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We consider the kinetics of electron transfer reactions in condensed media with different
reorganization energies for the forward and backward processes. The starting point of our analysis
is an extension of the well-known Zusman equations to the case of parabolic diabatic curves with
different curvatures. A generalized master equation for the populations as well as formal expressions
for their long-time limit is derived. We discuss the conditions under which the time evolution of the
populations of reactants and products can be described at all times by a single exponential law. In
the limit of very small tunnel splitting, a novel rate formula for the nonadiabatic transitions is
obtained. It generalizes previous results derived within the contact approximation. For larger values
of the tunnel splitting, we make use of the consecutive step approximation leading to a rate formula
that bridges between the nonadiabatic and solvent-controlled adiabatic regimes. Finally, the
analytical predictions for the long-time populations and for the rate constant are tested against
precise numerical solutions of the starting set of partial differential equation20@ American
Institute of Physics.[DOI: 10.1063/1.1525799

I. INTRODUCTION niques of functional integrals to carry out the elimination of
the bath degrees of freedom from the total density operator.

Electron transfer reactions are of prime importance in . : ) T
. . . : Previous analytical and numerical studies indicate that
many physicochemical and biological processés.a very o : . .
atrpe reorganization energies for the direct and inverse reac-

fundamental level, an electron transfer step is essentially af. 2 . .
P Y &ions might indeed have different valu&s# It is, therefore,

electron tunneling event in the presence of a medisol- . ; ting t tend the classical Z Al drov f

ven). A non-negligible tunneling probability requires reso- interesting fo extend the classical ~Zusman-—Alexandrov Tor-
fulatlon to the case of parabolas with different curvatures. A
e

nance in the energy of localized electronic states. The solve A3 di d h . h
thermal fluctuations provide the necessary energy for th W years ago, Ta Iscussed such an extension. From the

resonance condition. Thus, the kinetics of electron transfef€’y Deginning in his analysis, Tang made use of the so-

reaction requires an adequate description of the medium thef@lled contact approximation. Namely, he assumed that tun-

mal fluctuations that mediate the electronic charge redistrin€ling between diabatic curves takes place strictly at their
bution in an electron transfér. crossing points, thus neglecting any delocalization effects.

In the classical theory of MarcdsHush? and Levich Even for diabatic surfaces with equal curvatures, the fact that

and DogonadZethe solvent fluctuations are described by antunneling transitions are somewhat delocalized around the
equilibrium probability law. Thus, the knowledge of the free ¢70SSINg point is important, especially in the inverted
energy as a function of an appropriate reaction coordinate &gime:” Delocalization leads to modifications of the rate
all that is needed to evaluate the rate constant. About 26XPression with respect to the typical Marcus—Arrhenius
years ago, Zusmdnand Alexandro¥ introduced into the Structure. In previous work we have also found strong in-
theory the idea that nonequilibrium effects associated wittflications that the contact approximation is not adequate to
the relaxation of solvent fluctuations could also affect thedescribe strongly biased electron transfer processes.

rate. In a phenomenological way, Zusman proposed a set of The starting point of this paper is a set of four partial
four partial differential equations that incorporated the relax-differential equations similar to those used by Tanghe
ation of the nonequilibrium probability laws of the reaction structure of such equations is the same as in the original
coordinate in each diabatic state and the tunneling transitionéusman model, but with parabolic potentials with different
between them. In the original model, the diabatic states areurvatures. The equations describe the dynamics of diagonal
parabolic functions of the reaction coordinate, with equaland off-diagonal matrix elements of the reduced density op-
curvatures for the reactant and product states. The curvatuggator. We accept here the validity of Zusman model.
is related to the reorganization energy in such a way thaErantsuzo¥’ has correctly pointed out the limitations of Zus-
equal curvatures implies that the values of the reorganizatioman equations to describe electronic transfer processes in
energy for the forward and backward reactions are identicalstrongly polar solvents. Indeed, if the solvent polarity is too
Later on, Garget al® presented a derivation of the Zusman strong, the conditions under which Zusman equations are
equations starting from a Hamiltonian model. They use techeerived from a more microscopic point of vi&w?might be

0021-9606/2003/118(1)/291/13/$20.00 201 © 2003 American Institute of Physics
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violated. This is an interesting point that we propose to ad- V(x)
dress in the future. In the present work, we will concentrate

on the derivation of the usual macroscopic kinetic descrip-

tion of electron transfer reactions from a Zusman-like model

and on the determination of suitable expressions for the rate 1%}
constant and the long-time populations of reactants and prod-
ucts. In our derivation, we will not assume the contact ap-

proximation. Vs
The scheme of the paper is as follows: In Sec. Il we set /

up the model and the notation. In Sec. Il we derive formal

expressions for the populations on the diabatic surfaces in €0 || N4

Laplace space. This is achieved by using Green functions
and projection operator techniques on the Zusman equations.
An alternative method of solution of the Zusman equations

has been put forward recently by Cao and Jtfhigis based

on the spectral properties of the evolution operator for theFIG. 1. Parabolic diabatic surfaces with different curvatures as a function of
density matrix in the Zusman approximation. As far as wethe reaction coordinate Noticg that the number of crossing points depends

know, this alternative has only been applied to diabatic pa®" e value of the energy bias.

rabolas of equal curvatures. The long-time limit is explicitly

obtained. It is also shown that the populations satisfy inte-

grodifferential equations with a complicated kernel. Under d - A

suitable conditions which are discussed in Sec. IV, we prove  z; P110% D)= L1p1(X,) +i 5[ 1o X,1) = p2r(X,D)], (1)
that the populations satisfy a single exponential relaxation
law for all relevant time scales, characterized by the rate
constant and the long-time values of the populations. In Sec.
V, we present approximate analytical expressions for those
two kinetic parameters. In Sec. VI we present a detailed
comparison of the analytical predictions and precise numeri-
cal solution of the Zusman equations. Finally, we conclude A
with comments about the main findings in this work. Some +i Z[pll(x,t)—pzz(x,t)], 3
of the calculations are very involved and they are presented
in the Appendices.

g z

0 “ A
Epzz(xat) =LopoX, 1) —i %[Plz(xyt) —pax,t)], 2

) o
EPlZ(X,t): L— I%[Vl(x)_vz(x)]]Plz(X,t)

J
EPZl(XJ):

S
L+ %[Vl(x)—vz(x)]]l)zl(xat)
Il. THE ZUSMAN EQUATIONS FOR DIABATIC
POTENTIALS WITH DIFFERENT CURVATURES A [ou(x.) ()] @
) ) — 1= [p11(X,1) — poo( X, 1) ]. 4
The basic elements to describe electron transfer pro- P 2
cesses are two d'ab"’!“c electroplc energy CUNﬁS()’ . .Heref:j are the Smoluchowski operators describing diffusion
=1, 2, and a generalized one-dimensional reaction coordi- ; - .
. . . on each diabatic potential:
natex with effective massn. The electronic states before and
after the charge transfer will be denoted as doir, and f 0|0 Vi (x)
acceptor|2), respectively. The reaction coordinate represents L= IX &J’ kgT

a combination of the selected nuclear modes coupled directl¥h ic diffusi ) th th
to the electronic transfer systelThe reaction coordinate is | '€ macroscopic diffusion constabtis connected with the
riction coefficient », which is assumed to be identical in

also coupled to the rest of nuclear modes. This coupling) ) i i X
introduces friction in the dynamics of the reaction coordinate?©th diabatic states, and the temperaflirby the Einstein
with a phenomenological friction coefficien. This is a  relationD=kgT/7. The operatorl=(L,+ L;)/2 describes
well established starting point in the microscopic treatmengliffusion on the average potenti@V,(x)+Vy(x)]/2. Fi-

of intramolecular electron transfef:** It should be noted Nally, A denotes the electronic coupling matrix element, and
that ourV,(x) are potentialenergy curves. They should not it characterize§ the degree of oyerlap of the d_onor and accep-
be confused with the parabolitee energy curves appearing tor wave functions. Here, we will tak& to be independent

in alternative descriptions of electron transfer, as those relyof the nuclear coordinatg€ondon approximation

: ©)

ing on computer simulation’.In the overdamped limit, Zus- In this work, we will assume parabolic diabatic curves of
man equations provide an appropriate description for théhe form

time evolution of the matrix elementspj(xt) M2

:=(j,x|p(t)|x,k) of the reduced density operator in the elec-  V;(x)= Tj(x—xoéjyz)z— €00 2, (6)

tron and reaction coordinate Hilbert space. Zusman equa-

tions and their validity conditions have been repeatedly dewherex, ande, are the horizontal and vertical shifts, respec-
rived and discussed in the literatfr&23These equations tively, between the minima of the parabol@$. Fig. 1). The
read frequenciesw; characterize their curvatures, and they are
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related to the reorganization energies by the expression where G,4(x,t|x’), the off-diagonal Green function, is the
\j= me-ZXSIZ. Therefore, the fact that the curvatures are dif-solution of the partial differential equation

ferent implies that these reorganization energies for the for- i

ward gnd backward reactions_are also different. To avoid &_IGOd(X’tlxr)z Zl—g[Vl(X)—Vz(X)] God(X,t|x"),
confusion, we want to emphasize that the curvatures of our

diabatic potential energies;, can be different. If one de- (11)
scribes electron transfer processes in terms of free energyith initial condition
profiles, then, as pointed out by TachRathe two free en- Gy, 0X') = S(X—x"), (12)

ergy curves are not independent, and they cannot be strictly
parabolic when the curvatures at their minima are differentand boundary conditions
Obviously, ourpotential energies, not beindree energies i /

7 . Y im Ggy(x,t|x")=0. 13
are not tied up by such a restriction. The difference in cur- ,_ ., od(X,tX") 13

vatures also yields a difference in the phenomenological re- ] ] ) ]
laxation times corresponding to each diabatic curve An evaluation of this Green function for the harmonic poten-

tials with different curvatures can be found in Appendix A 1.
7 kgT From now on, we shall assume that(x,0)=0, so that the
T Mo = mao’D (") first term on the right-hand side of expressid®) will not
J J be present. This initial condition describes the usual situation
Notice that these relaxation times are related to the reorganin which the electronic coherences between donor and accep-
zation energies by, /7,=\,/\,. For later convenience, we tor states are initially neglected.
will also introduce the relaxation time of the overdamped  Next, formal solution of Eq(10) in terms of the diago-

oscillator on the averaged potentfal;(x) + V,(x)1/2, nal Green function&{’(x,t|x’) leads to
[t oo
T:2k—BT. (8) ij(X,t):(_l)Jf dtlf dxq aj(x,t—tq]x)
mD(wi-l— wg) 0 -
From the above expressions, it follows thatr2/l/r; X[p1a(Xq,t2) = p2a X1, t1) ]
+1/7'2. o .
Electron tunneling is most effective near the crossing +f_ dx; G (X,t|X1) pjj (x1,0). (14

The propagatora;(x,t|x’) in Eq. (14) are given in terms of

9) the Green functions by

points of the diabatic curves, which are given by

. €p
+(=1)! —
i Ao+ (—1) \/(1 e Y

A? [t % .
where e.=\;\,/(\1—\,). Depending on the relative val- aj(X,tIX’)=—2f dt’f dx" G (x,t
ues ofey ande, there can be two, one, or no crossing points. 2h=J0 o

—t'[X") R Goq(x",t'[x")]. (15

The diagonal Green functions describe the diffusive motion
lll. FORMAL SOLUTION OF THE ZUSMAN on the diabatic curve¥;(x). They are the solution of the
EQUATIONS partial differential equations

In this section we obtain some exact, though formal, J 0 e B (i) ,
analytical results for the time evolution of the populations 5 Gd’(X.t[x")=L;G{(xt[x"), (16)
P;(t). They are obtained by integrating the corresponding o N
probability densities over configuration space, iBj(t) ~ With the same type of initial and bmg_r;dary conditions as
=J7..dxpjj(xt). The first step is to reduce the four Zus- God(X,t|x). Explicit expressions foiG{’(x,t|x") can be
man equations to just two integral equations for the diagonaiound in Appendix A 2.
elements p;;(x,t). This is achieved by first replacing Typically, a reaction starts from a situation where the
p1x,t) and p,i(x,t) in Egs. (1) and (2) by the result of solvent is thermally equilibrated. Thus, we will restrict our
formally solving the two off-diagonal equatiorid) and (4). study to initial conditions for the diagonal terms of the form

This yields pjj(x,0)=9g;(x)P;(0), where
d (—1)IA (= exf —V;j(x)/kgT]
Epjj(xyt): 7 f dx; IM[Goq(X,t[X1) p12(X1,0)] 9;j(x)=— (17)
o J dx’ exf —Vj(x")/kgT]
(—1)IA? [t »
+—2f dt; f dx; are the equilibrium distributions on each of the diabatic
2h 0 o curves, andP;(0) are the initial conditions for the popula-
XREGog(X,t—tg]xy)] tions. Obviously, with these initial conditions, the second

A term on the right-hand side of expressi@¥) reduces to
X[p11(X1,t1) = poa X1, 1) 1+ L pjj(x,1),  (10)  g;(x)P;(0).
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For later convenience, we will rewrite EGL4) in matrix
notation by introducing the one-column vectgfx,t) with

componentsg;(x,t) =p;;(x,t), and the X2 matricesU,

A(x,t|x"), and g(x) with matrix eIementsU,-kz(—l)'*k,

Aj(x.t[x")=a;(x,t|x") &} x, andgj(x) =g;(x) §; «, respec-

tively. The solution of Eq(14) is best sought by using the

Laplace transforni(s) = [, dt f(t)exp(—st). Thus, one finds

o(x,5)=s"1g(x)P(0)— J ldxli\(x,slxnuaxl,s). (18)

Casado-Pascual et al.

We will use standard projection operator techniques to n

get an expression for the Laplace transform of the popula-

tions P(s). We define the projection operatdisandQ as

ITF(x) =F|(x)=g(x) J:dx’F(x’), (19

QF(x)=F L (x)=F(x)—F)(x), (20

F(x) being an arbitrary one-column vector oK2 matrix
depending ox. By acting withII on Eq.(18) and integrating
over x, one obtains after some simplifications

P(0)= sl+f dx; K(x1,5)Ug(x,) [P(s)
+f dx; K(xq,8)UQ,(X4,S), (21)

wherel is the 2<2 unit matrix and

- A? (= -

K(x,s)= %fwdx’ R Gyg(X',s|X)]. (22
Using Eq.(A16) in Eq. (22), we obtain

2 e
K(x,s)=—| dt Re{exd —st—c(t,x)]}, (23

~2n2)o
with c(t,x) given by Eq.(A11). The action ofQ on Eq.(18)
leads to

éJ_(X'S):_J_ dx; A (X,8]x)U[g(x1)P(s) + 2, (X1,5)],

(24)
where

- A2 ©
A (x,8]x )=%Q(X)fwdx J(x,8[x")

X R Goa(X",8X")], (25

with j(x,s|x’) being the X2 diagonal matrix with matrix
elements

Jj(x,slx) =8, d[g;00] "GP (x,slx) =57} (26)
A formal solution forél(x,s) is obtained by solving itera-
tively the integral equatio24). Substitution of the result in
Eq. (21) leads to

P(0)=[s|+Uk(s)]B(s), (27)

k(s)= Zl K"(s). (28)
The terms of the serid€™(s) are given by
ks = [ axKou.sg00) 29
and
Em)(s):(—l)“*lf:dxlmficdxnk(xl,s)
X L1 AL -1.50%)1g00) (30

for n=2.
According to Eq.(27), the Laplace transform of the
populations can be expressed in terms of the diagonal matrix

k(s) as
B (s)= Pj(0)+571[5j,1~k22(3)+ 5j,2E11(S)]
’ s+Kui(s) +kzalS) '

After carrying out the inverse Laplace transform of the above
expression, one obtains the time evolution of the popula-
tions, Pj(t). It follows from expression(31) that the long-
time limit of the populations is given by

(31)

Pi():= lim Pj(t)= lim sP;(s)

t—+o s—0+

_ 5j,1l<22(0)+~5j,2k11(0) ' (32
k11(0) +kz5(0)
Notice that these values are independent of the initial condi-
tions P;(0).
Finally, rearranging Eq27) and carrying out the inverse
Laplace transform, we find that the populatidhgt) satisfy
the set of generalized master equations

d t
SPa0=— [t Tyt Py(t) kel t—t)Po(1)),
0
. t 33
SPaD =~ [ U Tt Po(t) kst —t)Py(1)),
0

wherek;; (t) is the inverse Laplace transformqu(s). From
the above set of equations, it follows immediately the con-
servation of probability, i.e.P(t) + P,(t)=1. Thus, the set
(33) reduces to a single integrodifferential equation for, say,
the populationP4(t). This equation can be conveniently
written as

d t
SPa0= [ 0t Tt oty 1)

t
+f dt’ koy(t'). (34

0
Then, after solution of Eq.34), the evolution ofP,(t) fol-
lows immediately.

Up to now, the formal results that we have obtained are

wherek(s) is the diagonal matrix obtained by summing the exact. We have only assumed the convergence of the series

series

(28) and a specific family of initial conditions for the densi-



J. Chem. Phys., Vol. 118, No. 1, 1 January 2003 Electron transfer with different reorganization energies 295

ties pj(x,t). The result(33) is important. The populations where we have taken into account that the values of the
on the donor and acceptor diabatic curves satisfy first ordentegrand fory’ much larger than unity are negligible. The
integrodifferential equations with a convolution structure.solution of Eq.(37) is P;(Y;0)=Ce Y+ P,(*), C being
The convolution kernels;; (t), are rather complicated. The an unknown constant of integration. This constant is deter-
next important task is to analyze under which conditions catmmined by making use of the initial condition, i.e.,
the solutions of Eq(33) be properly approximated by a limy_, . P;(Y;0)=C+ P4()=P4(0). Therefore, after go-
single exponential time evolution. ing back to the original variablg we find that the leading-
order approximation to the solution of E(®6) as {—0+ is
given by Eq.(35) with j=1 andl'=r7, !. From the conser-
vation of probability, it follows immediately that, in this
In kinetics, the time evolution of the populations on the limit, the populationP,(t) is also of the form(35).
donor,P4(t), and acceptoR,(t), diabatic curves is usually In conclusion, we have proved that, whep<7,, the
given by values of the populations obtained from the Zusman equa-
_ tions can be properly approximated by the rate expression
Pj(t)=Pj() +[Pj(0)~Pj(=)]e """, (35 (35 with tota rate T Y P
wherel is the total rate constant. In this section we analyze
the conditions under which this rate description of the time  I'=Kk;;(0)+K,50). (39
evolution of the populations can be obtained from the Zus-
man equations. The starting point is the integrodifferentialNotice that, whenr,<r,, Eq. (35 describes properly the
equation(34). In this equation one can distinguish two dif- relaxation of the populations for all the relevant time scales
ferent clear-cut time scales. The first ong, is associated ~@ssociated witfP(t), even for short times. When the con-
with the relaxation time of the kernelis; (t). As all the time ~ dition 7,<7, is violated, then the discrepancies between the
dependence ofk;;(t) is through the diagonal and off- prgdmnons of Eq.(35) and those of thg Zusman equations
diagonal Green functions;, depends mainly on the relax- might be relevant at all times, as we will see later, when we
ation times of these Green functions. The second one i§ompare with numerical solution of Zusman equatisee
given by 7, =[K11(0)+%,,(0)] ! and, as we will see below, S€C- V-
it is associated with the relaxation time of the populations. In
general, 7, depends on the relaxation times of the Green
functions and also on the characteristic tunneling time scalg, ANALYTICAL EXPRESSIONS
flA. In the next section, we will obtain approximate expres-FOR THE LONG-TIME POPULATIONS
sions forq-gl, AND THE TOTAL RATE CONSTANT
In order to study the validity conditions for the rate re-
gime, it is convenient to express E@4) in dimensionless
form as

IV. VALIDITY CONDITIONS FOR THE RATE REGIME

From now on, we will assume that a rate description of
the time evolution of the populations is appropriate. In that
case, the parameteP5(>) andI’ can be expressed in terms
of the diagonal matrik(0), according to Eqs(32) and(38).

The evaluation of this matrix entails the summation of the
vie serigs(28). In order to do so, one.has_to re.sor.t to approxi-
+J dy’ koy'). (36)  Mations. The nature of the approximations is dictated by the

0 relative values of the tunneling frequency and the character-

Here we have introduced the dimensionless quantitie?tIC frequencies of the solvent dynamics.
Y=t/7,, y' =t'Ir,, (=14l Ty, and  «j(y’)  A. The nonadiabatic limit
=TaTp Kjj(72y’), and we have indicated explicitly the de-
pendence ofP,(Y;{) on the parametet. Notice that the
dimensionless integration variablé has been chosen so that
the contributions of the integrand for values wf much
larger than unity can be safely neglected.

Let us assume that we are in a regime in which
<7, . To find the leading-order approximation to the solution

d viL
gyPiYid=- JO dy’ [reaa(y") + w2y ) IP2(Y = Ly";4)

If the characteristic tunneling frequendy/# is very
small relative to the relaxation frequencies associated with
the Green functions, then tunneling becomes the limiting
step mechanism of the rate process. In this nonadiabatic re-

gime, the matrix elements &{0) can be approximated as

of Eq. (36) as{—0+, i.e,, P(Y;0)=lim; o, P1(Y;{), we Ky (0)~k{h:=A21im ki (0) =%1(0). (39)
take the limit{—0+ in Eq. (36) while keepingY #0 fixed. Aoo A?
The result is
d . After inserting the expressiori$¢7) and(23), with s=0, into
WPl(Y;O): _f dy’ [ky1(y") + koY) ]P1(Y;0) Eg. (29 and integrating ovex,, we find
0
20102 oy
w () = ) . .
+ ] Cay kay ) == PuYi0) Py, =5 ], at Rty xR v 0
0

(37) where
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aMexf (1— a)t/(27)]
N;(t)= : (41)
{(a+D)[2A;+(@—1)/2]+ (a—1)[2A;— (a+1)/2]ex{ — 2at/T]}}2

)\1)\2(A1_A2+|X) 60 t 47')\%)\%
fi(Np+\p)a? Al NN+ Np)%®

[1(2A;+1)(—1)) " + x]a sinh at/7) . 2A[2i(—1) "+ x][cost{at/T) — 1]

42)
4Ajacosiiat/7)+[4A;+ a?—1]sinN at/7) 4Ajacosiat/T)+[4A;+ a?—1]sinN at/ 1) (

and the dimensionless parametass y, anda are defined in  ergies. As we discuss in Sec. VI, in the case of different
Egs. (A12)—(A14). The remaining time integral in E¢40) reorganization energies argd>e., we have also observed
can be calculated by a numerical quadrature. The expressiodgviations between the values of the long-time populations
for the long-time populations and the rate constant in thepredicted by Eqs(32) and (40)—(42) and those expected
nonadiabatic limit P(NA)(so) and 'y, are obtained by re- from statistical thermodynamical considerations in the semi-
placmgk“(O) with k(J in Egs.(32) and(38). To the best of ~ classical limit. These anomalous results, which are intrinsic
our knowledge, qu(4o) (42) have never been derived pre- t0 the Zusman equations, can be used as a numerical crite-
viously in the literature. These expressions for the nonadiation in order to test the validity of the Zusman description of
batic parameters are one of the main results in this papekT reactions.

They constitute a generalization of the typical golden rule  The expressions for the nonadiabatic rate constants
rate expressions to the case of diabatic parabolas with diffef40)—(42) [or Eq. (43) in the case of equal curvatuijesm-

ent curvatures. Notice that we are not assuming that the turlify considerably if one makes use of the contact approxi-
neling transitions are exactly localized at the crossing pointgnation. Within this approximation, one assumes that the
of the parabolas as it is assumed in the so-called conta@lectronic transitions take place precisely at the crossing
approximationt>8 Actually, our expressions reflect the de- points, so that, the functiok(x,0) in Eq.(29) can be ap-
localization induced by the solvent dynamics. This delocalproximated by

ization might be important. As we have previously shdfn, 7-rA2

detailed comparison of the results obtained with the rate for- K(x 0)= 6[V1(x) V,(x)]. (45)
mulas, with and without the contact approximation, and the

results of the numerical solution of the Zusman equationShen, the nonadiabatic rate constant, ég €., can be ex-
indicates that the rate expressions with the contact approxpressed ds*®
mation become invalid for large values of the energy

2
bias, €. K= \/ ™ Jexp{— (N2~ €p) }
For the case of equal curvaturés,=\,=\, Eq. (40) NATah N kgTho(1-€ol€c) | AN (€0)kgT
reduces to the known restfit (A 2
2
+ e —
AZ (= ks .t ex’{ 4)\_(eo)kBTH (48
Ki=— | dt exg o |1-e -
2r2Jo h? T o) "
_ k(&= \/ p( )k e 4
AT y (—1D)'eg NA (47)
Xcog—(1—e ")+ ——t (43 . _ .
h h where we have defined the auxiliary, bias-dependent quanti-
In this case, the time integral can be evaluated explicitly mt'eS
terms of the completdI'(x)] and incomplete[T'(x,y)] [Ao+=V(1—€gle€) NN ]?
Gamma functiorf® as N.(€)= N, : (48)
L A?r This contact approximation plays an essential role in Tang’s
() P —— by —a; ) — .
kh{A_zﬁz Re{e’b™*[I'(aj) —I'(a;,b)]}, (44 analysis of the Zusman equatiotidn the case of equal cur-

vatures, the nonadiabatic rate constants in E4.and(47)
where we have introduced the dimensionless paramaters reduce to the celebrated Marcus—Levich—Dogonadzé tate
= 2\kgTr/hi—(—1)li€ol/h andb=7N[2kgTr/fi+il/fi.  and, therefore, they can be considered as its natural generali-

By the relation y(a,x):=I'(a)~I'(a,x)=a 'x? *M(1,1  zation to the case of different curvatures.
+a,x),%” where M(a,b,c) is the Kummer’s function, our
Eq. (44) is equivalent to Eq(3.13 in Ref. 19.

It should be noticed that, as FrantsuZbhas pointed
out, Eqg.(43) can lead to nonphysical predictions, such as In order to go beyond the nonadiabatic limit, we need to
violation of the detailed balance and negative values for thevaluate the series in ER8). We will do this by extending

rates in strongly polar solvents with large reorganization enthe consecutive step approximatfdrf* to the case of differ-

B. The consecutive step approximation
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ent reorganization energies for the forward and backwaravhere

reactions. In this approximation, the terms of the series are 5 9

simplified after disentangling the dynamical effects associ- V(n):(_l)nflz E Fooeers

ated with diffusion from those relying on tunneling. We will Pt = I

assume that the functiod(x,0/x”) in Eq. (26) varies inx” n

with a characteristic scale much larger than the width of the % H Tr[E(l)(o)':j(Xjk 0/x*)]. (52)
interval aroundx’ where G,4(x",0x’) differs appreciably =2 SR

from zero. Then, according to Eq&2) and (25), one can

- In the above expressiou;‘ represents the coordinate of the
approximate

jth crossing point given by Eq9), and the coefficients

AL (x,0x")=~g(x)I(x,0/x")K(x',0). (49) gu(x") 0x(x")

With this simplified expression f~07&l(x,0|x’), the exact ex- i zgl(x’l‘)+gl(x’2‘) B 9o(XE) +ga(X5)
pression in Eq(30) for the termsk(™(0) in the series expan-
sion can be approximated by

(53

denote the equilibrium weights of the two crossing points
contributions. Then, according to E®8), we find that

}(n)(o)%(_l)n*lji dx, ... J, dx, K(%n,0)9(Xy) k(0)~vkM(0), (54)
n wherev is the result of summing up the series
<1 TR -1,0090¢ - )3(x;-1,0x)]  (50) -
172 v= 2 ]/(ﬂ)7 (55)
n=1

for n=2. Henceforth, we will assume that there are two
crossing points, i.e6p<e€.. Then, as it can be checked by with »(!)=1. In Appendix B we carry out the summation of
numerical integration of Eq(23) with s=0, the function this series explicithfcf. Eq. (B7)]. The traces appearing in
K(x,0) shows peaks of similar heights and widths centered &Eq. (B7) (the coefficientsZ, ) can be expressed in terms of
the crossing points, at least when they are well separatethe nonadiabatic rate constark%, as

Assuming that the characteristic scale of variation of the

~ 2 (n)
functionsJ(x,0|x’) andg(x) are also much larger than the Tr[’l"(’(l)(o)j'(xl* 0x*:)]= 2 _NA (56)
widths of those peaks, we finally obtain that, for2, the ™= kg‘l)m

matricesk™(0) can be well approximated by _ _
Here, according to Eq$26) and(A18), we have defined the

k™(0)~ »(MKD(0), (52) coefﬁcientskgl)m as
|

ox Aj (Y|+Ym_25j,2)2_ (V1= Ym)?
A 2kgT e*+1 e-1

where we have expressed the time integral in dimensionless K (0)~kY)
. . . . . j] CSA
units, and we have introduced the dimensionless coordinates

of the crossing pointg,=x;/x,. The coefficientk) arise 2 2 2 k(M
e : o Im 1 ST (mqym A
from the diffusional dynamics along the diabatic surfaces. +r1r2n:l = (1) KM
The diagonal termk,g') can be expressed through the gener- o Pim (
. n . =72 ) 2 ) 7 KNA
alized hypergeometric functioR8 ,F,(a,b;c,d;z), ag'® NA KNA
[T [1+r > —riry >
(M) () =1 =1 k{5 =1 kg
- 2EaI ‘3 ‘Eal I 12
@ =T In2+ kB—TZFz 1,1,5,2,kB—T , (58) (59)
I

where Egl) are the activation energies measured from the

bottom of the diabatic potentiaf;(x) to the crossing point The expressions for the long-time populations and the rate

X', ie., Egl)=vl-(x,*)+eo 52 constant in the consecutive step approximatiBff;>*(e)
Finally, taking into account Eq$54), (56), and(B7), we  andI'cga, are obtained by repIacirng(O) with kg)SAin Egs.

can conclude that, in the consecutive step approximatio32) and(38). Notice that the equilibrium populations in the

(CSA), the matrix elements df(0) can be approximated as consecutive step approximation coincide with those obtained
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within  the nonadiabatic limit, namely, P{“*%() ; @) () ;
= P{" (). This can be easily seen after substitution of Eq. e e
(59 into Eq.(32. Exp. fitting | [} ------ Exp. fitting

As we have previously analyzédjf the crossing point 0.8 1 108

x5 is much higher in energy that , then one can replace in
Eqg. (59 r,;=1 andr,=0. In this case, expressigh9) sim-
plifies considerably to

A
1 1 2 2) "
LHKGKE) + kGG,

kids~ (60)

0.2
0

20 40 600 20 40 60 80 100
The above formula has the same structure as the one used in tips] tips]
the literature for equal curvaturé?! Equation(59) and its
simplified version, Eq(60), describe in a unified way the FIG. 2. Compgrison betwee_n the numerical Tesglts for the evo'lutio'n'of the
different rate regimes, ranging from nonadiabatic to SOIvengonor populatlo_n,Pl(t), (sollq lineg and their smgle—exp_oner}tlal fitting

. . . . " ‘curves(dashed linesfor two different values of the relaxation time The
controlled adiabatic reactions, depending upon the relativgarameter values are;=800 cnil, A,=200 cni, A=20 cm'?, T
values of the system parameters characterizing tunneling an€l300 K, (a) 7=0.2 ps andb) 7=2 ps.
diffusion.

The derivation of Eq(59) is one of the main results of
this paper, and as far as we know, it has never been obtain
before. A few years ago, Tafyarrived to an expression
somewhat similar to Eq59). A detailed comparison of our

l?%ve been chosen on purpose, in order to demonstrate the
quality of our analytical results. In realistic situations, the
difference between the reorganization energies may not be so
: . . e r(]JIramaticaIIy large. For example, it was found in Ref. 10 that
d|fferenc(:j()as. First, Tapg neglects the off-diagonal d|ﬁu§|onthe reaction of primary charge separation in the bacterial
terms,lez, present in our Eq(59). Second, the nonadia- photosynthetic center immersed in a nonpolar lipid mem-
batic rate constants appearing in Tang’'s expression are thtane occurs with\;~1.45 kcal/mok507.22 cmil, \,
ones obtained within the contact approximati@mi. Eqs.  ~1.55 kcal/mok542.20 cnil. In such a case, we expect
(46)—(48)]. our approximate results to work even better for a similar set
of the remaining parameters.
VI. COMPARISON WITH NUMERICAL RESULTS In Fig. 2 we show two typical numerical evolutions of
AND DISCUSSION P.(t) and their corresponding single-exponential fitting
. o = )
curves for a fixed valuA=20 cm * and two different values

In this section we shall compare our analytical resultsof the relaxation timga) 7=0.2 ps andb) =2 ps. Figure
with those provided by numerical integration of the Zusman2(a) demonstrates that the evolution is single exponential to a
equations. The latter has been carried out using the standavery good degree. The increaseby one order of magni-
numerical algorithm group routine DO3PCF on a LINUX PC tude [cf. Fig. 2b)] introduces visible deviations from the
with an Intel 800 MHz processor. In the numerical proce-strictly exponential behavior. In the following, we restrict
dure, artificial absorbing boundary conditions have beerour analysis to the case<10 cm ! and<2.5 ps in order to
properly superimposed far away from the reaction region, irensure the strictly exponential character of the evolution.
order to model the natural boundary conditions;(X,t) In Figs. 3, 4, and 5 we depict the numerical and analyti-
—0 atx— *= . Such a modeling did not affect the quality of cal results for a fixed value=1 ps and three different values
the numerics, which was controlled by the numerical conseref the tunneling matrix elemenfy=1, 5, and 10 cm?, re-
vation of the total probability?,(t) + P,(t) =1 on the whole spectively. In the three figures we find an excellent agree-
time scale. Namely, the deviation of the total probability ment between the numerics and our analytical theory. In par-
from unity did not exceed 810 ' for the mesh of 1500 ticular, for weak tunneling A=1 cm !, the transfer is
space points and the single time step accuracy parameter nbnadiabatic and the numerical transfer rhtés perfectly
10" 7. We have adjusted both the number of mesh points andeproduced by the nonadiabatic rate expression, Ef.
the time accuracy in order to achieve convergence of thand (40)—(42), in the whole range of the electronic energy
results within the width of the plotted curves. Dependingbias ¢, [cf. Fig. 3a@]. When A increases, the nonadiabatic
upon the values of the parameters, the calculation of a relaxate expression starts to fditf. Figs. 4a) and 5a)], espe-
ation curve involving 100 time points took from about sev-cially in the vicinity of the decoupling poing,= €. of the
eral seconds to about half an hour. The long-time populatiortwo diabatic energy surfacegs~266 cm * for the present
P,(), and the rate constank, have been extracted from parameters Here, the adiabatic corrections due to the slug-
the numericalP,(t) making use of a nonlinear, single- gish dynamics of the reaction coordinate become increas-
exponential fitting procedure i@GNUPLOT. ingly important as the nonadiabatic tunneling gets drastically

The following set of parameter values is kept fixed in theaccelerated. However, the numerical results are still pretty
calculationsA ;=800 cnmi 1, A\,=200 cni'!, T=300 K. The  well reproduced by the consecutive step rate given in Egs.
other parameterss,, A, and 7, have been varied. Strongly (38), (59), (40)—(42), (53), and (57). This agreement holds
different values for the reorganization energlesand A,  only in the rangeeg<e., since forey= €. the consecutive
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R FIG. 5. The same as in Fig. 3 but with=10 cm™*.
FIG. 3. (a) Dependence of the total rate constéintns *) on the energy

bias e, (in cm™1). The numerical result is plotted with a solid line, the one
obtained with Tang's approximation with a dash-dotted line, the nonadia-
batic rate constantya(€g), with a dashed line, and the rate constant ob- . .
tained, for e,<e,, from the consecutive step approximatidigss(ep),  WNere Fj=dV;(x)/dx/y_,« are the slopes of the diabatic
with dotted line.(b) Dependence of the long-time populatiBy(=) on the  curves at the crossing poirt . Even though this formula is
tehneTJJy bitf_:Efo (in CT’_l)- T_hehnumericgl LES_ultI_iS plotﬁid Wgh z';sc?llid line, dvalid only under the assumption that the diabatic curves can
the cauiibrium rasult obtained iom E£q62) and(64) with & doted e, 1 ¢ CONSidered, within the crossing region, as straight fes,
both panels the parameter values Rye-800 cni !, A, =200 cni !, A=1 it provides a simple qualitative picture. SinEg=F, when
cm !, T=300 K andr=1 ps. the two crossing points coales¢ef. Fig. 1), the tunneling
probability (61) exhibits a divergence that is responsible for
the discussed sharp maximum. Averaging over the thermal
step approximation is not well defined. Notice that the ratedistribution ofv removes this divergence, but a sharp maxi-
values obtained with Tang’s approximati@f. the last para- mum remains and its position is shifted towards some
graph in Sec. V B depicted in Figs. &), 4a), and §a)  smaller valuee,,,x< €. . Moreover, it turns out that the ana-
significantly deviate from the numerics fep=200 cm 1. lytical values ofI" decay monotonically for negative values
One should also notice the strong asymmetry of the elecef €, with an increase ofey| (not shown. This latter result
tron transfer rate against the inversion of the electronic biagppears when the difference of the reorganization energies
eo— — € [cf. Figs. 4a) and Fa)]. This is in sharp contrast values is sufficiently large. For a small difference such a
with the case of equal curvatures, whdré—ey) =1 (€p) feature does not appear, but the discussed asymmetry is al-
(see, e.g., Fig. 7 in Ref. 21Namely, in the present case ways present wheR;#N\,.
I'(eg) increases for positive, and exhibits a sharp maxi- The numerical and analytical dependences of the
mum aroundey~ €.. The origin of this maximum can be asymptotic populationP,(<) on the energy bias, are
rationalized as follows. For a small and neglecting the shown in Figs. &), 4(b), and 8b). It is worth noting once
thermal dispersion of the reaction coordinate velogitgt ~ more that the theoretical value of the asymptotic population
the crossing poink*, the probabilityp(v) of the nonadia- does not depend on the adiabatic corrections, as it follows
batic tunneling transition between both curves is given by thdrom Eq. (59). It is determined merely by the values of the
Landau—Zener formulésee, e.g., Ref.)8 nonadiabatic rate constark§) . Again, the agreement be-
2 tween the numerical and the theoretical value®gf») is
ThA -
p(v)= =, (62) almost perfect! Note that for zero energy bias=0 the
[F1i=Fafv asymptotic population of the donor is less than one half,
Pi()<1/2, and it remains so for small negativg [cf.

@ ®) Figs. 4b) and 8b)]. Thus, for such values af, the electron

100 , N , , 05 transfer occursagainst the electronic energy biaghis ef-
— Tnum. | — Pyf=) num. fect, however, has nothing to do with a violation of the sec-
go | 19T, N\ - P L oa ond law of thermodynamics, or a Maxwell demon effect. Its
......... T, i o P origin is due to the difference in the entropies of the reaction
60 | 1 103 coordinate oscillator in the two different diabatic electronic
i states. Indeed, the relation between the thermal equilibrium
40 | _/ 1t 102 populations of the two diabatic electronic states in the limit
' of very small electronic coupling, is given by
20 | 1t ] 01 o0 . G
, , , , L _ ex;{ — g) . 62
%00 50 200 350 -100 50 200 350 ° p{a keT (62

glem™] glem™]
In Eq. (62), G; represents the free energy of a damped har-

FIG. 4. The same as in Fig. 3 but with=5 cm 1. monic oscillator moving on the energy cur¥g(x). In the
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@ (b) cm ! and zero electronic energy bias. Asincreases, the

o' num. ' ' reciprocal of the rate constant is proportional to the relax-
-~ Tang's T~ I
y

30

10338 ation time, 1I' 7, in agreement with the analytical results.

This indicates the transition to the solvent-controlled adia-
1 0.332 batic regime® Moreover, the agreement between the numeri-
cal and analytical values of the long-time population is al-
1 0331 most perfect[cf. Fig. 6b)]. Note that the corresponding
values ofP (%) given by the Zusman equations dependron
Pl P ") 10.33 and slightly deviate from the thermal equilibrium value

! 0P, (o) num. P{*9=1/3 given by Eqs(62) and(64). This violation of the

vl
29 . . . . 0.329 principle of detailed balance is very small indeed and the use
0 3

o2 30 1 2 of the Zusman equations is well justified. Especially, it is
[ps] ps]

-1

clearly seen from Fig. ®) that P,(«) approaches the cor-
FIG. 6. (a) Dependence of the reciprocal of the rate conskant (in pg) and rect equilibrium value obtained in the semiclassical limit
(b) of the long-time populatiofP,(«) on the solvent relaxation time (in when 7 increases.
tht nonadinbatic expressions with dashed Inesaime have also ploted . HInally, one should remark that the Zusman equations
wi(teh solid line the rafe constant obtained from the consecutive stgp approx@‘_re thotht to be dlffl(_:u“ for mljmencal anaIySIS' l_nde?d’ In
mation and with a dash-dotted line the one obtained with Tang's approxiview of the several different time scales appearing in the
mation. In both panels the parameter values )eye 800 cm*, \,=200  problem, the corresponding system of ordinary linear differ-
cm !, A=10 cm !, T=300 K, ande,=0. ential equations obtained after discretization in space is stiff.
This means that the corresponding minimpd,,|, and
maximal,|@ma, eigenvalues can be drastically different and
semiclassical limit, the partition functions of the damped harthe stiffness parameteé=|amal/|amin, can be large. This
monic oscillator on each curve are giver’by seems to be source of numerical difficulties. For example, we
kT P have observed that the time spent by the NAG numerical
h_ B i.2 €p . . . . ;-
zJ(C ——_ex;{ , (63 routine to handle the numerical integration depends drasti
ho; kgT cally on the parameters. In particular, fgg<0 and the pa-
where the exponential factor is due to the vertical shift berameters used, the required computing time grows very
tween the two minima of the harmonic potentials. Conse-quickly with |eo|, perhaps exponentially. This is the practical
quently, using the relatio® = — kg TInZ, the free energy dif- reason why we do not have data in our figures for these
ference in the semiclassical limit is values of ;. However, forey>e. we did not meet any
numerical problem. The agreement between the numerical
. (64 and the analytical results is very good. Thus, the deviation
between the long-time populations obtained from the Zus-
where we have taken into account th@tijz. The terme, ~ Man equations and the semiclassical thermodynamical result

on the right-hand siddr.h.s) of Eq. (64) represents the for eo>_eC is not due to numerical problems. Th'e problem
change in internal energy, as can be easily checked from tH8ay be in the Zusman equations themselves, as in the case of
relation U=kgT27In Z/dT between the internal energy, large reorganization energi€sNevertheless, these equations
and the partition function. The second term corresponds t§€€Mm to be superior to other approximate semiclassical ap-
the entropic contribution to the free energy difference, Proaches for a rather broad range of paraméters.
—T(S;—S,). Thus, a difference in reorganization energies

b_etween the backwa_rd apq fqrward reactions yie!ds an add'v”. CONCLUDING REMARKS

tional term of entropic origin in the free energy difference.

The equilibrium populatiorP(leq’ as obtained from Eqgs. In this paper, we have considered the extension of the
(62) and (64) is also depicted in Figs.(B), 4(b), and §b). Zusman equations to ET reactions in condensed media with
For eg<e., its values practically coincide with the long-time different reorganization energies for the forward and back-
populations obtained from the numerical and analytical soluward reactions. The electron transfer process is assumed to
tions of the Zusman equations. Thus, in this range of paranmbe modeled by a set of partial differential equations describ-
eters, the long-time solutions of the Zusman equations aring the fluctuational relaxation of the reaction coordinate and
consistent with the principle of detailed balance in the semithe tunneling transitions between the electronic states. Using
classical limit. However, fore,> €., a significant discrep- projection operator techniques and assuming appropriate ini-
ancy between the predictions of the Zusman equations artial conditions for the reduced density operator, we have
those of Eqs(62) and(64) is observed. This fact may indi- proved that the populations of reactants and products satisfy
cate a possible failure of the Zusman equations to describa generalized master equation. The evaluation of the convo-
properly the long-time populations fep> €., even for rela- lution kernels appearing in this equation entails the summa-
tively small reorganization energies. tion of a series whose terms depend on the diagonal and

In Fig. 6, we show the dependence of the reciprocal obff-diagonal Green functions in a rather complicated way. A
the total rate and the long-time population of the donor statealculation of these Green functions has been carried out in
on the solvent relaxation time, for a fixed valueA=10 the Appendixes. It should be pointed out that, to the best of

wo 1 )\2
Gl_GzzEO_kBT In w_l :EO_EKBT In )\_l
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our knowledge, the expression of the off-diagonal GreerDAAD. Support by the Direccio General de Ensenza Su-
function presented in this paper has not appeared previousperior of Spain(Project No. PB98-1120is also acknowl-
in the literature. edged(J. C.-P. and M. M.

From the above-mentioned exact, though formal, results
we have obtained the following relevant information perti-
nent to ET kinetics{i) We have provided a detailed discus- APPENDIX A: GREEN EUNCTIONS FOR THE

sion of the conditions under which the decay of the popula,A\ppmoNIC POTENTIALS WITH DIFFERENT
tions to their long-time values can be properly described by & ryATURES

single-exponential function for all the relevant time scales. ) )
Roughly speaking, this simple description is valid whenever- The off-diagonal Green function
there is a clear-cut separation between the relaxation time of |n this Appendix we evaluate the off-diagonal Green

the populations and those of the Green functidiig.We  function by solving the differential equatidi1) with initial
have obtained explicit expressions for the parameters chagondition(12) and boundary conditiond 3). After replacing
acterizing the single-exponential decay, i.e., the long-timehe potentialg6) in Eq. (11), we obtain

values of the population®;(=), and the total rate constant, )

I'. As these formal expressions are rather complicated, we ¢ d X A
P P —God(x,t|x’)=[Da—+—— 2
X

Xo AN1TAp

have resorted to approximations in order to simplify them. gt
(iiil) We have considered the nonadiabatic limit, i.e., we have

assumed thak is the smallest energetic value involved in the i (N —=A)X® 2NoX

reaction. In this limit we have provided a novel extension of 7 2 + %o €0~ A2
the usual Marcus formula to the case of different curvatures. 0

It should be pointed out that our formula does not rely on the X Gog(X,t|x"), (A1)

use of the contact approximation as that proposed by Tang inh is the ph logical relaxation ti fh
Ref. 15. As noted in our previous wotR the contact ap- wherer IS Ine phenomenological refaxation ime of the over-

gamped oscillator on the averaged potential cyrve(x)

proximation is untenable for some regions of the parameter . . :
space, leading to disagreements with the results obtained kt}L/VZ(X)]/Z Lcf. Eq.(8)]. The solution of Eq(AL) is obtained

numerical solution of the Zusman equati&ﬁ$iv) We have y carrying out the Fourier transform with respectia.e.,
analyzed the kinetics beyond the nonadiabatic limit by using 1 [ .

the consecutive step approximation. In this way, we have Gyg(kt|x')=— dx &Gy g(x,t|x"). (A2)
rigorously derived a novel expression for the total rate con- Vom) =

stant that allows us to describe both the nonadiabatic and thehe equation for the Fourier transform reads
solvent-controlled adiabatic regimes. This expression is . _

rather cumbersome but, under well-defined conditions, it carﬁg Kilx')=! — DK2 ikxo (T & A2

be cast in a form that constitutes the natural extension to thet oakotlx") = * Xg 0K Ni+As

two curvatures case of the formula commonly used in the

single curvature situatioff:?* (v) A thorough comparison of [

T

N—Np 02 2iN, 0

the analytical predictions and the results obtained from the il %2 gk Xo ok
numerical solution of the Zusman equations has been carried 0
out. _
It should be noticed that, as we mentioned in the Intro- —€ot A2 }God(k.ﬂx'), (A3)
duction, in this paper we are accepting the validity of the

Zusman equations. In Sec. VI, we have observed that thefghich, except forx;=\,, is not simpler than Eq(A1), as

are situations where the validity of such a description isthe second-order derivative still appears by contrast to the
questionable. More precisely, for some parameter values, Wease of equal curvatures. Nonetheless, working in Fourier
have noticed deviations of the long-time populations prespace is still convenient as further calculations are facilitated
dicted by the Zusman equations and those expected fromy the use of the initial condition

statistical thermodynamical considerations in the semiclassi- .
cal limit. In strongly polar solvents another kind of non- x

physical predictions have been already pointed out by N

Frantsuzo¥® Thus, even though the derivation of Zusman o

equations from a microscopic point of view has been repeat>uPstitution of the ansatz

edly carried out in the literaturé€; >3the range of parameter 1

values for which their validity is granted are not sufficiently Eod(k,t|x’): Tex,;[—a(t,x’)kz—b(t,x’)k—c(t,x’)]

God(k,0)x") =

(A4)

well delimited. Ve
(A5)
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b(t.x) 1Jr 4i(N1—\y) atx’) |b(tx") Gualxt]x') 1 p[ [x—ib(t,x")]? )
X' = _— X XX = ——=exp| — ———F— —c(t,x") .
T 1ix2 od 2\ma(t) 4a(t)
_ (A16)
4\, I\ 2Xo . e
~ . altx)— TeET WS (A7) It is not difficult to prove that Re(t)]>0 for t>03! so
0 1rn2 that the boundary conditionél3) are obviously satisfied.
_ i(A1—\y) This result for the off-diagonal Green function generalizes to
c(t,x")= —Z[Za(t,x’)—bz(t,x’)] the case of diabatic curves with different curvatures the one
hXg given in Ref. 21.
2\ (e~ 2)
- ﬁ—Xob(t,X )+ ﬁ (A8)
which, according to EqsiA4) and (A5), has to be solved 2. The diagonal Green functions
with the initial conditionsa(0x’)=c(0x’)=0 andb(0x") The evaluation of the diagonal Green functions for har-
=—ix’. After some lengthy calculations and simplifications, monic potential curves is straightforward. Substitution of the
one obtains potential energie$6) in Eq. (16) yields the linear Fokker—
Planck equation
a(t,x’)=a(t)=Drfy(1), (A9) a
: J . ? 19
2(x+i —c® "= 4+ (x=5
b(t,x")=—iax'fo(t)—XoA,| if(t)+ (Xa )fz(t)}, 5 G (6tx") D3X2+ : 7x X7 91.2%)
(A10) X GYP(x,tx"), (A7)
i()\l_)\z)T X, 2 . . . .
c(t,x' )= ————f,(t)| — where 7; is the phenomenological relaxation time of the
h Xo overdamped oscillator on the potential cuWgXx) [cf. Eq.
. , (7)]. By shifting x, Eqg. (A17) is reduced to the forward Kol-
2”\27’ 4A1 X )\2A27’ . .
+ fi(t)+ —fo(t) | —— mogorov equation for the Ornstein—Uhlenbeck proc@éss.
h a X fa? Thus,GY(x,t|x") is obtained from the transition probability
(x+i) of the Ornstein—Uhlenbeck process by the substitutions
XA [x+i(2A,+ 1)]f1(t)+$ fo(t )) —X— 8j Xo andx’ —x"— §j X, i.e.,
: 1
MoA[x+i(2A1+1)] 1 i(eg—\ GP(x,tx") =
L Ax+i(2A+1)] N (€0—Np) ¢ d 06 t[x") V27D (1-e 27)

ko 27 f

_S. (v — S —t/7T12
— Hin[afy(t)], (AL1) Xexp{—[x S0 (X'~ 9 20)e ]

2D 7i(1—e 2'7)
where we have introduced the dimensionless parameters

(A18)
__ N
A=, (A12)  ApPPENDIX B: EVALUATION OF THE SERIES
IN EQ. (55)
4kBTT
X=—72" (A13) In order to carry out the sum of the seri€ss), it is
convenient to introduce two new auxiliary series, namely,
a=[1+i(A—Ap)x]™, (A14) »
and the functions vj, = 21 y? forj;=1 and 2, (B1)
“
| at at\]7?
fo(t)=|sin —|tacosh—I| where
W=
R =Ty (B2)
fa(t)="1o(t) sinl-(m_) forn=1, 2. (A15) 5 5 n
(n)— 1 n— 1r r oers E
Notice that the argument of the logarithm in HA11) is a (=D, 21 ]nzzl 2 ’"Bz -

complex function of the real variabteThus, for the function (B3)
to vary continuously, we have to consider the Riemann SUE =2 In the above expressions, we have simplified our
face where the infinite set of branches of the logarithmic T v
function are defined. At=0, the function starts at the main netation by setting=; ;= Trk™(0)J(xj,_,0xj})]. Ob-
branch(i.e., the branch where Ir40) and, as time increases, viously, the ser|e$55) can be obtained from the two series
it goes over the next branches at each crossing of the cut ifB1) by »==57 =1V

the complex plane. Transforming backx®pace, one finds The terms(B3) obey the recurrence relation
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(n—1)
P )

2
M= _r. =
le - r111-22=1 '_'Jlxlzv (84)

Summing up the above expression froms 2 to o, one ob-
tains after some rearrangements,

2
122:1 [rjlzjl’j2+5jl'jz] ijzril' (B5)

The above expression is a set of t@for j;=1 and 2) linear
equations inv; . Its solution is straightforward, yielding

F St Sh (=DM (1- 68 ) Eim

H|2:1[1+r| Eil-rarafEq.0°

(B6)
where we have made use of the symmeHy ,==,;.
Finally, the sum of the serig®5) is

2

=3

j1=1

le

B L+ryrpSE 30 (D) E

T2 14 B - rar o By
|=1 I =1, 1t 2l =1,

(B7)
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