (A).' circleg and y|_=0.7f [mixture (B).’
ithe MSA. squaresin terms of the molar fractiof, . In both casey,=3.0. The solid

lines represent quadratic interpolation polynomials.

determined by the polarity and the Kirkwoodg factor gk
[see Eq.(6)]. The Kirkwood g factor gx can be obtained
from h,(R) by integration

constants for dipolar hard sphere fluids. Comparisons of the
MSA and other theories can be found in the literatire 33

Let us now consider the case of binary solvent mixtures.
We study two different types of mixture6A) mixtures with
two components of similar polaritiesy(=3.0 and vy,
=2.18), and(B) mixtures whose components are of rather
In Fig. 4 we showh,(R) for a highly polar solventY ifferent polarity f,;=3.0 andy, =0.75). For each type of
=3.0) as obtained from our simulations and the correspondmixture, the dielectric properties will only depend on its mo-
ing MSA result. The MSA does not provide a good approxi-|ar composition(defined by the molar fraction of speciels
mation toh,(R) as it underestimates the angular correlation.fH), if the temperature is held fixed. This gives us the pos-
This results in an underestimation 9 and thusey. This  gipjlity of studying two quite different mixtures, spanning a
deviation is more pronounced for solvents with a high polaryige range of dielectric constants. The simulation procedure
ity (see Fig. 2 But, even for solvents with the lowest polar- js the same as for pure solvents, and the dielectric constant is
ity under consideration in this work, the MSA result for gygluated by using Eq¢6) and (7).
h,(R) does not agree with the simulation data. The dielectric | Fig. 5 we show the dielectric constants as obtained for
constant as obtained by the MSA gives a good approximage simulated compositions of mixtures of ty@#) and (B).
tion to ey only for solvents withg,~1. These limitations of The values ofe, for the pure solventsf(,=0 andf,=1)
the MSA are well known and more sophisticated theorieSyere taken from the simulations described abésee Fig.
based on the hypernetted chdlNC) approximation pro- 2) For both mixtures we observe an almost quadratic depen-
vide much better angular correlation functions and dielectrigience of the static dielectric constant on the molar fraction
fy . This behavior can be understood by noticing that in the
case of a binary mixturéM?2)/N is to a good approximation

dap (= )
ogk=1+ Tfo h,(R)R“dR. (9)

4.0 . ; . . . :
o a quadratic function of the molar fractiof,. For e
~ egg, it follows from Eq.(6) that the dielectric constant is
30 1 essentially a linear function of, which in turns is propor-
. tional to (M?)/N as can be seen in E).
20 .
@ . IV. REORGANIZATION ENERGIES
2 .
< 40 - . A. Calculation of the reorganization energy
from molecular simulations
In Sec. Il we have analyzed the dielectric behavior of
dipolar hard sphere solvents. We will now study the situation
when a solute is immersed in the solvent. Our aim here is to
'1'01 0 15 20 25 3.0 study the energetics of thermal charge transfer reactions be-

R tween two solute molecules in the presence of a polar sol-
FIG. 4. The angular correlation functidn, (R) for a highly polar solvent vent. We have adopted a simple mode| for the solute: The
(y=3.0, filled circles. The dotted line correspondsha (R) as provided by ~ Solute CO_nS|S'FS of tWO__hard sphere molecufgsnor f’ind ac-
the MSA. ceptoy with given radiiry andr, separated by a fixed dis-
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tanced. The donor and acceptor in the reactant state carry af the fractional charge parametér AV is sampled around
chargeqy andq,, respectively; a negative net charge trans-a valueA, with a distribution that is approximated very well
fers from the donor to the acceptor. We will consider theby a Gaussian

reaction coordinate of this process in terms of a charging
parameter, so that pe(A)=

ga(é)=0qq+ée, (10

2
- e~ (A-2pPr0y (14)
mo
3

Various stateg of the solute are simulated, each simulation
da(§)=0ga—ée. (1) providing a probability distributiop,(A) aroundA,. These
distributions can be pieced togetffeio yield the distribution
Po(A) over a wide range of values. Zhou and SzabS
have proposed a simplified method that permits obtaining
po(A) by simulating only two states of the solut&=0 and
£=1. In their work, the reorganization energy is given by

Here, e is the elementary chargg¢hat we will take as posi-
tive). The reactant state of the solute is given&syO0, while

the product state is obtained by settifrg 1. In this work we
have studied two typical transfer reactioits: a charge re-
combination(CR) procesgyy= —e andq,= +e and(ii) the

inverse process, a charge separafi@® process (4=0d, AN=A(—AGy, (15
:O_)' The rates of these processes are governed by an ac\'}b"lth the free-energy difference between statend the reac-
vation free energy law. Marclig* obtained for the nonadia-

. tant state of the solute
batic electron transfer rate

3
ket:Lexq—ﬁAG*), 12 AGy fo dé¢' Ay (16)
NATN B The mean value of the energy gap for a certain value of
where the activation free energyG* is defined as the charging parametgf can be obtained by a cubic inter-
polation polynomial in&, where all coefficients are deter-
AGi_(AGH\)Z 13 mined by the mean values, and A, and the dispersions
T 4N ' BUS and Baf in the reactant and product state, respectively.

) ] o ] Inserting the polynomial expression of Zhou and Szabo in
Here, k is a matrix element describing the electronic COU-Eqs.(15) and (16) leads to

pling between reactant and product state, &f@ and A

denote the free-energy change of the reaction and the reor- A“R=3(Ao—A,)+ ﬁ(ﬁaé—ﬁai), (17)
ganization energy, respectively. Equatiti®?) was derived cs 1 ) ) )
under the assumption of a classical solvent that responds A~"=3(Ag—A1)— 1:(Bog—Boy). (18)

linearly to a redistribution of charges.

) _ . As pointed out by Zhou and Szabo, the accuracy of the in-
The procedure used for the evaluation of reorganizatio

L . X ) ‘ rferpolation polynomial approximation fdr, can be checked
energies in charge transfer reactions from simulations is wegy carrying out an additional simulation faf=1/2. The
dqcumented. Here we will briefly mdpate the main - ya1ue of the energy gafy,, obtained is then compared to the
points. LetH, denote the solvent—solute interaction energy, 4 \ye provided by the interpolation formula. We found a
for a solute state characterized by the charging parangeter yoiation of less than 1% for all cases considered here. From

and a certain fixeql solvent configuration. The energy gap o interpolation polynomial, the probability density(A)
AV=H;—H, describes the energy difference between prod-,, a1s0 be construct&sl.

ucts and reactants for a given configuration of the solvent.
An electron transfer will take place only for solvent configu-
rations that fulfill the conditiolAV= —E; (Frank—Condon
principle), where E; is the intrinsic energy difference
between the gas phase electronic structures of the initial The inclusion of the charged solute particles in the simu-
and final state of the solute. Let us define the random varilation introduces a difficulty when dealing with systems of
able A=AV, with a probability law given byp.(A) finite size: The orientation of the dipole moments of the sol-
=(8(A—AV)),, where the angular brackets indicate anvent molecules is anisotropic and the periodic replication of
equilibrium average taken with a canonical distribution de-the central simulation cell does not represent a physical pic-
scribing a system at temperatuf@nd HamiltoniarH,. The  ture of the solvent. This issue has been widely discussed in
rate of the ET process is proportional to the probability denthe literaturd’ and various methods have been developed to
sity po(—E;) of the energy gap\V having a value—E;. avoid periodic boundary conditionibc) for such systems.
This probability distribution corresponds to a solvent in ther-Spherical simulation cells in conjunction with a suitable
modynamical equilibrium with the reactant state of the sol-method to avoid self-polarization on the surface of the cell
ute, £=0. are usually employetf

The main problem in simulations lies in the construction ~ We have considered simulations with periodic boundary
of this probability density as the entire phase space of theonditions and within a spherical geometry. In the pbc simu-
solvent degrees of freedom has to be explored. This is alations, the charge—dipole interactions can be described via
impractical task, and one resorts to a free energy perturbatioan effective interaction potential that includes the reaction
method®* which is based on the following. For a given value field in a similar manner to E(5):

B. Simulation details
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TABLE Il. Values of A for pbc and the spherical model. The solvent and
- — a) MeTij (19 solute parameters are specified in the main text. For the spheri_cal odel
[ij refers to the number of molecules that are allowed to move. In this geometry
the total number of molecules was held fixed\gj=673.

Vﬁ?:%

wherea is the screening constant as defined in &) The

solute charges interact with all dipoles inside their corre- N A, (kcal/mo) re Geometry
spondl_ng cuto_ff spheres. The cutoff radius for the chgrge— 246 226.9 L2 obe
dipole interactions was set to be the same as for the dipole— 499 2931 ro=8r, pbc
dipole interactions. 854 221.9 re=8rg pbc

In the spherical model, the simulation cell is a spherical 854 2221 re=L/2 pbc
vessel with the solute situated at the center of the vessel. 239 217.9 Spﬂer!ca:
Each molecule interacts with all molecules inside the vessel g;i ;25;‘ iﬁhiﬂﬁzl
and electrostatic interactions are taken fully into accdset 593 218.6 spherical

a=0 in Egs.(5) and(19)]. The simulation sphere is divided
into two regions: an inner sphere, where the molecules are
allowed to move and rotate and an outer shell, where the

molecules are kept fixed during the simulation. The mol-the spherical model decreasg@ast value in Table ) the
ecules constituting the outer shell are situated initially in apolarization of the cell surface results in lower values for
fce structure with randomly distributed dipole moments. Thea ;. The reduced cutoff. = 8r ;= 11.52 A for the pbc system
fixed dipoles in the outer shell prevent an unphysical polarwith N=854 solvent molecules gives practically the same
ization of the dipoles close to the surface of the vessel. Ajalue forA, as the system with,=L/2=14.75A.

correction to the energy galp, has to be applied in the case  Although the spherical geometry permits the usage of
of the spherical model. Contributions from the solvent out-smaller system sizes, we have opted for the pbc geometry
side the sphere can be partially taken into account by congjth N=854 solvent molecules and a reduced cutoff
sidering the sphere to be immersed in a continuous dielectriegr_ for our simulations. Our choice is based on the fact
medium with dielectric constant, ;. The influence of this  that the spherical model was not able to reproduce the dielec-
dielectric medium is not taken into account during the Simu-tric constant of the solvent. Thus the usage of a Sing|e ge-
lation (as it would require the full solution of the Laplace ometry for the determination of both the dielectric constant
equation inside the sphere for each configuratidnit its  and the reorganization energy is clearly preferable. The pbc
effect on Ao may be estimated by electrostatic consider-geometry also allows us to calculate the solvent radial distri-
ations. For a CR process, the contributionsdpfrom out-  pution functions. With our choice of the system size and the

side the simulation cell with radiuR are cutoff radius, a molecule close to the simulation cell bound-
2(€egu—1 d)2 ary only interacts with a small fraction of the periodic im-
out €ou— 1) (ed) . . .
A= , (20)  ages of the solvent molecules in the first solvation shell.

2€utl RO When applying the conventional Monte Carlo method

for creating system configuratiofisanslation and rotation of

a moleculg in the case of mixtures, we noticed a very slow
relaxation of the system. If a charged solute is present, the
initial fcc structure of the solvent relaxes rapidly to a situa-
—a=1.44A, chargesj;=—e, q,= +e and separated by a _tiqr_1 wh_ere the_s_ol_ute is solvated by the molecules that are
distance ofd=6 A. The solvent radius was set to be the initially in the vicinity of the solute. Thus, the molar compo-

same as the solute radius and a packing fractionyof sition of the first solvation shells depends on the initial po-
—0.417 was used. sitions of the two species within the fcc grid. The high den-

In the case of the pbc geometry we simulated System§ity of solvent molecules close to the solute now renders a
with N=246 490 854 solvent molecules. The cutoff radiusfestructure of the solvation shell extremely difficult. If the
for the dipole—dipole and charge—dipole interactions was sfV© components of the mixture are equally sized, one can
to r,=min(L/2,8r.) for each system, wherk is the side- adopt a much more efficient method for creating configura-
length of the cubic simulation cell. For the system with ~tions: The conventional "move” is alternated with a

=854 solvent molecules we conducted a simulation with the SWap” of molecules: two molecules of different species are
full cutoff r,=L/2 in order to check the influence of the selected randomly. Now, the identities of the molecules are

reduced cutoff o\ . interchanged, i.e., the dipole moment of the two molecules is

In the spherical geometry we simulated the same systefi’@nged. We only change the absolute values of the dipole
with a total ofN,,,= 673 solvent molecules. In this case, the moments; the dipole orientations are not altered. Each new

radius of the inner sphergvhere the molecules are allowed configuration is generated either by a move or by a swap and
to move was varied. The results are combined in Table 11, the probability for a swap was set to 10%.

For small system sizes, the two geometries produce quite
d|fferen't values for the energy gan,: The pbc S|mulat|9ns V. RESULTS AND DISCUSSION
overestimately, whereas the spherical model results in too
small values for the gap. As the system size increases, both The reorganization energiescR and S for a charge
models yield similar results. As the size of the outer shell inrecombination and a charge separation process have been

whered is the distance between the solute charges.

We studied the dependency af, on the size of the
system for both models. A highly polar solvent=2.90)
was used to solvate two solute ions with equal ragir,
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calculated for various solvents using the methods described 120
above. The solute consists of two hard spheres with radius
rq=ra=a=1.44 A and distance=6 A.

100
A. Pure solvents

We first study the case of ET reactions in pure solvents.
We have considered solvents with polaritigis the range of 80 |
0.75=y=<3.0. The solvent radius was chosen to be the same
as the solute radius. A packing fraction 9&=0.417 and a
temperature off =300 K was used in all simulations.

We will compare our simulation data with the reorgani- &0 g ‘ ‘ ‘
zation energy expressions provided by the Marcus theory 0.75 0.80 0.85 0.90 0.95 1.00
and the MSA. In the Marcus continuum description, the re- 1-1/g,
organization energy for a cha_rge transfer of an elementgr IG. 6. Reorganization energies for a pure solvent. The squares represent
charge between two equally sized solute molecules of radiuges e circles correspond th°R as obtained from the simulations. The
a at a distancel in a nonpolarizable solvent with static di- dashed line is the result as obtained by the continuum descrigélarcus

electric constang, is given by scaled to coincide with ;5. for the highest polarity. The dotted line cor-
responds to the theoretical MSA result for the simulated system. The MSA
resultAysa, Using €, as obtained from the simulations as an input param-

A (kcal/mol)

A= ez( 1— i E _ 1 . (21) eter, is represented by the solid line.
€/ \a d
The MSA theory takes into account the molecular aspect of (1+4£€)2 (1-2¢&)2

the solvent. In the case of infinitely separated charge centers 3y=

4 47
(d—x), the reorganization energy is just the sum of the (1-2§) (1+9)

solvation free energies of the two idis (1+486)%(1+ ) (25
(<o R —
o a-2p°
o 1 1
A=ef1- 6_0 a(1+9o)" (22) For comparison with experimental data it is often more con-

venient to use the experimental valueegfin Egs.(24) and
Here, § is a correction to the solvated ion radius, which to a(23)' ) ) ) )
very good approximation is given B/ We W|Il_thus compare three theoretlcal_expressmns with
our simulation datafa) the Marcus expression ER1), (b)
the “consistent” MSA result as given by E@g24) using the
solvent polarityy in order to determine, from the MSA and
(c) the “experimental” MSA result\ yjs,, Using the dielec-

If the distance between the ions is not infinite, the inclusiontriC constants as obtained from the simulations in &)

0; tEe :\c/l)ré;lon mﬁjeractlc_)n mh Eclf22) \l’v';h'n tr;er:‘ramework The results are shown in Fig. 6, where we represent the re-
of the would require the knowledge of the mean Ion_organization energy versus the Pekar facterlle,. In this

ion potential. We will approximate this term by the Screenedrepresentation, the Marcus resiig. (21)] is a straight line.
interaction in a continuum dielectric medium, as it has been We find thatCS>\ R for all simulated pure solvents

done by others” The inclusion of this term in Eq(22) re- Similar results have been obtained by other authors for com-

5=23rg/a(108"%}*—2) 1. (23

sults in parable system®. This is due to the combination of two
effects3**° First, the free energy surfaces are not strictly
Musa= ez( 1— i 1 _ l) (24) parabolic, as it would be required by linear response theory.
€/\a(l+s) d Second, even if the deviations from parabolic surfaces are

small, the curvature of the parabolas may be different in the

We should keep in mind that this approximaigs, does not  reactant and product states. Both features give rise to a dif-
emerge from a purely microscopic picture of the solvent, agerent reorganization energy for the charge separation and
its influence on the ion—ion interaction is taken into accounttharge recombination processes.
by a continuum description. This is expected to be a good The Marcus expression farresults in an overestimation
approximation, as long as the distance of the ions is suffief the reorganization energy. Equatid21) gives A\ (y
ciently large. =3.0)=172.6 kcal/mole for the solvent with the highest po-

When evaluating Eq$24) and(23), we have to provide larity. In the plot we have scaled the corresponding curve to
the solute radiug, the ion distancel, the solvent radiuss  coincide with \j;s, at this polarity. This is equivalent to
and the static dielectric constant of the solvegit The latter  using an effective ion radius @=2.0 A in Eq.(21). When
may be obtained directly from the MSA, using the following the geometric factor is adjusted in this way, the continuum
relations®® description still does not describe well the overall behavior
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of the reorganization energy. This feature is expected. The 120 ' ' ' '
expression foi\ in the continuum description, E¢21), in-

dicates that the reorganization energy depends onkgdar 115
fixed radii and separation distance and this dependence is -0
very weak.

For the MSA results, we find a much better agreement
between the theoretical expressions and the simulation data.
The theoretical MSA resultb) gives good agreement for
small polarities, but underestimates the reorganization en- wol - |
ergy for high polarities. This is not surprising, as it is well .
known that the MSA underestimates the dielectric constant
for high solvent polarities. This results in an underestimation
of the Pekar factor * 1/, on one hand and of the geometric
factor 1A(1+ 8) on the other. 900_0 012 014 016 018 1.0

The MSA expression ys With €, taken from the simu- f,
lation data yields reorganization energies which are close to o _ _
the simulation results for the charge recombination proces%G' 7. Reorganization energies for mixt) (yy =30 andy, =2.18).

. .. . e squares represextS, the circles correspond %R The linear depen-
By construction, the MSA does not dlStIthISh between thedence, as expected in the lindit— for ideal solvation, is represented as a
charge recombination and charge separation pProcessegshed line for each case. Thsymbols represent the MSA result&s, .
which as shown by the simulation results, have different re-
organization energies. Thus, the good agreemenk i,
with the results for the charge recombination process in théheoretical expressions for the reorganization energy reduce
case presented is probably fortuitous. However, this exprege a solvation energy in the limil—c. Thus, a linearor
sion describes the overall shape of both curves much bettetose to linear dependence ok on the molar fractionf,
than the Marcus approximation. The theoretical expressiomould indicate that no preferential solvation is present in the
for N\ within the framework of MSA includes the geometric process. For both mixtures we observe deviations from a
factor 1A(1+ 8) which depends org, via Eg. (23). The linear behavior in the reorganization energy. In mixt(4¢
ability of A&, to reproduce the trend of the simulation datawe observe an almost linear behavior #dr°, while all val-
for both processes suggests that the inclusion of this geometies ofA R for the mixtures lie above a straight line connect-
ric factor is an important correction to the Marcus expressioring the results for the pure solvents. For mixtyg) this
for the reorganization energy, E@1). The geometric factor, behavior is much more pronounced. When adding a small
as given by the MSA, can be interpreted as an effectivanolar fraction of the component with the higher polarity, the
solute radiusa(1+8) and is a consequence of the solventreorganization energy shows a drastic increase, and very
molecularity in the MSA picture. This emphasizes the needjuickly the reorganization energy reaches a value close to
for a molecular description of the solvent, even in the case othat of the pure solventf(;=1). As it was already observed
pure solvents. for mixture (A), the reorganization energy for the charge

From these results one may be tempted to conclude thaecombination process“R deviates more from the linear
the MSA is able to predict the solvent structure around the
solutes. We are currently examining this question for single
ions in solution. Preliminary results indicate that the polar-
ization density of the solvent around an ion is not very well
represented by the MSA expression. However, the free en-
ergy of solvation, given as an integral over the polarization
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density, is predicted quite well by the MSA expression. ~ 100
]
g
3
B. Mixtures =]
< ;
We will now proceed to the case of binary mixtures of 80

polar solvents. We have calculated the reorganization energy
for the two mixtures studied in the previous sectiamixture
(A) with similar polarities of the two componentg;=3.0

andy, = 2.18 and mixturdB) with rather different polarities 600 5 02 02 05 o8 10

of the two componentsy,,=3.0 andy, =0.75]. The results ' ' g ' ' )

for mixture (A) are shown in Fig. 7 and for mixture) in )

Fig. 8. FIG. 8. Reorganization energies for mixtui®) (y,=3.0 andy, =0.75).

When the solute is not preferentially solvated by one offhe squares represenftR, the circles correspond to®S. The solid lines
connecting the data points have been obtained by spline interpolation. The

the two components of the mixture, one would expect a IIn'Iinear dependence, as expected in the lithitoo for ideal solvation, is

ear behavior of the 50|\_/ati0n energy, as the molar fraction ofepresented as a dashed line for each case.xTégmbols represent the
the components is vari¢d.For nonpolarizable solvents, the MSA resultsAgs,.
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4 T T 20 T

FIG. 9. lon—solvent radial distribution functions for a mixture of ty(# FIG. 10. Same as Fig. 9, but for a charged solute moleque.

with f;=0.52. The solute is neutrad,=0. The solid line represents the rdf
for the solvent species with the higher polarity. The dotted line corresponds

to the species with the lower polarity. Radial distances are given in reducedaryed above. the solute is preferentially solvated by the
units R=r/2r. more polar species of the mixture. This renders the use of a
macroscopic constant, describing only bulk properties, ques-
tionable. As mentioned before, more complete analytical

. CS - -
behavior thar\™>. By contrast with the results obtained for treatments have been introduced in the literatféto de-

h r Ivents and mixtur f in mixture (B) w . o . S .
tobeSE:JV(S zoraﬁgtesg riolaru;raecstigntsygver)\, R~ )\tgse( ) we scribe solvent behavior in ET reactions in binary mixtures.
= . N Comparison of our numerical results and these analytical ap-

The drastic increase in the reorganization energy as a h i I h

small amount of high polarity solvent is added, especially i Coc o> W! be made elsewhere.

the case of solvegtspof ra%lher different ola'ritiez canyb As we have observed above, quite different polarities of
o . o P . he two solvent species are necessary to make preferential

gualitatively explained by noticing that the concentration Ofsolvation effects on the reorganization enedgymportant.

high polarity solvent molecules around the ions is mUChOn the other hand, one might expect a weaker influence of

larger than the average bulk concentration indicated by the . . . ;
; . . . foreferent|al solvation even for solvents with rather different
nominal molar fraction. Thus, quite a substantial amount o

. . . olarities when the electric field created by the ion charges at
free energy is required to reorganize the solvent upon thg&

. e solute surface is sufficiently low. To explore this point,
transfer of the electron, as compared with the amount neede . .

. X . We have increased the radius of our solute molecules to
to reorganize the low polarity solvent. Once the solvation of
the lons l_Dy the high p(_)larlty so_lvent is essentially completedthe simulations with mixturéB) for three molar fractions:
the addition of extra high polarity solvent does not add muc :

. . o ; . n=0.0, f;=0.14 andf,=1.0. This solute geometry should
to the energetic changes. This qualitative picture is corrobo- . N !
. " . resemble more closely a typical situation for ET reactions
rated by the exploration of the composition of the solvation. .
) involving more complex solute molecules. The results are
shells around the solute ions. shown in Table 1]
In Fig. 9 we show the ion solvent rdf4(R) for mixture '

; s CR__y CS i
(B) with f;,=0.52 around a neutral solute molecule. The rdf,. For the b|gger solute we finl A== for all composi
-_tions of the mixture. The curvatures of the Marcus free en-

for both components is very similar. When the solute is .
. ergy surfaces are equal in the product and reactant state. For
charged, the solvent structure around the ions changes drat%'is solute geometry the Marcus formula, E@1), should

tically as shown in Fig. 10. The solute is almost entirely . : e
y 9. A% ) . Y give better estimates for. The electric field on the surface
solvated by the species with the higher polarity. Note tha ; ; .
. . . ; of the ions is smaller by a factor of 4 than in the case of the
this rdf has been obtained from a simulation where two sol-

ute ions at a fixed distance di=6 A are present. Then, the
solvation shell arqund oqe _Of the ions influences the rdtI'ABLE ll. Reorganization energies for a solute with=2.88 A andd
around the other |0n-. This is probably the reason for the:ﬁ/&inamixture with components of polarity =0.75 andy,;=3.0. The
structure showing up in the second solvation shell. continuum approxXimatioi yareus Was obtained from Eq21) and A8, is

In the case of pure solvents the MSA yields a good degiven by Eq.(26), using the dielectric constant as obtained from the simu-
scription of A for the entire range of values of the dielectric '2ions as an input parameter.

=2.88A (leaving fixed all other paramet@rand repeated

constant. In Figs. 7 and 8 we have also plotted the values of \ CR \CS N \C
. . . Marcus MSA
Avisa fc_>r the correspondlng_m|xtures,_ using the valuegof f (kcal/mo)) (kcal/mo) (kcal/mo) (kcal/mo)
from Fig. 5. We see that this approximation does not match
the molecular simulation results. This is not surprising, as the %% 311 324 500 286
: j ' , prising, 0.14 37.7 37.1 51.9 30.3
bulk dielectric constant of the solvent mixture was used as an 1 gg 45.2 44.9 59.0 405

input parameter for the MSA expression. As we have ob



482 J. Chem. Phys., Vol. 110, No. 1, 1 January 1999 Denk et al.

smaller solutes. Consequently, the system is now moreroduct of a geometrical factor and the Pekar factor. The
within the limits of linear response theory. Also, the con-continuum description results do not match the simulation
tinuum approximation should work better as the sizes of thalata even if the geometrical factor is adjusted. The MSA
solvent molecules is now half the size of the solute onesincludes relevant aspects of the microscopic description of
Indeed, we find that the Marcus formula now gives betterthe solvent and it leads to an approximate formula involving
values for\. The values of\,.cys are still larger than the solute radii which depend on the dielectric constant. In par-
ones obtained from the simulation results, but there is a beticular, a good agreement between the MSA predictions for
ter agreement than in the case of the small solute. Whethe reorganization energy and the simulation results is ob-
applying MSA theory to this solute geometry, the approxi-tained if one uses the values of the solvent dielectric constant
mation used in Eq(24) (the solute—solute interaction is de- obtained in the simulations. Nonetheless, the MSA does not
scribed by the screeneddiferm) becomes questionable. For describe properly the structure of the solvation shell around a
charge centers at contact the following expression for theolute ion. The simulations show thatS> R,
reorganization energy has been considered in the liter&ture:  The importance of a microscopic description of the sol-
1 1 vent response to the transfer of charge between solute reac-
A= e2( 1— —|— (26)  tants and products is very vividly shown by the consideration
€0/ 2a(1+9) of solvent mixtures. The analytical theories requiring as in-
We have used this expression for the valuea pé, shown  put the dielectric constant of the solvent fail completely
in Table Ill. The MSA now underestimates the reorganiza-When applied to charge transfer processes in liquid mixtures.
tion energy but it still gives a reasonable approximation toOur results show that the solvent with higher polarity very
the simulation results. efficiently solvates the solute ions, even if its molar fraction
The charged ions are still preferentially solvated by theis very small. This preferential solvation has profound influ-
more polar species. This leads to a nonlinear increase in tHences on the dependence of the energetics of the transfer
reorganization energy, as a small molar fraction of the comprocess with respect to the mixture composition as mani-
ponent with the higher polarity is added. If we consider thefested in Figs. 7 and 8. The influence of preferential solva-
relative increase of the reorganization energy; ()\[fH] tion is diminished when the size of the solute is increased
—A[fu=0])/(\[fy=1]—\[f4=0]), we find that the mix- While keeping its charge fixed. For both mixtures considered,
ture with a molar fractiorf;=0.14 has a value gh=0.47  the preferential solvation seems to have a stronger influence
(charge recombinatiorinstead ofp=0.14 as it would corre- 0n the charge recombination process.
spond to a linear behavior. As expected, this increase is not
as drastic as in the case of small solu_tes,_ where we g%CKNOWLEDGMENTS
p[ fy=0.14]=0.89 for the charge recombination process.
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