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The structure of mixtures of dipolar hard sphere fluids with components of equal size but different
dipole moments around a single ion is studied. The solvation energy and the polarization around the
ion is obtained in the framework of the mean spherical approximafid8A). Our theoretical
results and the results of other workers are compared with simulation data obtained from Monte
Carlo simulations. An interpretation of the meaning of preferential solvation is given in terms of the
contrasting behaviors of partial polarization in the bulk and near the ion20@0 American
Institute of Physicg.S0021-9606800)50830-7

I. INTRODUCTION same model of hard sphere dipoles embedding a hard sphere

point charge. The resulting expressions are more compli-

bThe sfolvatlon of |or?s by_ pt?lar Zolvents_ has bleendt_hecated than the corresponding ones found in the MSA, their
subject of numerous theoretical and experimental studieg,, iqng requiring a nontrivial numerical treatment. It is

Ong of the fundamental qugnntle_s Is the free energy Qf SOIIound that the solvation energy obtained within the LHNC
vation. Its simplest description relies on the consideration o

. . ) agrees well with that obtained from the MSA, except for

the solvent as a macroscopic dielectric continuum that be- . .

. ) . - “solute ions whose diameters are much larger than that of a

comes polarized by the presence of the ion. The interaction :

. ' splvent molecule. Other theoretical approaches are based on

energy between the solvent polarization and the field create . "

T . : ) e use of perturbation theory. In recent work, Pagprox-

by the ion is then characterized by the dielectric constant Olmant technigues have been exploited to tfruncate the pertur

the solvent. Although the macroscopic approximation cap-b i qu f th | tp hemical potenti Ip f

tures the basic ingredients of the free energy of solvation, ation expansion ot the solvation chemica: potential ot a
ipole in dipolar liquidst Extensions of the dielectric con-

their quantitative predictions are often at variance with the. h hat include dielectri . d el
experimental findings, in particular for solute ions whoselnuum theory that include dielectric saturation and electros-

sizes are not very large compared with the size of the solverffiction effepts h.ave bgen developed in Ref. 5. )
molecules Numerical simulations have also been profusely used in
: : =12 ; ;
The limitations of the dielectric continuum treatment of the study of solvation problenfs’ General considerations

the Born free energy of solvation has led to the introductior20Ut the calculation of free energies of solvation can be
of other alternatives that contemplate the molecular descrigund in Ref. 13. Although in recent years most of the inter-
tion of the solute—solvent system. Starting from the integrafSt has ljo&used on the analysis of the dynamics of
equations of liquid theory, and under suitable approximaSolvation,”“some work has been devoted to the study of
tions, analytical expressions for the solvation free energgtructural and thermodynamical properties. Monte Carlo
have been found. In particular, for a model of a hard Spher@imulationsz were used in Ref. 6 to analyze the dependence of
solute ion in a bath of solvent molecules formed by hardthe solvation energy in a polar liquid with the solute charge
spheres with point dipoles, Cha al. derived a formula for and the influence of dielectric saturation effects. In Ref. 9,
the Born free energy of solvation within the mean sphericathe dependence on the ionic charge of hydration free ener-
approximation(MSA).! Their expression amounts to replac- gies of ions is studied. A detailed analysis of the thermody-
ing the solvent hard sphere diameter in the classical Borfiamics of ion solvation in dipolar fluids using Monte Carlo
expression by an effective one, which depends on the dipolgéimulations and the mean reaction field method is presented
number density, the dipole moment, and the dielectric conin Ref. 12. Recently, simulations of a dipole in a bath of
stant of the pure solvent. Their theoretical treatment givegolar hard spheres have been presented in Ref. 4.

support to empirical expressions widely used to fit experi- In this paper we address the problem of calculating the
mental data. A molecular theory of solvation based on thesolvation free energy of an ion in a mixture of polar fluids.
density functional theory has been put forward by ChandraMixtures of polar solvents are very convenient from an ex-
and Bagch? leading to an expression for the free energy ofperimental point of view as the polarity of the solvent can be
solvation which has to be evaluated numerically. Patey aneasily controlled by varying the composition of the mixture.
co-workers have used the linearized hypernetted chain cloNonetheless, the analysis of solvation of ions in mixtures has
sure(LHNC) to solve the Ornstein—Zernike equation for the received less attention than in pure solveritSin a previous

0021-9606/2000/113(6)/2360/9/$17.00 2360 © 2000 American Institute of Physics
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study?® we analyzed the dependence of the reorganizatiomand BagcHi based on a linearization of the free-energy func-

energy of electron transfer reactions in polar mixtures withtional of an inhomogeneous mixture in the presence of an ion

the mixture composition, using Monte Carlo techniques. Thdield. In Sec. Il we describe the methodology used in our

simulations clearly indicate that there exists an excess reoMonte Carlo simulations. Section IV contains the results of

ganization energy: as a small amount of the solvent wittthe simulations and a comparison with the analytical predic-

higher polarity is added to the mixture, the reorganizationtions.

energy increases drastically. There, the inability of theoreti-

cal expressions to explain this phenomena was noticed. The

calculation Qf the solute—solvent radial _distr?b.ution fu_nction”_ ANALYTICAL THEORIES

seemed to indicate that the microscopic origin of this phe-

nomenon is the preferential solvation of the ions by the more®- MSA for ions in a mixture of hard sphere solvents

polar species. The theoretical study of the influence of pref-  The description of the dielectric properties of solvents

erential solvation on the reorganization energy is complex, agithin the mean spherical approximation has been carried

one has to deal with two charge centers. Here, we considgfyt by several authors starting from the work of

the somewhat simpler problem of a single ion in a solution afy/ertheim?*2* Adelman and Deutdi have solved the prob-

infinite dilution and carry out a theoretical and simulation |em of a mixture of dipolar hard spheres in the framework of

analysis of a model system. the MSA. In the case of equally sized components, they
We will see that a key ingredient to understand the beshow that the mixture behaves like a monocomponent fluid

havior of the free solvation energy of an ion in a mixture of with the same hard sphere radius and temperature parameter

polar solvents is the preferential solvation of the ion by theas the original mixture, but with effective dipole moment
component with the higher polarity. The existence of prefer-

ential solvation has been related in the literature to deviations ., 1 E 2
of the free solvation energy from an ideal behavior, charac- * ~m<4 #k
terized by a linear dependence of the free energy with the _
mixture compositiorf. We believe that deviation from that and density
assumed linearity is not a signature of preferential solvation.

Rather, we focus on the behavior of the total and partial 5= 5>, uZp,, 2
polarization densities of the two components around the ion K

induced by the ion fields. They contain the key SOI“te_wheremis the number of components in the mixture, and

SP'Ve”t c_orrelatio_ns_ and, basm_—:‘d on their I_<now|edge, one C%dpk are the dipole moments and number densities of each
give a microscopic interpretation of what is normally termedcomponent, respectively. The correlation functions are com-

preferential solvation. Namely, the composition of the mix'pletely determined by the correlation functions of Wer-
ture near the ion is substantially different from the nominaliyaim’s solution for the effective pure polar fluid.
composition of the liquid in the bulk, away from the ion. Chanet al! have solved the problem of a mixture of
This feature can be characztleglzzed by the excess local molggns modeled by hard spheres with point charges in a dipolar
fraction parametefMarcus.”** The component with the go\yent of hard spheres with point dipoles, obtaining an ex-

highgr polarity contr_ibutes to the total polar_ization density Ofpression for the free energy of solvatit®orn free energy of
the first two solvation shells around the ion with a mUChcharging of an ion of chargezeat infinite dilution,

greater value than its bulk molar fraction would indicate.
This local structuration of the mixture in the first few solva- (ze)? (1 1
)

@

tion shells gives rise to preferential solvation, and as the Fe=— 2(3R,+R
authors of Ref. 2 point out, its existence is not necessarily S
related to specific details of the molecular interactions sucliere, e is the dielectric constant of theure dipolar fluid, R;
as hydrogen bonds. Furthermore, we notice that continuuris the ion diameter, anB; is a correction to Born’s expres-
dielectric theories for the free solvation energy containingsion that is given in terms of the dipole radius and the di-
the dielectric constant as input are not valid, in general. Thelectric properties of thpeure dipolar fluid.
reason is that the dielectric constant incorporates just the Our aim is to determine the solvation energy of an ion in
solvent—solvent correlations in the absence of solute, and binary mixture of dipolar fluids with equal radii but differ-
these correlations are not the relevant ones in relation witlent dipolar moments. The result of Adelman and Deutch for
the solvation free energy. the solvent mixture in the absence of ions suggests that Eq.
The structure of the paper is as follows. In Sec. Il, we(3) could be applied, using the dielectric properties of the
present analytical results for a model of a hard sphere soluteffective fluid, as given by Eq$l) and(2). In what follows,
ion embedded in a mixture of hard sphere dipolar solvents afve will outline the necessary steps to generalize the theory of
equal radii and different polarities. The MSA theory for the Chanet al. for a solvent consisting of two components with
case of single component solvent has been thoroughly devetqual radii and different polarity. We will follow the notation
oped by Charet al! We extend their ideas to the case of aof Chanet al.and will refer to their paper where appropriate.
binary solvent mixture, obtaining analytical expressions for  The ionic solutes are treated as charged hard spheres
the partial and total solvent polarizations and the free energwith diameterR;; different species of ions carry charges
of solvation. We also briefly review the theory of Chandraand the electroneutrality condition

()

el
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hj(w,rw)=—1, r<R%,
2 PaZa=0 (4) S "
Ciy(@y,r,0)=—Bu(w,r,w) r>Ryj; (12
is assumed to hold, whege, denotes the number density for I=a,i;d=R,j.

speciesa. The ions are solvated by a mixture of hard ) S )

spheres, each species having diam&er number density Here we have introduced upper case Latin indices which run

pi, and carrying a dipole momept; . The interaction poten- ©OV€r both Greek and Latin indices. In this notation the argu-
[l .

tials have a hard core repulsive term and ments of the correlation functions have to be adjusted de-
pending on the current index: if two Greek indices are
Ugp(T) =zazBe2/r, r>Ry, (5) present, the argumentisA Greek and a Latin index carry

and an angular dependence. In this case, if the Latin index is
Uai(r,02) = —Z,81E5/r%, 1>Rpp=3R;+Ry), (6)  the second one, this angular dependencesis otherwise it
is w;. Two Latin indices carry the full argument as in Eq.
(12). The contact distancB{; is R; for two Greek indices,

where we have adopted Greek indices for ions and LatifRz for two Latin indices, andR,, for one Greek and one
indices for dipoles. The function&;=fu(e;)-f and Dj; Latin index. _ A

= (@) (377 —1) ii(w;) are the angular dependent parts of The angular functions 1F;, Djj, and Ajj=p(a)
the interaction potentials. In these expressianis the el- /() form a closed set under the angular convolution
ementary chargd, is the 3<3 unit tensor, and the unit vec- (A(®1,@3)B(@3,@;)) 3. Multiplication tables for these
tor f points from the molecule denoted by the first indexduantities can be found in Ref. 1. Using this angular decom-
towards the one denoted by the second index. The orient&0sition, we use an ansatz of the form

Uj(@q,F,0,)=—uipDip/r3, >Ry, (7

tion of a dipole moment is defined by the solid angle fop(r)="F11(r)+2,25F(r),
The Ornstein—Zernik€OZ) equations for an ion—dipole e
mixture are given by faj(r o) =Tf1r) +z,m;f5(r)E;,
. ~ 1
fig(@i,r)=fo(r)—zam f5(r)Ey, (13
haB(r)zcaﬁ(r)JrEy: ,Dyf d5Cay(Ir=8)h,4(9) fij (.1, @7) = Foo(r) + i FA(r) A+ 77 F2(r) D1y

for the correlation functions, wherd=c, h, and %;
+ pkf ds(cak(r—s)hkﬁ(w3,s)>w3, (8) = uilm. This conveniently introduces the dipole moment of
K the effective fluid as defined in E@L). Note that our ansatz
is essentially the same as the one in Ref. 1; the angular parts
Naj(F,@7) = C o (1, 007) + 2 pyf dsc,, of the correlation functions have been scaled according to the
Y different interaction potentials. The closure conditiqfg)
in terms of these functions are the hard core conditions

X ([r—9)h,;(s, w2)+2k pkf ds =hy,=h,;=h,,= —1 for distances shorter than contact, and
2
e
X(Cak(r = s, @3)hyj(@3,S,@7)) 4, €) Cc(r):_IBTa r>Ry, (14
2
e e
hiﬁ(wlir)zciﬁ(wlir)+2 pyf dsci'y c (r):BIU'r_Zl r'>RlZ! (15)
Y
D ~21
x(wl,r—s)hyg(s)nL; pkf ds ¢ (r)=pr" 3, r>Ry. (16)

(10) These conditions are the same as in Ref. 1, wiaém Ref. 1
is replaced by the dipole moment of the effective pure fluid
. The three-dimensional Fourier transform

X (Cix(@y,r— S, w3) (w3 ,S)>w3,

hij(wl!rvwz)zcij(wlarwa)

Ty K, =fdre"”f T, 1
S pyf 4561 (et~ Sh. (5.9 (o1, @) (1,1,0,) (17)
7 of the OZ equations in our notation may be written as
+Ek Pkf ds(Cix(; ,r —s,@3) hy; his(@1,k @)
=Cy(o1,K, o)
X (3,5, 0)) (11)
whereh is the total andt the direct correlation function. We +; pK(E'K(""l’k*""3)hKJ(‘°3’k'“’2)>w3' (18)

have used the notatioh),= 1/47[de for the angular con- L _
volution. In the MSA, the closure conditions are obtainedThe angular decomposition éf;(e,,k, @) is the same as
from Eqgs.(5)—(7), in Eq. (13), whenr is replaced byk and f by f. The
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k-dependent angular functions will be denoted bl &;;,  (35—(36), describes the angular correlation of the fluid. Fi-

andD;; . Note that the coefficients of these angular functiong@lly; Eq.(37) is decoupled from the other equations. When
may be obtained by one-dimensional Hankel transform&Omparing our equations with the results of Creiral, we

from their r-dependent counterparts note that the angular correlatiofgroup B are described by
the same OZ equations, wheris replaced by the density of
= : o the effective fluidp. As has been noted above, the closure
f(k)=4m(—i)" f drjn(kr)f(r), " p. 73S a . ' .
() =Am(=1) 0 In(kDt(r) (19 conditions are also identical, replacing by 7. Thus, in

; "t
wherej,(x) is the spherical Bessel function of ordernd what follows, we will use the results of Chagt al. for h

the coefficients are transformed according to andh®.
_ _ The average interaction energy of a single ion with the
f(k)=tP(k); n=2, (200 polar mixture is given by
Tk)=TEk); n=1, 21 1
=1 2 E=,—2 pk”drdwuaku,w)gak(r,w)
T =T(k), 7 (0 Fup(@,f=1,2; n=0. (22 ‘
2
In order to obtain decoupled equations for these quanti- __ 4W2ae~bﬁf°° hE(r) (39)
ties, it is convenient to introduce two new orthogonal angular 3 Ri» '
functions
~ where we have used Eq®) and(13). The Born free energy
Jt=1/3A+D), (23)  of solvation for an ion of chargeeis then obtained as
I =1325-D), (24) e 1@e? () 1)
B— - R
with coefficients 2 3R+ R €
Tr=T4+27P, (25 1 3
o Rs=R, Rk (39
f-=fA—7¥P. (26) (1+4¢)
Carrying out the angular convolution in E(L8), using  where¢ is the solution of
the electroneutrality conditiofd), and setting 4
~ ~ o
Q(2H)—Q(—§ =34 B-Pi*. (40)
pe=2 py25, (27) 9
7 Here,Q( ) is the Percus—Yevick hard sphere inverse com-
B E (28) pressibility ande is the dielectric constant of the pure effec-
=z Py tive fluid®® (see the Appendix In the following sections, we
will compare the predictions of E¢39) with the simulation
_ , 29 results. _ .
pd Ek: Pi @9 The solvation energy basically depends on the solvent

longitudinal polarization density around the ion. The solvent
polarization characterizes the response of the solvent to the
field of the solvated ion. By definition, the polarization den-

we obtain the following coupled set of equations for the
correlation functions:

h14(k) =T12(K) + p 11K D14(k) + pCaa(K) (k) (30)  sity of thek species in the mixture induced by the ion is
_ . 5 given by

h12(K) =C12(K) + piC12(K) h12(K) + pCia(K)hoo(K), (3D 5

_ _ _ Pk q o PkMkZhE

Ras(k) =Car(K)+ oK) + p o kiaa(k), (32 P = g | do Gadnw) @) F= =5z =E(D),

T = = 0 ~ = (41)
h22(K) =Tox(K) + p C21(K)h1o(K) + pgCax( k) hoa(K), (33 o o

B B B and the total polarization density is

h®(k) =TC(k) + p& (k)h(k) — 3T=(K)hE(K), (34)

RE() =TE(k) +pE(ORE(K) + SR (k). (39) P(r) =2 P §pRZHA(T). (42
h*(k)=8" (k) — pBE(K)hE(K) + e (Kh ' (k), (36)  Far from the ion, the polarization density takes its asymptotic
_ _ value given by the macroscopic expression

h™(k)=T" (k) + 3T~ (k)h~ (k). (37) e 1 1

This set of equations can be divided into three uncoupled Pmac:r_zﬂ 1- ;)- (43

groups: group A, Eqgs(30)—(33), together with the corre-
sponding closure conditiond?2) defines a mixture of hard It will be illustrative to inspect the rati®, (r)/Pmadr).

spheres of diameteR; at densityp, and diameterR, at  This quantity represents the deviation of the polarization
density pq with the Percus—Yevick closure. Group B, Egs. density with respect to the macroscopic model, and it empha-
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sizes the relative contribution of each species. The evaluation In what follows, we will restrict ourselves to a mixture
of the functionh&(r) has been carried out in Ref. 1 and it of equally sized dipoles with diamet®=R,. For this case,

leads to the result of Chandra and Bagchi for the solvation energy is
P(r)  pumi dF(r) 11 f
= - Fg=—z-—5—3 | dkP(k)-Ey(k
Pmac(r) ,.b;az 1—r dr +F(I‘) y (44) B 2 (277)3 ( ) 0( )
where the quantity(r) is the solution of an integral equa- 3(ze)? 5
tion which can be generated numerically by a trapezoidal i fdk( v1(K) + 72(k))jo(KR), (51
rule. The total polarization density can then be written as o S
and the polarization around the ion is given by
P(r) dF(r)
=1-r +F(r). (45) 6ze ] )
Pmadr) dr P(r)=P1(r)+Pz(r)=(zT)2 dk kji(kr)jo(kR)
The relative contribution of specidsis scaled by the factor
piii. For the special case of a binary mixture with X (y1(K)+ 72(K)). (52)

pl,ui/pz,u,%: 1, both species contribute equally to the total Using the definition ofy;(k) and Eq.(A1), it is easy to show

polarization densityP(r). These results will be used later on that

to discuss the meaning of preferential solvation of an ion in 2

a mixture of fluids formed by hard sphere dipoles. P1(k) _ 1(K) _ P11 (53)
Pak)  72(K)  pouud’

i.e., as in the previous approach, the ratio of the partial po-
B. The theory of Chandra and Bagchi larization densities is fixed by the system parameters. In or-
L . der to numerically evaluate Eq&1) and (52), the coeffi-
Chandra and Bagchierived an expression for the en- cients c{}'(llOk) are required. In the Appendix, these

ergy of solvation of an ion in & binary mixture of polar lig- functions are given in terms of the Percus—Yevick direct

U|ds._The|r work IS based on an expansion .Of the_free-energgorrelaﬂon function. The integrands in E¢S1) and(52) are
functional of the inhomogeneous dipolar mixture in the pres-

ence of an external fieltthe ion field. For the longitudinal difficult to treat numerically. It is convenient to study
polarization of the two species, they obtain 712K) = y2(K) + 72(K) for the limiting casesk—0 and k

—o (see the Appendjxand to carry out the integration in
three parts, i.e.,

~ 3(ze)?
where Eo(k)zEO(k)R is the bare electric field of the ion, ® ™
Eo(k)=i4mzej(kR)/k, and

Yii Xjj (k) = X5 (k) Y

3
Pi(k)= 7 7(KEo(k), 1,j=1.2, (46)

@
7140 [ “ak k)

+fk2dk (K)j2(kR)+ (oo)foodka(kR)
« Y12 0 Y12 Ky 0 ’

(k)= , 1#], 4
7l ) Xii(k)xjj(k)_xi](k)xii : 7 (54
e s _ HPTm where the parameteils; and k, are chosen such that the
Xij (k)= 4 wj 4 ¢ij(110K), (“48) result does not depend on these parameters. The integrals
overj5(kR,) can be expressed in terms of sine integrals and
Yij=4mBpipmipmil9. (49) Jo(kR,) P ’

the numerical integration can now be restricted to a finite
Here, thec{}‘(llOk) are coefficients in the expansion of the range of valuek where the integrands are numerically well
wave vector-dependent solvent—solvent direct correlatiolehaved.
function in terms of spherical harmonics in the molecular
frarzrée (this choice of frame is indicated by the superscript, MONTE CARLO SIMULATIONS
m).“°> Namely,
We now turn to the calculation of the solvation free en-
(ko) )= > F11L,mK)Y, m(@)Y) o)), ergy from Monte CarldMC) simulations of the model sys-
l11,m ! 2 tem considered in the previous section. Periodic boundary
conditions with the minimum image conventfér®were ap-
plied to a cubic simulation box of side length Conver-
The direct correlation function corresponds to the homogegence of the algorithm is accelerated by swapping solvent
neous dipolar mixture in the absence of solute ions and iparticles of different species. Details of our simulation
may be obtained in analytical form from the MSA solution method are described in Ref. 20. The simulations presented
of the problem for the effective liquitf. Thus, the coeffi- in this paper have been carried out usiNg-863 solvent
cientsc{}‘(llOk) can be readily evaluated within the MSA in particles. We used a packing fractiop= 0.42, correspond-
terms of the Percus—Yevick solution for a system of nonpoing to a dense liquid. A cutoff of 4 molecular diameters has
lar hard spheres with an effective density which depends obeen applied for the long-ranged dipolar forces; contribu-
the polarity of the actual solvent. tions from outside the cutoff sphere have been taken into

m=-—m. (50
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account using a generalized reaction field metftdebr each 120
system, 18MC configurations were generated; mean values | -
were calculated after I0equilibration configurations. The wol T

dielectric constant of the reaction field has been obtained
from simulations of the pure solvent.

The free energy of charging of the solute ion in the so-
lution is given formally by the thermodynamic integration
expressiorf3!

Fg [keal/mole)

1
AF(0_>1)=f dN(V), (55)
0

40

which describes the free-energy difference between the un- ' i,

charged state of the soluta €0) and its final charged state

with total chargeze(A=1). V represents the total solute— FIG. 1. The Born free energy of solvation for the parameter values given in

solvent interaction energy and the angular brackets indicatld® Main text. The circles are the simulation results; the solid line is an
. e .._._Interpolation spline for these points. The dashed line is the theoretical pre-

an average taken with an equilibrium ensemble des_cr]l?'ngiction of Eq.(39), the dotted-dashed line is the numerical result obtained

the overall system when the solute charge takes the fictitioutgom the Chandra and Bagchi approach, Es). The long dashed line

valuexze. The numerical evaluation of the above expressiorfepresents the macroscopic Born formula. The varidhleis the molar

requires, in principle, the knowledge of the integrand for affaction of the component with higher polarity.

large number of points, thus requiring a substantial number

of intermediate simulations. As pointed out by Hummer and,e sojvation energy is better described by the MSA results

1 . .
Szabo, another alternative to evaluate the free-energy dif-3nq seems to be absent in the Chandra and Bagchi approach.
ference is to make use of the information about the statistical Both theories reproduce the deviationFaf(fy,) from an

distribution of the values o¥ available from computer simu-  «jqaal” |aw which implies a linear behavior with the molar

lations of just the initial and final states. Following their fraction f,,. This deviation, as measured by the excess free
analysis, we evaluate the free-energy difference using th@nergy

expression
1 8 AFg(fr)=Fg(fy) —Fp(0)—fy(Fg(1)—Fg(0)), (57)
AF(0—1)= §(<V>0+<V)l)— 1—2(((V—<V>o)2>o has been used in Ref. 2 as an indication for preferential sol-
vation. In Fig. 2 we plol\Fg(f,) for the same parameters as
—((V=(V)1)?1), (56) in Fig. 1. In this representation the deviation from the ideal

which depends on the knowledge of the first moments of th(g)ehawor can clearly be seen for both the theoretical and the

statistical distribution ol in the initial and final states. As simulation result;. Howeve_r ’ th? dras_tlc Increase-gffor
: . L . small molar fractions; (which gives rise to a pronounced
shown in Ref. 31, this expression is exact to fourth order in

the free-ener erturbation expansion. In order to check thasymmetry INAFg) in the simulation results is not repro-
gy p pansion. . . 8uced by the theories. The MSA approach yields a slightly
accuracy of Eq.(56), we have carried out simulations for

. . S : higher value of the excess free energy when compared with
intermediate points; in all cases the corrections to the fre . .

L o - e results of Chandra and Bagchi, although both theories
energy are found to be within the statistical error limits.

underestimaté\ Fg .

To further investigate the differences between the simu-
IV. RESULTS AND DISCUSSION lation _results an_d the theoretic_:al predictions, we now turn our

attention to the induced polarization denditfr) around the

In Fig. 1 we plot the Born free energy of solvation of an
ion with valencez=1 as a function of the molar composition
for a mixture of two hard sphere dipole liquids with equal
radii and dipole momentg, =0.17 eA anduy=0.34€A.
The radius of the solute ion is taken to be the same as the
solvent radiusR,/2=R,/2=1.44 A.

Even for the cases of a single component solvépt
=0 and fy=1), the solvation energy obtained from the
MSA and the Chandra and Bagchi theory differs from the
value obtained in the simulations. The deviation of the the- >
oretical results from the simulation data is larger for the pure e RSO
solvent with higher polarity fly=1). The simulation results /
show two main features: first, a steep increas€ gftan be 0 . . .
noted when a small fraction of high polarity solvent is added 0 02 04 06 OB 1
to the pure low polarity solventf(;<<0.1). Second, the value

of the free energy of 5_0|V3ti0n become_s practically indepeng|g, 2. The excess free energy, Eg7), for the same parameters and line
dent of the molar fraction fof;>0.5. This second feature of types as in Fig. 1.

—y
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3 Mk E Kk
gak(rawz):gak(r)‘”fhk(r)Ez: (58)
i.e., both the radial and the angular component of the corre-
= 27 lation function depend on the indéx In this case, the angu-
3 lar average ofu,-f is given by
a
o 1
o
= 1 2,/ do2 IESG (1 @2)
(mE5)(r)=
Efde guk(rer)
°, 2 3 2
1wk
R =327 M(Nga(r), (59

FIG. 3. The partial polarization densiti®(R)/P,.{ R) around the ion for ) o .
the same system parameters as in Fig. 1. The reduced Réusefined as  and the partial polarization due to specless
R=r/R;=r/R,. The composition of the mixture is adjusted by the relation

pLillpyu? =1, ie.fy=0.2. The simulation resul8,(R) andP (R) are _ Px k
représentgd by a solid line and a dotted line, respectively. For P(r) 4 doy MkEzg"‘k(r’wz)

pLuilpypé=1, both theories giveP (R)=P,(R). The MSA result is

plotted as a dashed line, while a dotted-dashed line is used for the Chandra :PkME<E|§/Mk>(r)gak(r) = Pkﬂiﬁk(r:fH)y (60)
and Bagchi approach.

where we have introducedt(r,f,;). The argument,, in this
function indicates thaﬁk(r,fH) generally depends on the
molar composition of the mixture. The ratio of the partial

ion. In Fig. 3 we represent the partial polarization densitieyc’lar'zaItlons will thus be given by

PL(r)/Pmadr) andPy(r)/Pyadr) for the case of a mixture Py(r) pHMaﬁH(r fry)
with p_ u2lpuu? =1, i.e.,f;=0.2. For this choice of param- = ~ .
eters, the partial polarizations of the low and high polarity ~ Pu(r)  p uZh(r,fy)
species[P, (r) and P(r)] obtained within the MSA'see gy \yriting the partial polarization densities in the form of

Eq. (44)] are identical. The same holds true for the ChandraEq_ (60), we have conveniently separated thelependent

and Bagchi approacksee Eq(53)]. In Fig. 3, this is mani-  contributions toP,(r) that describe the angular correlations
fested by the coincidence of the two partial polarization deanE/kar) on one hand. and the radial distribution func-
sity plots for each theoretical description. Both theoreticaltiOnsg «(r) on the other.

results give a sjmilar behavior, except for value$'ofose to In the previous sections, we have shown that for the two
contact. The first maximum oP(r) (k=L,H) lies atr  heqries discussed in this paper, the raig(r)/P_(r) is a
=R in the MSA method, while the Chandra and Bagchi.,nstant independent of PH(r)/PL(r)=phMa/PLME- This

result shows a first maximum for valueslightly larger than  4ises because in the framework of the two theoretical treat-
R. For values —«, both theories predict the expected mac- . . -
ments mentioned in this papér(r,fy) has the same func-

roscopic  bulk ‘value —of the —polarization  density tional form for both components of the mixture at a fixed

PL(N)/Pmadr) =Pu(r)/Pmadr) =1/2. , EH _AL _F
The failure of the theoretical polarizations to describeMlar fraction, so thab™(r, f;) =h=(r,f) =h(r.f,,). Note

the simulation results are clearly seen in the figure. The patthat the functionh(r,f,,) that is implicit in the work of
tial polarization densitie®;"(r) show oscillations, even for Chandra and Bagchi differs froim(r,f,) in the MSA. The
intermolecular distances at which the theoretical results havital polarization in terms ofi(r,f,) is then
already reached their asymptotic value. Furthermore, the po- _ _ 2 2 2
sitions of the maxima and minima are displaced. Thus, the P(r)_PL(r)+PH(r)_pd(ML+fH(“H_“'—))f(r’f?é'z)
structure of the first few solvation shells is not predicted well
by the theories. Another discrepancy manifests itself wherf h(r,f) were independent dfy;, Eq. (62 would yield a
studying the first and second solvation shell. While the theolinear (idea) behavior of the solvation energy with the molar
ries predictP (r)=Py(r) for all r, the simulation indicates fraction. Thus, the nonideality observed in Fig. 2 is a conse-
that the contribution oP}; prevails for small intermolecular quence of the dependencefuffr,f,;) on the molar fraction.
distances. This feature is more pronounced for the first solone should note that, even when using the Born formula for
vation shell. the solvation energy, with a dielectric constant of the mixture
An interesting conclusion that can be drawn from theevaluated following the prescription of Adelman and
results discussed above concerns the meaning of preferenti2kutch? a nonideal behavior is obtained. This is to be ex-
solvation. In the work of Chandra and Bagchi, preferentialpected, as the dielectric constant is not a linear function of
solvation is defined in terms of the deviation of the solvationf,,. This limited description is not capable of describing the
energy from its ideal behavior with respect to the molar frac4intuitive picture of preferential solvation: when the ion is
tion. Let us suppose for a moment that the ion—dipole paipreferentially solvated by the more polar species, one usually
distribution function for speciek=L,H is defined as has in mind that the first solvation shell is composed, to a

(61)
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. H L FIG. 5. The preferential solvation parameter as defined in(&8. The
FIG. 4. The ratioS(E;/up)(R)/(E3/ 1t )(R) and ga(R)/gaL(R) @s ob- |5ca) molar fraction has been determined from the radial distribution func-

tained from the simulation. The parameters are the same as in Fig. 3. {jong inside a sphere with radi®°=4.0 A around the solute. The circles
represent the simulation results; the solid line is a spline interpolation of

these points.
large extent, of molecules of the more polar species. This has

as a consequence th,,(r) andg,.(r) are different, and tion function with the form of Eq(58), which contains sepa-

the ratlohH(r,fH)/hL(r,fH)_|s no longer unity and will gen-  4te radial and angular correlation functions for each species,
erally depend omr. The simulation results for the partial gp6y1d be used in order to adequately describe the phenom-
polarizations shown in Fig. 3 show just this behavior. Thegnon of preferential solvation. We will address this question
ratio h"(r,f,;)/ht(r,fy) differs from unity in the first two in future work. The approach used hdisee Eq.(13)], as
solvation shells; for distances close to contact we obtain valwell as the theory of Chandra and Bagchi, do not fulfill this
ues as high aﬁ“(r,O.Z)/ﬁL(r,O.Z)% 25. requirement. Nevertheless, they reproduce the qualitative be-
It is instructive to analyze the ratiogEb/uy) havior of the solvation energy with respect to the molar frac-
x(r)/(EE/,uQ(r) and g,u(r)/g,..(r) separately. In Fig. 4 tion and represent an improvement over the macroscopic de-
we have plotted these ratios from the simulation data for a&cription.
molar fraction off,;=0.2. It can clearly be seen that the

main contribution to the deviation o™ (r,f,)/h*(r,f;)  ACKNOWLEDGMENTS

from unity stems from the radial contribution, i.e., from a he Direcéi | ~
spatial reorganization of the first two solvation shells. The . Suppor_t by t. e Direccio General de Ensenza Supe-
P ' rior of Spain(Project Nos. PB98-0423 and PB98-1]12Md

ratio gon(r)/gqL(r) reaches values oq(r)/gal(r)=45 Consejeria de Education y Ciencia of the Junta de An-
for distances close to contact. This corresponds to the intui-

tive picture of preferential solvation that we have given daluca is gratefully acknowledged.
above. The angular contribution of the more polar specie
(E5/mp)(r), when defined in this way, actually is smaller
than its counterpart corresponding to the less polar species.
However, the angular correlatiafEb)(r) =(cos@™-t)) is In the paper of Adelman and Deutéhthe direct corre-
larger than(E5)(r), as expected. The preferential solvation lation function for a homogeneous dipole mixture of equally
parameter as defined by Marét&is sized molecules of diameteris given in terms of the MSA

Sty = f'ﬁc— iy, 63) solution for the effective fluid

m o~ m ~ ~

wheref!%is the local molar fraction of speciétin a sphere C(110K) =7 *pipsiChisa(110KB. ), (AL)
of radiusR'° around the ion. Note that this parameter is zero o
both for the macroscopi@orn) and the MSA description as CHSA(110K)=2(4W)2KL dr r?jo(Kr)cpy(r,27),
used in this work. In Fig. 5 we have represented this excess (A2)
molar fraction forR'°°=4.0 A, corresponding approximately
to the first minimum ofg,4(r). The simulation data show a
quite large deviation from zero for a wide range of molar
;r:lit'(;)_rllsz" Lhzggimzr W;,:ﬁl?he e (i];';; ?ﬁir::agiagp t?]de fs(,)orlv aljere_,cpy if the Per_kus—Y_evick direct correla_tion function at
tion free energy for small molar fractions, as has been note8enSIty 2¢p, and« is obtained from the relation
above. Q(2«7)— Q(— k7)) =3y=3(4m/9) Bpi?, (A4)

The simulations indicate that a better theoretical descrip- .
. : : - . with
tion of the solvation of hard sphere ions in binary mixtures of
hard sphere dipoles must take into accountrtdependence _ (142x)?

of h™(r,f)/h%(r,fy). Namely, an ion—dipole pair distribu- P

S
APPENDIX: MSA RESULTS FOR THE HOMOGENEOUS
IXTURE

r

Cpy(r)=Co+Cy| —|+C3

r 3
= ;) : (A3)

(A5)
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The coefficients; are

5 (1+2%)?
Co:_Q(ﬂ)E—ﬁ, (AB)
_(1+7/2)?
©1=67 7 (A7)
C3=37Co. (A8)

For k=0, the correlation function may be expressed in

terms ofQ

A
Cusa(110,0= ?(1—Q(2K77))- (A9)

The dielectric constarg of the mixture in the MSA is given
by

Q2K
TPk (A1
We will define
(k) =1~ 5 - Clisa(110K), (A1D)
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