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Theory of force-extension curves for modular proteins and DNA hairpins

L. L. Bonilla,! A. Carpio,2 and A. Prados®
'G. Milldn Institute, Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos Ill de Madrid, 28911 Leganés, Spain
2Departamento de Matemdtica Aplicada, Universidad Complutense de Madrid, 28040 Madrid, Spain
3Fisica Tedrica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
(Received 22 July 2014; revised manuscript received 29 March 2015; published 26 May 2015)

We study a model describing the force-extension curves of modular proteins, nucleic acids, and other
biomolecules made out of several single units or modules. At a mesoscopic level of description, the configuration
of the system is given by the elongations of each of the units. The system free energy includes a double-well
potential for each unit and an elastic nearest-neighbor interaction between them. Minimizing the free energy
yields the system equilibrium properties whereas its dynamics is given by (overdamped) Langevin equations for
the elongations, in which friction and noise amplitude are related by the fluctuation-dissipation theorem. Our
results, both for the equilibrium and the dynamical situations, include analytical and numerical descriptions of
the system force-extension curves under force or length control and agree very well with actual experiments in
biomolecules. Our conclusions also apply to other physical systems comprising a number of metastable units,

such as storage systems or semiconductor superlattices.
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I. INTRODUCTION

Nowadays technological advances allow manipulation of
single molecules with sufficient precision to study many
mechanical, kinetic, and thermodynamic properties thereof.
Recent reviews of techniques used and results obtained in
single-molecule experiments (SMEs) can be found in Refs. [1-
3]. In these experiments, typically the force applied to pull
the biomolecule is recorded as a function of its end-to-end
distance, thereby producing a force-extension curve (FEC).
This FEC characterizes the molecule elasticity and provides in-
formation about its processes of folding and unfolding [4—11].
In the following, the end-to-end distance of the biomolecule is
referred to as the total length [12]. The force-extension curves
are different depending on whether the total length or the force
are controlled. When the total length of the protein is used as a
control parameter (length control), the unfolding transition is
accompanied by a drop in the measured force and a sawtooth
pattern is the typical force-extension curve [5,7-9,13]. When
the force is the control parameter (force-control), unfolding of
several or all single protein domains may occur at a constant
value of the force [14]. Other questions are related to the
rate at which the control parameter (length or force) sweeps
the force-extension curve: depending on the loading rate,
stochastic jumps between folded and unfolded protein states
may be observed [1,8,10,13,14].

The analysis of the force vs extension curves provides
valuable information about the polyprotein, the DNA, or the
RNA hairpin. Let us consider atomic force microscope (AFM)
experiments in which a modular protein comprising a number
of identical folds (modules or units) is pulled at a certain rate
(Iength control) [5,7]. The typical value of the force F, at
which the unfolding takes place is related to the mechanical
stability of the units: a larger value of the force is the signature
of higher stability. Nevertheless, it should be stressed that
the unraveling of a domain is a stochastic event and occurs
for forces within a certain range. A second feature of the
sawtooth FEC is the spacing between consecutive force peaks.
This spacing is directly related to the difference of length
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between the folded and unfolded configurations of one unit.
This is the reason that the peaks of the FEC of artificially
engineered modular proteins are regularly spaced. A typical
example is 127g, composed of eight copies of immunoglobulin
domain 27 from human cardiac titin. The spacing between
peaks for this protein is 28.4 £ 0.3 nm at an unfolding force
of 204 +26 pN [5,7]. This length increment is found by
fitting several peaks of the FEC with the worm-like chain
(WLC) model of polymer elasticity [15,16]. More recently,
force-controlled AFM experiments with a 127 single-module
protein have been reported [17,18]. These experiments provide
data free from the module to module variations that even an
artificially engineered polyprotein has. Berkovich ef al. have
interpreted their results using a simple Langevin equation
model that includes an effective potential with two minima
for a range of the applied force [17].

The thermodynamics of pulling experiments is well es-
tablished under both force and length control. For controlled
force, the relevant thermodynamic potential is a Gibbs-like
free energy, whereas for controlled length it is a Helmholtz-like
free energy [10,19,20]. Interestingly, the sawtooth structure of
the FEC of biomolecules is already present at equilibrium, as
shown very recently in a simple model with a Landau-like
free energy [21]. However, the control parameter in real
experiments with biomolecules (force or length) changes
usually with time at a finite rate [1,3,7,8,10,13,14,22]. Knowl-
edge of these dynamical situations is not as complete as in
the equilibrium case. Under force control, we can write a
Langevin equation (or the associated Fokker—Planck equation)
in which noise amplitude and effective friction are linked by
a fluctuation-dissipation relation, as done in Refs. [17,23]. On
the other hand, under length control, the situation is more
complex: the force is no longer a given function of time
but an unknown that must be calculated by imposing the
length constraint. This has lead to the proposal of simple
dynamical algorithms such as the quasi-equilibrium algorithm
of Ref. [10]. While being successful in reproducing experimen-
tally observed behavior, these algorithms do not correspond to
the integration of well-defined evolution equations.
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In some cycling experiments, the biomolecule is switched
between the folded and unfolded configurations at a certain
switching rate [1,8,10,13,14,22]. After Liphardt et al., we call
such a process a stretching-relaxing or an unfolding-refolding
cycle [8,13]. The unfolding typically occurs at a force F,
that is larger than the refolding force F,. Therefore, some
hysteresis is present and, moreover, the unfolding (refolding)
force typically increases (decreases) with the pulling rate.
A reversible curve in which F, = F, = F, is only observed
for a sufficiently small rate. Some authors have claimed that
this is a signature of irreversible nonequilibrium behavior
and thus used these experiments to test nonequilibrium
fluctuation theorems [13,24-26]. On the other hand, for a
simple model for which only the force-controlled situation
could be analyzed [27], it has been found that the observed
behavior in biomolecules can be understood as the system
sweeping a certain part of the metastable equilibrium region of
the FEC that surrounds F,. In this way, the system is exploring
metastable minima of the system free energy landscape. One
of the main goals of this work is to determine if this physical
picture also holds for length-controlled experiments.

In this paper, we add two important ingredients of
real biomolecule pulling experiments to a simple model
with independent domains and Landau-like free energy
whose equilibrium analysis is given in Ref. [21]. We add:
(i) dynamical effects and (ii) interacting units. Dynamical
effects are introduced by means of Langevin or Fokker—Planck
equations, both under force and, most interestingly, length
control. Therefrom, we can carry out a systematic investigation
of the dynamical FEC when the control parameter (force or
length) is varied at a finite rate. The simplest way to introduce
interaction between modules is via a harmonic potential trying
to drive them to global equilibrium. In this way, the creation of
bubbles, that is, regions of unfolded modules inside regions of
folded ones, has a free energy cost. This is expected to be most
relevant for systems in which the unfolding and refolding of
units is mainly sequential, as in the unzipping of DNA hairpins
[1]. Interestingly, the complex and force-sensitive behavior of
polyproteins observed in force-clamp experiments has been
recently explained by sequential unfolding [28].

The main ingredients of our model are bistability of protein
modules and, in the length-controlled case, a global constraint
that introduces a long-range interaction among modules. These
features are quite general in physics, as they appear in many
different fields. For instance, many particle storage systems
such as the storage of lithium in multiparticle electrodes
of rechargeable lithium-ion batteries [29,30], air storage in
interconnected systems of rubber balloons [31], or voltage
biased weakly coupled semiconductor superlattices [32—36].
Throughout the paper, the analogies and differences that arise
in these different physical situations will be discussed.

The rest of the paper is as follows: The model we use
is described in Sec. II, in which we write down both the
Langevin and the Fokker—Planck equations in Secs. II A and
I B, respectively. In Sec. III, we investigate an ideal modular
protein comprising many identical, noninteracting, units. In
Sec. III A, we show that the equilibrium FEC corresponding
to our Landau-like double-well free energy has multiple
branches. Statistical mechanics considerations determine the
stability of the equilibrium branches for: (a) force control in
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Sec. III B, and (b) length control in Sec. III C. We also consider
dynamical situations when the control parameter (either force
or length) varies at a finite rate. Section IV deals with a
real chain, in which the nearest-neighbor modules interact
via an extra harmonic term. First, we study the equilibrium
situation in Sec. IV A, in which we show that the size of
the branches is reduced, as compared to the ideal case.
Sections IV B-IV D analyze the changes that the dynamics
brings to the equilibrium picture by considering deterministic
dynamics, quenched disorder and finite temperature dynamics
(thermal noise), respectively. Final remarks are made in Sec. V.
Appendix A explains unfolding and refolding under length
control using a more realistic potential, whereas Appendixes
B and C deal with some technical aspects not covered in the
main text.

II. MODEL

To be specific, let us consider AFM unfolding of modular
proteins: They are stretched between the tip of the microscope
cantilever and a flat, gold-covered substance (platform),
whose position is externally controlled. The forces acting
on the molecule bend the cantilever which, in turn, determines
the applied force with pN precision. See Fig. 1 of Refs. [3] or
[7] for an idealized situation. In force-controlled experiments
with a single-module protein, the free energy of an extending
protein comprises at least two distinct components: an entropic
term that accounts for chain elasticity and an enthalpic
component that includes the short-range interactions arising
between the neighboring amino acids as the protein contracts
[17,18]. In a certain force range, these two components
cause the single-module free energy to have two minima,
corresponding to the folded and unfolded states of the domain
[17].

Let us consider a system comprising N modules. The jth
module extends from x; to x;1, so that its extension is ; =
Xj+1 —Xj, j=1,...,N. The configuration 5 = {n;} defines
the polyprotein state at a mesoscopic level of description.
When isolated, the free energy of the jth unitis a(n;; Y,§;), a
double-well potential whose minima correspond to the folded
and unfolded states discussed above. Y is the set of relevant
intensive parameters, like the temperature 7 and the pressure
p of the fluid (thermal bath) surrounding our system. The
parameter §; accounts for the slight differences from unit to
unit: §; = 0V j, if all units are identical, and thus no quenched
disorder is present in the system.

As part of the tertiary structure of the polyprotein, modules
are weakly interconnected by linkers in a structure-dependent
way [37]. It seems reasonable that this weak interaction acts
on the unfolding and refolding timescale and tries to bring the
extensions of the modules to a common value, corresponding
to global mechanical equilibrium. For the sake of simplicity,
we model the linkers as harmonic springs. Thus, the system
free energy A for a given configuration of module extensions

y is
N

Nk (v)
AG:Y) =) a8+ == —m-)® ()

J=1 j=2
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If all the linkers are identical, k; = k forall j =2,...,N, and
the elastic constants may depend on the intensive parameters.
The length L of a polyprotein in a configuration 7 is

N
> nj )
j=1

The experiments are carried out at either force-controlled
or length-controlled conditions. First, we analyze case (i), in
which a certain external force F' = F'(¢) is applied to the ends
of the protein or DNA hairpin. For a detailed discussion of
how this is achieved in real experiments, see, for example,
Refs. [14] (Chap. 6) and [38] for the optical-tweezers case, and
Refs. [39,40] for the AFM case. In our simplified theoretical
approach, we only have to add the term

L(p) =

AU (; F) = —FL () = Fx; — Fxyy 3)

to the free energy A(n). In this way, we obtain a Gibbs free
energy G(; Y, F) = A(n,Y) + AU = A(n,Y) — FL(p),

Zg(n,,YFa )+Z

G, Y, F) = = -1,

(4a)
g Y, F,8;) =a(n;;Y,8;)— Fn;. (4b)

Note that we are not taking into account the limited bandwidth
of the feedback device that controls force in real experiments;
we are assuming that the desired force program F(¢) is
perfectly implemented. Second, we investigate the length-
controlled situation, case (ii). For a schematic representation of
the experimental situation, see, for instance, Fig. 1 of Ref. [3]:
The length L(¢) between the base of the cantilever and the
platform is the externally controlled quantity. On the other
hand, the cantilever tip deflects a certain distance Ax from
its base, such that Ax 4 L(n) = L(t). If the stiffness (spring
constant) of the cantilever is x;., we have an extra harmonic
term in the potential U, = )(1C(A)c)2 /2, that is,

&um>Lw? )

Therefore, an extra force A Fi. = — xic[L(5) — L(t)] acts over
each unit, trying to keep the polyprotein length equal to L(¢):
The larger ., the better the length control is, as expected
on intuitive grounds and explicitly shown in Ref. [24]. In this
paper, with the exception of Appendix A, we assume perfect
length control, that is, we consider the limit x;. — oo that
implies L(n) — L(#) — 0 over the time evolution of the units
and a finite value of the corresponding extra force AFj.. In
other words, A Fi. tends to a limiting value F that depends
on the prescribed length L(#). This unknown value is the
force required to attain the total length L(¢), and it has to be
calculated by imposing the constraint ) . n; = L. The effect
of this limit on the relevant thermodynamic potential for the
length-controlled case A 4+ AU, shall be discussed in the
section on Fokker—Planck description of the dynamics.
Finally, we would like to stress that the present model has
some similarities with the more complicated one proposed
by Hummer and Szabo for the unfolding of polyproteins
several years ago; see Appendix C of Ref. [41]. In addition

AUc(n; L) =
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to the module extensions 7;, these authors consider the
module centers of mass r; as independent unknowns. These
variables interact through a quadratic potential that yields a
linear restoring force whenever rj,; — r; departs from "’“ZJH”
The site potential for the module extensions is the sum of
a WLC potential and a harmonic potential [41], instead of
the double-well potential we consider in the main text or the
asymmetric potential we consider in Appendix A. Moreover,
Hummer and Szabo introduce a WLC linker that connects the
polyprotein with the length-controlling device, which is absent
in our model.

A. Langevin dynamics

The extensions 7; obey coupled Langevin equations with
the appropriate thermodynamic potential. The friction coef-
ficient and the amplitude of the white noise are related by
a fluctuation-dissipation theorem. The source for both the
friction and the stochastic force is the fluid that the modules
are immersed in, which is assumed to remain in equilibrium
at temperature 7. We assume that the modules’ inertia can be
neglected and thus their evolution equations are overdamped,

a
yinj =F — a—ﬁA m:Y)+2Ty;§; (1), (6a)
J
(E®) =0, (&) =838t —1), j=1,....N.
(6b)

Here y; is the friction coefficient for the jth module, and
we measure the temperature in units of energy (kg = 1).
In general, the friction coefficients y; may depend on the
system configuration 7, if hydrodynamic interactions play a
significant role in the considered unfolding scenario. For the
sake of simplicity, we do not consider this possibility in the
present paper. In this respect, it is interesting to remark that, in
the more complicated model of Ref. [41], module centers of
mass and extensions satisfy Langevin equations with different
extension-dependent diffusion coefficients.

Our presentation of the model above implies that the
Langevin equations (6) are valid both in force-controlled
and length-controlled experiments, but (i) in force-controlled
experiments, F = F(¢) is the known force program, whereas
(ii) in length-controlled experiments we have L() = L(t). We
differ the discussion on the experimental situation with an
“imperfect” length control (because of the finite value of the
stiffness yj. of the device controlling the length) to the next
section on the equivalent Fokker—Planck description of the
dynamics. For perfect length control, F(¢) is determined by
imposing the constraint L() = L, which yields

y [dL 18A(n,Y) 2T
F=2|2= . (7
AT + < Vi Z SJ (7a)
1 N
y=5 v (7b)
j=1

The parameter y is an average friction coefficient. In the case
of identical units, y; =y V j. We split F in two terms, a
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“macroscopic term” Fgp and a “fluctuating term” AF, as
follows:

F = Frpp + AF, (8a)

N
dL 1 0A(p:Y)
Frp =% - —+ : (8b)
Sy o

y N o ar

AF =-L & (8¢)
N Vi

Jj=1

We prove in Sec. IIB that Fpp is the force appearing
in the flux term of the Fokker—Plack equation. Note that
for any N, (AF) =0 and then (F) = (Fgp). Furthermore,
AF is a sum of Gaussian variables, and thus its statistical
properties are completely given by its first two moments. It
can be easily shown that (AF(t)AF(t')) = N~ 'y8(t — t'), its
variance tends to zero as N ', which is the typical behavior
of fluctuating quantities in statistical mechanics. Even so, it
should be noted that in biomolecules N is not necessarily very
large and certainly not of the order of Avogadro’s number,
and thus fluctuations play a major role. In force-extension
experiments, the length is usually uniformly increased or
decreased with time ¢, dL /dt = p with a constant p.

It is convenient to render our equations dimensionless. We
set the length unit [n] equal to the difference between the
extensions of the two free energy minima of a single unit for a
certain applied force. It is natural to adopt the critical force, at
which the two minima are equally deep, as the unit of force:
[F] = F,. The parameters [n] and [ F] depend on the specific
choice of the double-well potential a(7; Y,0). The free energy
unit is then [ F][n]. We select the timescale as [¢] = y[n]/[F],
where y is the typical friction coefficient experienced by the
units. The typical value of y can be obtained from the value of
the diffusion coefficient D = T'/y of a single module protein
being stretched [18]. In principle, we introduce a new notation
for the dimensionless variables, F* = F/[F], etc., but, in
order not to clutter our formulas, we drop the asterisks in
the remainder of the paper.

B. Fokker-Planck equation and equilibrium distributions

In force-controlled experiments, F(¢) is a given function
of time, and the set of Langevin equations (6a) is equivalent
to the following Fokker—Planck equation for the probability
density P(n,t) of finding the system with extension values
n={n,...,ny}attimez:

N N
d 1 0 G 1 8%P
—P = —_ |:—73:| +T — . 9
ot = vidn; Lon; Vi om;

where G = A — FL, as given by Eq. (4a). If the force F is
kept constant, Eq. (9) has a stationary solution, which is the
statistical mechanics prescription,

P () o e~ CmY.F)/T (10)

Therefore, the equilibrium values of the module extensions
n°4 are the functions of F that maximize P or, equivalently,
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minimize G; that is, they verify

(5)
an; Y.F

If there is only one minimum, this is the equilibrium config-
uration. If there is more than one, the absolute minimum is
the thermodynamically stable configuration, while the other
minima correspond to metastable states in the thermodynamic
sense. For each equilibrium configuration, either stable or
metastable, the equilibrium value of the free energy G is

GY(Y,F) = G(y*Y(Y,F); Y, F). (12)

=0= 1, :njq(y,F), j=1,...,N.(11)
eq

Taking into account Eq. (11), we have
G\  (9G
OF )y \OF ),y

which gives the equilibrium FEC under force control.

Let us consider now the length-control situation. In the
experiments, the device controlling the length of the system
does not have an infinite stiffness and thus the length control
is not perfect, as discussed above (see also Ref. [24] and
Appendix A). Had we taken into account this finite value
of the stiffness yi., the Fokker—Planck equation would have
been obtained by substituting the Gibbs free energy G =
A+ AUg in Eq. (9) by the corresponding thermodynamic
potential A 4+ AUj.. Thus, the stationary solution of this
Fokker—Planck equation would be the equilibrium distribution
P(n; Y,L) cxexp{—[A(p;Y) + AU.(n; L)]/T}. Of course,
in the limit as y;c — o0, the variance of the Gaussian factor
exp[—AU(n; L)/ T] vanishes and this factor tends to a delta
function §(L(n) — L), giving perfect length control.

In the case of perfect length control, the correct Fokker—
Planck equation can be obtained by taking the limit as xj. —
00, but here we follow an alternative route. We calculate the
first two moments of the extensions », taking into account that
not all the extensions 7; are independent and that the force F
is given by Eq. (7a),

N
==Y nSU(Y.F) = —L(Y.F),
€q j—l

13)

N

a 1 9 0A
gl )]
at = v on; an;

N N
1 9?
-5 :(ajk - ) P. (14)
parid R Ny ) 9n;dnk

+T

Here Fgp is given by Eq. (8b). If the length is kept constant,
dL/dt = 0, Eq. (14) has a stationary solution,

P (; Y,L) o< §(L () — L) e A@/T (15)

as can be easily verified by inserting Eq. (15) into Eq. (14).
This means that A is the relevant potential for the statisti-
cal mechanics description at equilibrium, as was expected.
Equation (15) is consistent with the limit as x;. — oo of the
equilibrium distribution for realistic length control, as already
discussed above.

To obtain the equilibrium values for the extensions, we
look for the minima of A with the constraint given by the
delta function in Eq. (15), L(y) = L. We have to introduce a
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Lagrange multiplier F and look for the minima of A — FL;
that is, the same minimization as in the force-controlled case.
However, the Lagrange multiplier is an unknown that must be
calculated at the end of the process by imposing the constraint,
F = F(L). This Lagrange multiplier is, from a physical point
of view, the force that must be applied to the system in order
to have the desired length. The equilibrium extensions 75*(L)
are thus given by the solutions of

(5)
on; )y

The last equation gives the FEC, L = L(Y,F)or F = F(Y,L),
from which we obtain 17°¢ = n°4(Y,L). The thermodynamic
potential A°? is the Legendre transform of G®1 with respect
to F. In fact, the equilibrium value of A, A®(Y,L) =
A(M®(Y,L);Y), verifies that

(aAeq(y,L)) .
aL ),

The proper variables for A®d are the set of intensive parameters
Y (temperature 7', pressure p, ... of the fluid in which the
polyprotein is immersed) and the extensive length L [42],
while the proper variables for G*1 are all intensive, ¥ and
F. In this sense, A% plays the role of Helmholtz free energy,
while G*1 is the analogous to the Gibbs free energy. It should
be stressed that, (i) however, different notations are found
in the literature for these two thermodynamic potentials; and
(ii) as in the case of magnetic systems [43], there is a difference
of sign with respect to the usual free energy terms with the
pressure p and the volume V.

The fluctuation theorems for Markov processes described
by the Langevin (or the equivalent Fokker—Planck) equations
have been thoroughly analyzed in Ref. [44]. The results therein
are directly applicable to the Fokker—Planck equations derived
here for the force-controlled and the realistic (finite )
length-controlled cases. When the controlled parameter (either
force or length) is kept constant (time-independent), detailed
balance applies and the corresponding stationary distributions
are equilibrium (canonical) ones (in the terminology of Sec. II
of Ref. [44]). In the limit x;c — oo, we expect this result to
be still valid on physical grounds, but further mathematical
work would be necessary to establish it rigorously: Some of
the matrices defined in Ref. [44] become singular and thus
have no inverse. This is a point that certainly deserves further
investigation, but it is out of the scope of the present paper.

N
=F, j=1,...,N; anq(Y,F)zL.
eq j=1

(16)

a7

III. THE IDEAL CHAIN

In this section, we analyze the case of an ideal chain,
in which the identical units do not interact either among
themselves or with the cantilever or platform, k; = 0 and
8; = Oforall j [21]. We analyze the equilibrium situation and
thus solve the minimization problems for the force-controlled
and length-controlled cases of the previous section. We also
investigate the dynamical situation arising in processes in
which the force or length varies in time at a finite rate and
compare these dynamical FECs to the equilibrium ones.
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A. Double-well potential; equilibrium branches

In order to keep the notation simple, we omit the de-
pendence on the intensive parameters Y of the free energy
parameters. As a minimal model, we consider the polynomial
form, a la Landau, for the free energy [21]:

N
Ay =Y a()), a() = Fa—an’+ pn*

j=1

(13)

The parameters F,, o, and B are all positive functions of
the intensive parameters Y. Specifically, F, plays the role
of the critical force, above (below) which the unfolded (folded)
configuration is the most stable one, as shown in what follows.
The possible equilibrium extensions n°? are the minima of
a(n) — Fn,

adn”y=F, (19)

or, equivalently,

—2anV +4pn"Y =9, ¢=F —F,. (20)

We have introduced the notation ) because Eq. (20) has
three solutions in the metastability region, given by |¢p| = |F —
F.| <q@y= (205/3)3/2/3’1/2. We set the indexes by choosing
nY < n® < yn®. They depend on the force F through ¢
(and on the intensive variables Y through {«,f,F.}). The
extensions nV(¢) and n®(p) are locally stable because they
correspond to minima of a; — Fn;, while n®(p) corresponds
to a maximum and is therefore unstable. The curvatures at
the folded and unfolded states are x©(p) = a’(n"(p)) =
128[n(p)]> — 2a, i = 1,3. Both curvatures (i) are positive
in the metastability region and (ii) vanish at their limits of
stability, xV (x) at ¢ = @y (9 = —¢p).

The situation is similar to that analyzed by Landau [45] for
a second-order phase transition under an external field, with n
and ¢ = F — F, playing the role of the order parameter and
the external field, respectively. At the critical force ¢ = 0, the
stable equilibrium values of the extensions are

172
= _y = o '
c c Zﬂ

They are equiprobable, since g(n) =a — Fn is an even
function of 5 for F = F,., and g’ = gV — F.pD = g® =
a® — F.n®, where we have introduced the notation ‘" =
a(m®), a® =an®), g = g(n"), and ¢ = g(n™). For
F # F,, the “field” ¢ favors the state with sgn(p) = sgn(n). In
fact, at the limit of stability we have that g = —13a?(68)~!
for ¢ = —gg [or g = —13a%(68)~" for ¢ = ). Therefore,
in the metastability region |¢| < ¢o, we have the following
picture: For F' < F,, the thermodynamically stable state is
the folded one n® < 0 and the unfolded one »n® > 0 is
metastable. For F' > F,, the situation is simply reversed. On
the other hand, the folded "’ (unfolded n®) state also exists
for forces below (above) the metastability region ¢ < —¢q
(¢ > ¢p). In their respective regions of existence, both locally
stable extensions 1" and n® are increasing functions of ¢ (or
F), since Eq. (19) implies that x ®(p)dn® /dp = 1. At zero
force, one module can be folded or unfolded if ¢y > F, while
we have only the folded state if ¢y < F..

21
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FIG. 1. (Color online) Normalized FECs for N = 8 (solid black)
and N = 20 (dashed red). Zero length corresponds to having half
of the units unfolded at F' = F,.. There are N + 1 branches in the
metastability region |¢/¢o| < 1, with the number of unfolded units,
J, increasing from left to right. The first (J = 0) and last (J = N)
branches are independent of N. Note that the branches become denser
as N increases, and also the up-down and left-right symmetry thereof.
These symmetries stem from the simple form of the Landau-like free
energy (18), and thus they are not present if a more realistic potential
is considered; see Appendix A.

Any module can be either folded or unfolded in the
metastability region, and thus a FEC with N 4 1 branches
shows up, as seen in Fig. 1. The Jth branch of the F — L
curve corresponds to J unfolded modules and N — J folded
ones, J =0,...,N. Since there is no coupling among the
units, the equilibrium value of A over the Jth branch is

AT =N - J)aV + Ja®. (22a)
The corresponding length is
Ly=WN—JD)nY 4+ @, (22b)

BothAf}q and L are functions of F' and the intensive parameters
Y through the equilibrium extensions. Equation (22b) is the
FEC, both for the force- and length-controlled cases. In Fig. 1,
we have normalized the lengths with

AL =Ly (F.)—Ly(F)=Nn? —n"), (23)

which is the difference of lengths between the completely
unfolded branch (J = N) and the completely folded one
(J = 0) at the critical force. It is interesting to note that similar
multistable equilibrium curves appear in quite different phys-
ical systems: from storage systems [29-31] to semiconductor
superlattices [32-36]. For instance, see Fig. 3 of Ref. [29]
and Fig. 6 of Ref. [30] for the chemical potential vs charge
curve in storage systems, and Fig. 8.13 of Ref. [35] for the
current-voltage curve of a superlattice.

As discussed in the previous section, we have chosen [F] =
F. = 1and [n] = n® — n® = 1 as units of force and length.
Using Eq. (21), B = 2« and n® = —n' = 1/2. Moreover,
the folded state 'V is the most stable one at zero force. This
means that the unstable state n® is closer to the metastable
state 3 for the simple Landau potential we are using [46]. For
the sake of concreteness, we take ¥ — n¥ = 0.9(n® — »)
at zero force, which leads to o = 273%2/1672 ~ 2.697 787
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and ¢o = 913/2/836 = 1.038 378. It should be stressed that
all the normalized plots in this section are independent of
this particular choice of parameters. A more conventional
definition of protein length could be to select at zero force
(a) zero extension for the folded modules (b) the difference
between the unfolded and folded configurations as the length
unit. This “physical” definition would give a nondimensional
extension

_aW(F =0
= ( : ) (24a)
N3 (F =0)—nD(F =0)
and a polyprotein length
_ M E=0+ Y0 19N V273
O F=0—gO(F =0 30 15 7
(24b)

respectively. At zero force, the module extensions are u'! = 0,
u® =0.9,and u® = 1. The length L, is typically positive for
F > 0, that is, for ¢ > —F.

We expect that the simple Landau-like free energy given
by Eq. (18) should be relevant to investigate qualitatively
the FECs for forces or lengths close to the metastability
region. In particular, this minimal choice does not account
for the existence of a maximum length of the polymer, its
so-called contour length [12], a fact that becomes significant
for high forces. In order to study the whole range of forces
and/or try to describe quantitatively the experiments, we
should use a more realistic potential, such as that proposed
by Berkovich et al. [17] or modifications thereof. We did this
in Ref. [28] to understand the stepwise unfolding observed
in force-clamp experiments. The simpler potential used in
this paper suffices for (i) showing that the key aspects of the
experimental behavior observed in the unfolding or refolding
region can be understood within a minimal model, and
(ii) establishing connections with other physical systems such
as storage devices [29-31] or semiconductor superlattices
[32-36] that have similar behavior in the metastability region.
We briefly investigate an asymmetric potential in Appendix A
to understand why the experimentally observed FEC corre-
sponding to unfolding under length control is reproduced by
the Landau-like potential whereas the FEC corresponding to
refolding is not; see Sec. III C for details.

B. Force control

In force-controlled experiments, the Gibbs free energy is
the relevant thermodynamic potential because it appears in
the equilibrium distribution (10). As discussed in Sec. 11 B,
the stable state corresponds to the absolute minimum of G.
All the units in our ideal chain are independent under force
control. Therefore, by increasing quasistatically the force, the
equilibrium FEC (22b) is swept. Over the Jth branch with J
unfolded modules,

GI=(N—-1gV+7g® ¢?=a®_Fy® (25

For F < F.=1 (F > F_.), the absolute minimum of G
corresponds to the folded (unfolded) state n" () and the
system moves over the force-extension branch in which none
(all) of the units are unfolded, J/ = 0 (J = N).
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Unfolding is a first-order phase transition between these
states that occurs at the critical force F, =1 defined
by continuity of forces and of the Gibbs free energies,
G8q|]:( = Giﬂpg. At F, =1, all the units unfold simultane-
ously. The length, which is a function of F' given by Eq. (13),
has a discrete jump equal to AL, given by Eq. (23). It is
worth recalling n® — n = 1 in nondimensional units. The
free energy (25) produces

d

d—F(Gj’;1 —Gy)=—-N0P(F)—nV(F) <OV F, (26)

consistently with Eq. (13). Then the basin of attraction of
the completely folded branch is the largest one for F < F,,
whereas the completely unfolded branch has the largest basin
of attraction for F > F,. All the intermediate metastable
branches with J # 0, N are not “seen” by the system in a
quasistatic process that takes infinite time to occur; see the top
panel of Fig. 2.

For a real, nonquasistatic process, the simple equilibrium
picture above is not realized. Depending of the rate of variation
of the force and the strength of the thermal fluctuations,
the system will explore the metastable branches of the FEC.
Then intermediate states between the completely folded and
unfolded configurations will be seen [1,14,27,47]. This is
shown in the bottom panel of Fig. 2 by solving Egs. (6a)
and (6b) with k; = 6; = 0 (in nondimensional form) for a
20-module protein, with 7 = 2 x 1073 and T = 0.02. All the
T =2 x 107 curves are superimposed on each other because
the considered rates |d F/dt| are small enough to lead to the
adiabatic limit. For the upsweeping (downsweeping) process,
the system moves over the completely folded (unfolded)
branch until it reaches the end thereof, ¢ = ¢y (¢ = —¢o).
Then it jumps to the completely unfolded (folded) branch. The
temperature is so small that the activated processes over the
free energy barriers take place over a much longer timescale.
For the higher temperature, 7 = 0.02, the system can jump
between the different minima of the potential and the force at
which the system jumps between branches depends on the rate
of variation of the force. Also, the system partially explores
some of the intermediate branches. This picture is consistent:
quite close to the adiabatic limit, the hysteresis cycle is large
for the highest rate of variation, whereas the cycle shrinks
towards the straight line ¢ = 0 (F, = 1) as the rate tends to
Zero.

C. Length control

In length-controlled experiments, the length constraint in-
troduces a long-range interaction between the protein modules.
The equilibrium probability of any configuration  is now
given by Eq. (15). Then the equilibrium configuration n®
is found by minimizing A with the constraint (2), and the
difference between values of A®? at adjacent branches in the
F — L diagram governs the stability thereof. The length £
at which there is a change in the relative stability of two
consecutive branches, with J — 1 and J unfolded units, is
determined by the equality of their respective free energies A®.
The corresponding forces f; = F;_i(£;) and ff =F;(£y)
over the branches with J — 1 and J unfolded units obey the
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FIG. 2. (Color online) (top) First-order transition in the length for
aquasistatic increase of the force. We use different colors for the stable
parts of the branches (solid black) and the metastable parts (dashed
red). The first branch J = 0 is swept until the critical force ¢ = 0 is
reached. Then all the modules unfold simultaneously and the system
goes directly (arrow) to the completely unfolded branch / = N = 20
(bottom). Hysteresis cycles under force-controlled conditions for a
N = 20 system. The lines correspond to simulations of the Langevin
equations (6) for the temperature 7 = 0.02 and different rates of
variation of the force, namely |dF/dt| =3 x 107, with k=2
(dot-dashed red), k =3 (dotted green), k =4 (solid blue), and
k =5 (dashed orange). The same rates of variation of the force
are considered for the very low temperature 7 = 2 x 1075, All the
curves are superimposed and thus they are plotted with the same
symbols (black dots). For the higher temperature, the area of the
hysteresis cycle decreases with the rate, approaching the behavior for
a quasistatic process.

system of two equations

L%

eq
4 -ty

eq eq
il =45 =L @7)

The force rips at L = £, are N first-order equilibrium phase
transitions because (i) the thermodynamic potential A% is
continuous at the transition, (ii) F' = (dA®1/dL)y has a finite
jump, from f; to ff < f, atthe Jth transition. In the top-left
panel of Fig. 3, we explicitly show f;” and f;". We have the

following picture: As observed in Fig. 1, the branches J — 1
and J coexist on a certain range of lengths. Inside this range,
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FIG. 3. (Color online) (top left) Equilibrium force rips in the F —
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L curve for a system with N = 8 domains. We use different colors

for the stable parts of the branches (solid black), metastable parts (dotted red), and the force rips (black arrows). The system follows the
solid black curve in a quasistatic pulling process, with a series of first-order transitions in the force (marked by the arrows). At the Jth
transition, the force changes from f;” [over the (J — 1)st branch] to ff (over the Jth branch). These forces f,i increase with the number of
unfolded units, as observed in AFM experiments with modular proteins, even though all the units are perfectly identical in the model. (top
right) Hysteresis cycle for a system composed of N = 8 modules. The dimensionless temperature 7 = 0.02, and the rate of variation of the
length is |[dL/dt| = 1.2 x 1073 (L > 0, solid blue; L < 0, dashed red). (bottom left) The same as in the top-right panel, but for a smaller rate
|dL/dt| = 1.2 x 107°. Aside from thermal fluctuations, the system almost sweeps the equilibrium curve. (bottom right) The same plot as in
the bottom-left panel, but for 7 = 2 x 107>, Thermal fluctuations are so small that the system approaches the T = 0 behavior, in which the

branches are swept up to the end of the metastability region.

Eq. (17) implies

0

CAGEn)
where we have used Eq. (16). At equal length values L, the
force is larger on the branch with a smaller number of folded
units, F;(L) < Fy_((L)V J. Therefore,Aeﬁ1 < A%, and then
the branch J — 1 is the stable one and J is metastable for
L < ¢,. The situation reverses for L > £, and there are not
more stability changes between these branches because A‘;q -
Aeftl decreases monotonically as a function of L, as given
by Eq. (28). Each intermediate branch (J/ =1,...,N — 1) is
thus stable between £; and £ 1, that is, between f;r and f;. |
(see top-left panel of Fig. 3). A sawtooth pattern arises in the
F — L curve, with N transitions between the N + 1 branches
at lengths £, ... ,¢N.

Similarly to the analysis for the force-controlled case, let
us investigate the behavior of the system when the length is
first increased and afterwards decreased with the same rate.
Depending on the rate and the value of the temperature, a
region of the metastable part of the branches is explored, and
the force rips do not take place at the equilibrium values £;.
In Fig. 3, apart from the equilibrium force-extension curve
(top-left panel), we plot three unfolding or refolding cycles for

=F;(L)—F;_1 (L) <0,
Y

(28)

an ideal eight-module protein. In the top-right panel and the
bottom-left panels, the temperature is 7 = 0.02 and the rates
are |[dL/dt| = 1.2 x 1072 and 1.2 x 1075, respectively. For
the smallest rate, the system basically sweeps the equilibrium
curve, aside from thermal fluctuations. Note that some of
the transitions are “blurred” because of the hopping between
the two possible forces at the transition length for this very
small rate. On the other hand, for the highest rate, some
hysteresis is present. Finally, in the bottom-right panel, the
temperature is much lower, 7 = 2 x 1073, which results in
the largest hysteresis cycle. This low-temperature dynamical
FEC is basically the same for the two rates considered
before, |dL/dt| = 1.2 x 1073 and [dL/dt| = 1.2 x 1079, so
only the latter is shown. The system sweeps each branch
up to its limit of (meta)stability, |¢/@o| = £1. Interestingly,
this low-temperature behavior resembles that of the chemical
potential in a recent investigation of the thermodynamic origin
of hysteresis in insertion batteries [29,30]. This indicates that
thermal fluctuations are less relevant for insertion batteries
than for modular proteins, despite the similarities in their
mathematical description. In our simulations, we have aver-
aged the force over a unit time interval to mimic the experi-
mental situation, in which the measuring devices have finite
resolution [48].
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FIG. 4. (Color online) (top panel) Zoom of the metastability
region for two chains with N = 8 (solid line) and N = 20 (dashed
line). The size of the rips decreases as the number of units N
increases, and it vanishes as N — oo. (bottom panel) Decrease of
the force rips with the number of units N. We plot the size of the rips
AF = f; — f; for the “central” transition with J = (M + 1)/2,
scaled with the factor N/ F, (circles). The limiting value 63 , which
represents the power law behavior given Eq. (29), is shown with
a solid line. It is observed that the system approaches rapidly this
asymptotic behavior, being very close to it for N 2 20.

In the unfolding process, the transitions occur at forces
or lengths that are displaced upward with respect to that of
the refolding process, as usually observed in the experiments
[1,8,10,14,49-52]. However, the unfolding or refolding curves
for the simple Landau-like quartic potential we are using are
much more symmetric than the experimental ones, reflecting
the symmetry of the potential. In the experiments with modular
proteins, the unfolding FEC exhibits large force rips similar to
ours, but the refolding FEC does not present a sawtooth pattern
[49-51]. Recently, however, several force rips have been
observed in the refolding of the NI6C protein, both in AFM
experiments and steered molecular dynamics simulations [52].
In Appendix A, we briefly analyze the predictions of our
theory for the more realistic potential introduced in Ref. [17].
In this case, the unfolding and refolding curves are strongly
asymmetric and closely resemble the experimental ones.

For both, equilibrium and dynamical FECs (the latter being
closer to the real experimental situation), (i) the size of the
force rips decrease with the number of units N, and (ii) f}E
increase with the number of unfolded units J for moderate
values of N. The equilibrium case is illustrated by the top panel
of Fig. 4. Interestingly, the increase with J of the rips forces has
been observed in modular proteins [3,7] (N ~ 10), whereas the
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rips forces are basically independent of J for nucleic acids
experiments (larger N) [1,14,22]. Also, it is worth noting
that it has recently been shown that the length-controlled
and the flow-controlled scenarios in polymer stretching are
thermodynamically equivalent [53].

Let us investigate in more detail the dependence of the force
rips size with the number of units N in the equilibrium case; see
left panels of Fig. 3. For large N, the free energy A over each
branch is extensive (<), whereas the difference of free ener-
gies over consecutive branches for a given value of the length
is independent of N. Therefore, the relative free energy change
between consecutive branches scales as N~!. Making use of
Eq. (27) and neglecting terms of order N ~3, we obtain [54]

+

— F, 343 2L

Ji =F f(wr—f), rp=———| . (29)
o N N LN—LO F.

Both f; and f; increase linearly with J, and so do r; and
Ly, [Ly is given by Eq. (22b)]. This is necessary to fulfill the
continuity condition for the free energy at the rips. On the other
hand, for very large N, the term proportional to r, is propor-
tional to N ~2 and, therefore, it is small compared with the first
term on the right-hand side of Eq. (29), which is proportional
to N~'. As a consequence, in this limit the force rips become
independent of J and symmetrical with respect to F,,

ff—F. 33
~ :': .
%o N

(30)

This is consistent with the behavior observed in nucleic acids
[1,14,22], in which the number of units is much larger than
that typical of modular proteins. Moreover, it shows that the
rip size in equilibrium follow a simple power law; it decays
as N~! for large N. We show the tendency to this power law
in the bottom panel of Fig. 4, in which we plot the size of the
rip AF = f; — ff for a specific value of J. We have chosen
J = (M + 1)/2, that is, the transition in which the number of
unfolded units become larger than the number of folded ones,
J increases from (M — 1)/2 to (M + 1)/2 (M odd). Note
that the fact that limy_, ff = F, implies that all the units
of the system unfold simultaneously at the critical force F,
in the infinite-size limit. This is the expected behavior, since
in the thermodynamic limit as N — oo force fluctuations
disappear and the collectives with controlled force and
controlled length should be utterly equivalent.

IV. CHAINS WITH ELASTIC INTERACTIONS BETWEEN
IDENTICAL MODULES

In this section, we investigate the effect of the harmonic
potential in Eq. (1) [proportional to (n; —7n j_l)z] on the
FECs. This term tends to minimize the number of “domain
walls” separating regions with folded units from regions with
unfolded units, as the domain walls give a positive contribution
to the free energy that is proportional to their number. This
elastic interaction is expected to be more relevant in experi-
ments in which the unfolding or refolding of units is basically
sequential, as in the case of unzipping and rezipping of DNA
and RNA hairpins. The harmonic potential does not completely
prevent the formation of “bubbles,” regions of unfolded units
inside a domain of folded ones, but adds a free energy cost
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thereto. The same elastic interaction is responsible for the
so-called depinning transition of wavefronts [35,55-57]. The
latter has been recently related to the experimentally observed
stepwise unfolding of modular proteins under force-clamp
conditions [28].

A. Equilibrium states

First, we consider the case in which there is no disorder, all
kj =k and §; = 0. The equilibrium extensions 1°d solve the
minimization problem in Egs. (11) or (16), that is,

) = F R = = 15) =0 F= 1N
€2y

These equations hold for all j, including the boundaries 1, N,
provided we introduce two fictitious extensions 1y, 7y 1, such
that

o =N, 7NN+l =T1N- (32)

Alternatively, the extensions njq can be regarded as the
stationary solutions of the evolution equations (6a) with
zero noise. Again, in the length-controlled case, F is a
Lagrange multiplier, calculated by imposing the constraint
L = L(n). The equilibrium extensions may be found by
solving numerically (31), but they can also be built analytically
by means of a perturbative expansion in powers of k, as we
now show.

1. Pinned wave fronts for k < 1

Substituting the expansion

oo
=Zn§an" j=1,...N (33)

into Eq. (31), we obtain
a'(njy) = F, (34a)
XM = M0+ 0510 — 2150, (34b)

2
XMy = M 0500 = 2050 = %Q(U;?l) , (340)
where

x;=da"(nf%), & =a"(nj)- (35)

For k = 0 we recover the results of the previous section,
Eq. (34a) is the same as Eq. (19). The number of “unfolded”
units J having extensions n® determines the equilibrium val-
ues of Helmholtz free energy A, length L and Gibbs free energy
G of the considered configuration, as given by Egs. (22a),
(22b), and (25), respectively. There are N!/[JI(N — J)!]
configurations yielding the same values of L, A, and G for
k = 0, a degeneracy that is partially broken at order k by the
elastic interaction. If three consecutive units (j — 1,7,7 + 1)
are in the same potential well (either folded or unfolded) for
k =0, then 77;?1 = 0 and the stationary extension of the jth
unit does not vary. Therefore, only the modules at the domain
walls separating domains where n; = ‘" from others where
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20 0 60 80 100
i

FIG. 5. (Color online) Stable stationary wavefront with increas-
ing profile from " to u® (corresponding to n" and n®, respec-
tively) pinned at a particular point j = J of an infinitely long chain,
for k = 1.615. The specular reflection of this pinned wave with
respect to the center of the chain j = N/2 gives a pinned wave
with decreasing profile from n® to n".

n; = n'® change their extension. At the domain walls,

w |1+ 00
njq = 3 e ,,7(1) 2 (36)
77( ) —k e + O(k?).

The length of the folded (unfolded) unit is slightly increased
(decreased), as observed in Fig. 5 for k = 1.615. Therein, the
second-order corrections in k are already very small. Thus, in
the remainder of this section, we neglect O(k?) terms; that is,
we write all the expressions up to the linear corrections in k.
The equilibrium length and free energy for J unfolded units
and M domain walls are

L3y =N =D +Jn®

Tk (X(3) _ X(l))(ﬂ(3) _ 77(1))
xDx® ’

(37a)

M
Ge_](.lM = (N — ])g(l) + Jg(3) +k7(77(3) _ ’7(1))2- (37b)

Thus, each domain wall contributes k(n® — T)(l))()((Ir1 -
x® 1 to the length and k(n® — n")2/2 to the free energy.
An equivalent Ising model may be introduced to describe these
equilibrium configurations; see Appendix B. The configura-
tions with the fewest number of domain walls minimize the
free energy G. For the boundary conditions (32), the minimal
configurations have a single domain wall for a given value of
the number of unfolded units J. The extension njq increases
with j from n" to n®, slowly across the sites inside either
the folded and unfolded domains, and suddenly at the domain
wall; see Fig. 5.

2. Stability analysis

The pinned wavefront solutions in Fig. 5 are stable in a
certain range of forces, as proven in the literature [35,55-57].
Here, we investigate the stability for small k£ by looking at the
second variation of the relevant thermodynamic potential. We
have

N+l

Z(sm 8n;-1)°,

(38)

2G=8%A=~ Za”
j=1

)@n;)* +

where 8n; = n; — n}’. Note that the second variations of
A and G are identical because the term proportional to F
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FIG. 6. (Color online) FECs for a system with N = 8 modules.
(top) Stable stationary branches for k = 0.055, quite similar to those
for k =0 (see Fig. 1). (bottom) Stable stationary branches, each
corresponding to a wavefront pinned at a different site j = J, J =
1,...,8, for k = 0.55. The completely folded and unfolded branches
are basically unchanged, but the size of the intermediate branches is
considerably reduced. Here L refers to the physical length (24b) that
vanishes at F' = 0.

does not contribute to §°G. It must be stressed that the
nondiagonal terms of the symmetric matrix corresponding to
this quadratic form are of order k; namely, 3°A/dn o+l =
32G/0n;0nj+1 = —k, and they have not to be taken into
account in our stability analysis.

Let us consider a domain of folded (unfolded) units, whose
lengths are " (n®) for the ideal chain with k = 0. Inside a
domain of either folded or unfolded units, there is an additional
positive contribution 2k to the diagonal terms 9%A/ 87)?, so that
stability is reinforced. Instability may arise at the domain walls,
where

9%A
a2
an

(D1 — 1)

=xD 4k [2— | o } i=13. (39
Xl
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FIG. 7. (Color online) Second derivative of the potential for the
folded unit at the domain wall up to order k, Eq. (39), as a function
of the normalized force ¢/¢y. It is clearly seen that the stable part
of the branch, with a” > 0, decreases with k. For k = 0.5 the size of
the branch is reduced by 20%, approximately, from its maximum size
(k = 0), consistently with the behavior observed in Fig. 6.

Consistently with the notation introduced in Eq. (35), ¢® =
a”"(n®) =248n®, i =1,3. Then ¢ <0 < ¢® because
nY < 0 < n®. The first and last branch of the FEC correspond
to all-folded and to all-unfolded modules, respectively. Their
configurations do not involve domain walls and therefore
9°A/dn; = x© for them, as in Eq. (39) with k = 0. These
branches are stable until x® = 0 at the extrema of a’(%). In
contrast to this, the other FEC branches have configurations
with one domain wall and the linear corrections in Eq. (39)
cause 9%A/ 877? to vanish for intermediate elongations between
the extrema of a’(n®9). As the limit of stability of the FEC
branches is given by the condition 324/ 8713 = 0, this reduces
their size. This reduction in the branch size with k is clearly
observed in Fig. 6. We further illustrate this result in Fig. 7,
where we plot the second derivatives of the onsite potential at
the domain wall, both for k¥ = 0 and with the linear correction
in k (only for the folded unit at the domain wall, the curves for
the unfolded unit are just the symmetrical ones with respect to
F.=1).

B. Deterministic dynamics

As the interacting chain is more complex than the ideal one,
we start by neglecting thermal noise. This corresponds to the
so-called deterministic (or macroscopic) approximation of the
Langevin equation [58]. Alternatively, this can be presented
as solving the dynamical equations (6) at T = 0. In a later
section, we consider the changes introduced by a finite value of
the temperature. Borrowing the usual terminology in classical
mechanics, we refer to slow processes at T = 0 as adiabatic, as
they can no longer be regarded quasistatic because ergodicity
is broken.

In Fig. 8, we plot two such processes. In the first one
(top panel) we increase the length adiabatically in a stepwise
manner, at each value of the length the system relaxes for a
time At, after which the length is increased in AL. We have
chosen AL = 0.2 and At = 300, for k = 0.5. As compared
to the equilibrium branches in Fig. 6, we observe that the Jth
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FIG. 8. (Color online) (top) FEC obtained by adiabatically in-
creasing the length of the system. The local maxima of the branches
are close to the corresponding upper ends of the equilibrium branches
in Fig. 6(b). (bottom) Hysteresis loop obtained by adiabatic force
sweeping the force-extension diagram of a chain of identical units at
zero temperature. In both cases, k = 0.55. L is the physical length
that vanishes at F = 0, defined in Eq. (24b).

branch is swept as long it is locally stable; that is, until we
reach the maximum value of the force F; n,« at which 824 in
Eq. (38) is no longer positive definite. Then the completely
unfolded branch J = 0 is swept to a higher force than all the
intermediate branches: Its size is not reduced with respect to
the k = O case and Fy max > Frmax. J = 1,...,N — 1, as dis-
cussed in Sec. IV A 2. This means that the portion of the J = 1
branch that is swept is smaller than all of the other intermediate
branches (J # 0,N) and there appears a “bump” in the FEC
at the transition point between the J = 0 and J = 1 branches.
This is clearly observed in the top panel of Fig. 8 around the
length corresponding to the transition from the J = 0 to the
J = I branch, L =~ 2.4. At this length, the corresponding force
over the J = 1 branch is much closer to the limit of stability
of the intermediate branches than (for instance) the force over
the J = 3 branch at the transition length between the J = 2
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and J = 3 branches (L =~ 3.7). In the force-controlled case
(bottom panel), we first increase the force adiabatically from
F = 0. The system moves over the branch of folded units,
J = 0, until it reaches the maximum thereof, Fy n,x, at which
the length jumps by AL = N[n®(Fo.max) — 1V(Fo.max)] to
the completely unfolded branch where 7; = n® (Fpax) for all
j. If the force is now adiabatically decreased, the system
moves over the branch of unfolded units, J = N, until the
force reaches its minimum possible value and the system
jumps back to the completely folded branch. Thus, for both
length-controlled and force-controlled conditions, the largest
possible hysteresis cycles appear, similar to the ones obtained
in storage systems; see Fig. 5 of Ref. [29] or Fig. 7 of Ref. [30].

C. Influence of quenched disorder

The biomolecules that are unfolded and refolded in the
actual experiments, nucleic acids and proteins, are actually
heteropolymers, as the units comprising a chain are not
perfectly identical. This has led to investigate the effect of their
intrinsic quenched disorder (or, equivalently, their intrinsic in-
homogeneity) on their behavior in different physical situations
[59-61]. In the present context, their onsite double-well poten-
tials a(n ), their friction coefficients y;, and the spring constant
between modules k; may depend on j. These considerations
are much more important for DNA or RNA hairpins than for
modular proteins. In the latter, the units in our mesoscopic pic-
ture are the modules, which have been artificially engineered
to be as similar to each other as possible. In the equivalent
experiment to find the current-voltage curves of semiconductor
superlattices, quenched disorder arises from fluctuations of
the doping density at different wells [32,33]. Including the
natural variation in the free energy parameters amounts to
adding quenched noises to them. To be concrete, we consider
a potential whose strength depends on a random number §;,

d'(nj;8;) = (1+8;a'(n;,8; = 0), (40)

which are independent and identically distributed (i.i.d.)
random variables uniformly distributed on an interval [, 8]
B <.

Quenched disorder modifies both the stability of the FEC
and the dynamics of the chain. When we depict the solutions
corresponding to a wavefront pinned at particular locations as
in Fig. 6, the presence of disorder moves the solution branches
up and down and affects the dynamical behavior of the system.
We show a hysteresis cycle under length-controlled conditions
in the top panel of Fig. 9. We have used a large disorder (8 =
0.5) which produces large variations in the length and height
of the branches. Under force-controlled conditions, up- and
downsweeping the FEC, we obtain the much wider hysteresis
cycles of the bottom panel of Fig. 9. Since the disorder changes
the length and size of the force-extension branches, additional
steps are seen in the hysteresis cycles, as compared to the case
of identical units.

D. Influence of thermal noise

In the last section, we consider the effect of quenched
disorder, but we still have zero temperature. Thermal noise
allows random jumps between stable branches, provided the
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FIG. 9. (Color online) FEC for a DNA hairpin as in Fig. 5 but
with N = 40 and disorder as in Eq. (40) (strength of the potential
with 8 = 0.5 and k = 1). (top) Hysteresis under length-controlled
conditions. The upper (lower) curve corresponds to adiabatically
increasing (decreasing) length, with a rate |dL/dt| = 1.2 x 1073
or smaller. (bottom) Hysteresis under force-controlled conditions.
Similarly, the upper (lower) curve corresponds to adiabatically
increasing (decreasing) force, with a rate |dF/dt| =3 x 1073 or
smaller. In the plots, L is the physical length introduced in Eq. (24b).

system has sufficient waiting time to escape the corresponding
basins of attraction. As the control parameter (force or length)
changes more slowly, the behavior of the system approaches
the corresponding equilibrium statistical mechanics curve.
Let us first consider length-controlled simulations. For an
ideal biomolecule with identical modules, at 7" = 0 adiabatic
sweeping the FEC produces hysteresis cycles similar to the
ones shown in Fig. 3 for a very low temperature. For finite
temperature, (i) the size of the hysteresis cycles depends on
the sweeping rate and becomes smaller as the rate decreases;
(ii) there appear random jumps between stable branches that
correspond to the same extension. Both effects have been
observed in experiments with DNA hairpins, for which noise
is much more important than in the case of modular proteins
[8,10,13,14]. Also, some branches are not swept and the
distinction between different branches is blurred, as shown
in the top panel of Fig. 10. For a similar situation in semi-
conductor superlattices, see Fig. 2 in Ref. [33], which shows
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FIG. 10. (Color online) Same as in Fig. 9 but with additional
white noise of temperature 7 = 0.02. Thermal noise may suppress
and blur solution branches. In both panels, the dashed curves
correspond to the same rate as in Fig. 9, while in the solid ones
the rate has been reduced by a factor 1073, Again, L is the physical
length introduced in Eq. (24b).

a current-voltage curve for a sample comprising 40 periods
of 9-nm-wide GaAs wells and 4-nm-wide AlAs barriers. It is
also interesting to note that there is always some “intrinsic”
hysteresis in the last (first) rip of the FEC, even for the lowest
rate for which a perfect reversible behavior was obtained in the
ideal case. This behavior has been observed experimentally
in the unzipping and rezipping of DNA; see Fig. 1C and
Fig. S4 of Ref. [22], and also in superlattices, see Fig. 1 of
Ref. [32] and Fig. 1 of Ref. [36]. As explained in Sec. IV A 2,
the FEC branch size is reduced in the nonideal case (k # 0)
except for the first and last branches whose configurations
do not possess a domain wall. Then the nonzero interaction
between neighboring modules makes the metastable regions in
the first (completely folded) and the last (completely unfolded)
branches wider than the rest.

In the force-controlled simulations, the effect of a finite
temperature is shown in the bottom panel of Fig. 10. We
observe a behavior similar to that in Fig. 2 for the ideal chain,
and also to the one found in other models [27,47]. The physical
picture is completely consistent with the experimental findings
in nucleic acids [14].
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V. FINAL REMARKS

We have proposed a biomolecule model that includes an
onsite quartic double-well potential and an elastic harmonic
interaction among its modules in the free energy thereof.
Despite its simplicity, it captures the main features of FECs
in real biomolecules while allowing us to identify the main
physical mechanisms and to keep a mathematically rigorous
approach. This can be done in equilibrium but also for the
dynamics, for which we have written the relevant Langevin
(or Fokker—Planck) equation. It should be stressed that the
Fokker—Planck equation for the length-controlled case is not
trivial, since the force F appearing in the Langevin equation
is an unknown that must be calculated by imposing the length
constraint. The relevant thermodynamic potential, Gibbs like
(Helmbholtz like) for the force-controlled (length-controlled)
case, has been shown to be the stationary solution of the
Fokker—Planck equation.

Equilibrium FECs show multistability in a certain range
of forces: There are multiple FEC branches corresponding to
different number of folded or unfolded units. Under force-
controlled conditions, there is an equilibrium phase transition
between the all-modules-folded to the all-modules-unfolded,
the lengths across the jump being determined by continuity of
force and Gibbs free energy. Under length-controlled condi-
tions, there appears a sawtooth FEC consisting of a number of
branches with force jumps between them in which the number
of unfolded modules differs by one. The forces across the jump
are determined by continuity of length and Helmholtz free
energy. In experiments, the unfolding or refolding transitions
take place neither at a perfectly constant force nor at a perfectly
constant length as seen in Figs. 2 and 3, because of the finite
resolution of the the devices controlling the force or the length.
Thus, the controlled quantity is not exactly equal to the desired
value and also changes at the transition.

Dynamical FECs are obtained when the control parameter
(either the force F or the length L) is changed at a finite rate:
Some hysteresis is present and the unfolding (refolding) forces
increase (decrease) with the rate, as observed in experiments
[7,8,10,13,14,25,62]. A crucial role is played by the time that
the system needs to surpass the energy barrier regulating the
transitions from the folded to the unfolded state and viceversa.
The key point is how this Arrhenius timescale compares to that
defined by the variation of the force or length: It is only when
the characteristic time defined by the variation of the force or
length is longer than the Arrhenius time that the equilibrium
FECs are recovered, because the force or length program can
then be considered quasistatic and there is no hysteresis. We
have shown in several cases throughout the paper that this fea-
ture implies that a decrease in the temperature (while keeping
the rate of variation of the force or length) leads to a much wider
hysteresis cycle. In this cycle, the system typically sweeps the
whole metastability region (T = 0 or deterministic case).

Our results show that, in these elasticity experiments,
biomolecules display what may be called a “metastable equi-
librium behavior.” They follow stationary FEC branches that
can be obtained out of the equilibrium solution of the Fokker—
Planck equation, and dynamic out-of-equilibrium excursions
do not depart too much from them. The hysteresis cycles,
completely similar to those observed in real experiments, stem
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from equilibrium multistability: At the highest loading rates,
the system is not able to reach the absolute minimum but
sweeps a certain part of the metastable region (the narrower the
smaller the rate is) of the equilibrium free energy landscape.
There are techniques to obtain single-molecule free energy
differences from time-dependent driving about hysteresis
cycles [8,10,13,25]. In addition, the complete single-molecule
free energy landscape can be obtained using model-dependent
algorithms [26]. Although there is some evidence of glass-
like behavior in force-clamp experiments with proteins [63],
hysteresis in these unfolding and refolding experiments seems
to be quite different from the more complex out-of-equilibrium
hysteresis of glassy systems in cooling-heating cycles. When
cooled down to low temperatures, glassy materials depart from
the equilibrium curve and end up in a far from equilibrium
state; when reheated, they return to equilibrium approaching a
normal curve, which typically overshoots the equilibrium one
[64-68].

We have also discussed in detail the role of the interaction
between neighboring units of the chain. The main effect
of this interaction is the reduction of the width of the
metastability region. When the elastic interaction is absent, all
the configurations with the same number J of unfolded units
have the same free energy. This “entropic term” is reduced
when the elastic interaction is taken into account, since the free
energy also depends on the number of domain walls separating
regions of unfolded and folded units and the configuration
with only one domain wall (pinned wavefront) is favored.
From a physical point of view, this decrease is responsible
for the reduction of force fluctuations, which are at the root
of the width of the metastability region. Thus, we expect that
the same behavior will be present for more realistic interaction
potential between modules. In real biomolecules for which
their onsite potentials and number of modules are similar, a
smaller size of the rips may be linked to a stronger interaction
between the neighboring units.

The relevance of the interaction between units is also
clearly shown by the fact that the metastability regions in
the first (completely folded) and last (completely unfolded)
branches are wider than those of the intermediate ones. This
leads to the existence of some “intrinsic” hysteresis in the
first or last force rips of the FEC under length-controlled
conditions, even for very low pulling rates, close to the
quasistatic limit. Interestingly, this effect has been reported in
experiments with DNA molecules, see for instance the FECs
in Fig. 1C (rezipping) and Fig. S4 (unzipping) of Ref. [22].
In the unzipping (rezipping) experiment, the physical reason
is the “extra” free energy cost k(n® — n")?/2 for creating
(removing) the domain wall separating the folded and unfolded
regions of the molecule. Thus, the presence or absence of
intrinsic hysteresis may be used to discriminate the importance
of the coupling between units in biomolecules or in other
physical systems. For instance, compare Fig. 1 of Ref. [36] (or
of Ref. [32]) to Fig. 2 of Ref. [33] for the current-voltage
curve obtained in the analogous experimental situation in
semiconductor superlattices.

Many of the main characteristic behaviors observed here:
multistability (multiple branches for a certain region of
parameters like those in Fig. 1), the associated sawtooth
FECs for length-controlled experiments, hysteresis effects
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when the control parameters are changed at a finite rate,
etc. also occur in quite different physical situations, such as
many-particle storage systems [29-31] and weakly coupled
semiconductor superlattices [32-36]. This analogy stems from
the following common feature: all these systems comprise
a number of similar bistable units whose individual states
may be determined by a long-range interaction introduced
by a global constraint (total charge [29-31], fixed voltage
bias [32-36]). Of course, fine-detail differences appear in
the observed behavior in each physical situation, depending
on the relevance of nonideal effects, such as interactions
among modules, quenched disorder, or the thermal noise
considered here. For instance, the maximum size hysteresis
cycles, basically identical to the deterministic case, have been
observed in Refs. [29,30] for storage systems. This seems to
indicate a lesser relevance of fluctuations in the latter.

Voltage-biased semiconductor superlattices are definitely
out-of-equilibrium systems: electrons are continuously in-
jected and extracted from contacts, and their behaviors in-
clude time-periodic and chaotic oscillations besides hysteresis
cycles [34]. Nonlinear charge transport in superlattices cannot
be described with the free-energy scaffolding available for
biomolecules. Instead, discrete drift-diffusion models based
on sequential tunneling between neighboring quantum wells
are used [34,35]. Nevertheless, the present paper shows that
the methodology developed for these discrete systems can be
adapted to describe FECs of biomolecules. As experiments
with semiconductor superlattices are much more control-
lable than those with biomolecules, it would be interesting
to see what the interpretation of measurements given in
Refs. [8,10,13,25,26] produces in the superlattice case.

According to the above discussion, our main conclusions
are quite general. They are applicable not only to biomolecules
but to any physical system composed of repeated similar
bistable units. Of course, we need renaming appropriately
variables for each relevant physical situation. For instance,
force-extension curves must be replaced by chemical potential-
charge ones in storage systems [29,30] or by current-voltage
curves in semiconductor superlattices [34,35]. Depending on
the system, some of the necessary experiments are not yet
available. For instance, there are no precise current-controlled
experiments on semiconductor superlattices. Thus our inves-
tigations open new interesting perspectives for experimental
research in these fields.
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APPENDIX A: ASYMMETRIC REALISTIC POTENTIAL

Here we consider the effects of using a more realistic free
energy for the modules. This energy was first considered by
Berkovich, Garcia-Manyes, Klafter, Urbakh, and Fernandez
(BGMKUF) to model the unfolding of single-unit proteins,
such as 127 or ubiquitin, observed in AFM experiments [17].
Very recently, we employed it to investigate stepwise unfolding
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of polyproteins under force-clamp conditions [28]. At zero
force, the BGMKUF potential for one unit is

a(m) = Up[(1 — e 2P—RI/Rey2 _ 1
kBTLC 1 n 2772

4P —1-—+=]. (Al

+ 4P (1 - L L. + L (Al)

c

This free energy for each unit is the sum of an enthalpic contri-
bution given by a Morse potential and an entropic contribution
given by a WLC potential [17,18]. Under application of force,
the energy a(n) — Fn exhibits two minima separated by a
force-generated barrier [17]. Manifestations of the sensitive
dependance of unfolding and refolding on the barrier created
by the applied force have been experimentally measured in
Refs. [69,70]. Here we use the parameter values of Ref. [17]
(slightly different from those in Ref. [28]), P = 0.4 nm (persis-
tence length), L, = 30 nm (contour length), T = 300 K, Uy =
100 pN nm (~24kpT), R. =4 nm, b = 2. Force and
extensions are measured in units of [F]= 100 pN and
L. =30 nm, respectively. We define dimensionless vari-
ables, u = Uo/(L:J[FI), p=2bLc/Re; p=Rc/Le, A=
kpTL./(4PUy), thereby obtaining the following dimension-
less potential:

a(n) = M{[l —e PP

1 2
+Al——-1—n+2py .
I=n

As repeatedly done throughout the paper, we keep the same
notation for dimensionless and dimensional potentials. The
dimensionless parameter values in Eq. (A2) are u = 0.0333,
B =30, p =0.133, and A = 0.776. On the other hand, the
friction coefficient y, given by the Einstein relation D =
kgT/y, sets the time unit [t] =yL./[F]. The diffusion
coefficient for tethered proteins in solution D has a typical
value D = 1500 nm?/s [17], so that y = 0.00278 pNnm~! s
and [f] = 0.833 ms.

For this choice of parameters, there is metastability for
forces in the range F,, < F < Fy, with F,, =0.704 pN
(7.04 pN) and F); = 0.527 pN (52.7 pN). We show the
equilibrium branches for two systems, with N =8 and N =
15, respectively, in Fig. 11. Analogously to what we observed
for the simple Landau-like free energy in Fig. 1, the branches
become denser as the number of units increase. On the other
hand, there is no up-down nor left-right symmetry: The
branches are no longer symmetric with respect to either the
critical force F, = 15.6 pN, at which the folded and unfolded
minima are equally deep, or the central branch with half of the
units unfolded, J = N /2. Here, and throughout this section,
we have considered the “physical” length corresponding to
the extension of the molecule with respect to its equilibrium
length for zero force.

An unfolding-refolding cycle is shown in Fig. 12, in which
the length L is increased at a constant rate. We show the FEC
corresponding to a typical AFM rate, namely 50 nm/s. In
dimensionless variables, this means that L = 0.0014, because
the unit of velocity is L./[t] = 3.6 X 10* nm/s. As for the
Landau-like potential considered in the text, the force has been
averaged over a certain time interval At = 1.2 (corresponding

(A2)
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FIG. 11. (Color online) FECs for the BGMKUF potential, with
N =8 (solid red) and N = 15 (dashed blue). There are N + 1
branches in the metastability region F,, < F < F, with the number
of unfolded units J increasing from left to right. The first (J = 0)
and last (J = N) branches are independent of N, as in Fig. 1. Note
the asymmetry of the branches with respect to the critical force F,
(dot-dashed line).

to 1 ms) to mimic the finite resolution of the measuring
devices in real experiments. Due to the asymmetry of the
equilibrium branches, the unfolding and refolding curves are
quite different, as seen in experiments. A clear sawtooth pattern
is present in the unfolding curve: The molecule clearly sweeps
a certain part of each equilibrium branch until it reaches a
length at which it jumps to the neighboring branch. Similarly
to experimental observations, this jump is associated with a
decrease in the force (force rip) [3,5,7,37]. On the other hand,
in the refolding process, the curve is much smoother and it
is much more difficult to identify the intermediate branch
that the system is sweeping, at least for the first stage of
the relaxation curve (here, for L 2 0.2). This is analogous
to the usual experimental behavior in the refolding process

0.40
0.35 "1
0.30 ¢
 0.25]
0.20
0.15"
0.10
0.05¢

FIG. 12. (Color online) Unfolding-refolding cycle for a modular
protein with eight units with free energies given by the BGMKUF po-
tential. The dot-dashed lines correspond to the equilibrium branches
of the FEC; see Fig. 11. There are sharp force rips in the unfolding
process, each corresponding to the unfolding of one of the units
(jumps between neighboring branches). In the refolding process, there
are no sharp peaks until the length has almost completely relaxed,
L <02
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FIG. 13. (Color online) Unfolding-refolding cycle for a modular
protein with eight units with free energies given by the BGMKUF
potential and a finite value of the cantilever stiffness. The force F
is plotted against the end-to-end distance of the molecule L(n). The
equilibrium branches of the FEC (see Fig. 11) are the dot-dashed
lines. Both the unfolding and refolding curves are very similar to
those in Fig. 12, except for the force rips in the unfolding process
not being perfectly vertical as a consequence of the imperfect length
control.

[49-51]. However, there appear clearer traces of force peaks
in the refolding FEC when the molecule has partially relaxed
(L < 0.2). This behavior resembles the FECs obtained for the
NI6C protein in Ref. [52]; see Figs. 1C, 1D, and S5 therein.

Although the previous unfolding-refolding cycle is very
similar to those observed in experiments, it may be argued that
our ideal length-control device may have some impact on the
observed behavior. Therefore, we consider now a more realistic
length-control device, such as that depicted in Fig. 1 of Ref. [3],
which leads to the length-control potential term in Eq. (5),
where yi. is the (finite) spring constant of the cantilever. A
typical value of the spring constant for an AFM experiment is
6 pN/nm, which gives a dimensionless value x;. = 1.8. First, it
is important to stress that the equilibrium branches of the FEC
are not changed by the finite stiffness of the length-controlling
device. The equilibrium extensions n; are given by Eq. (19),
a'(n;) = F,butnow F = —xc[L(y) — L] is the force exerted
by the finite-stiffness control device. Metastability appears in
the same range of applied forces as in the case of ideal length
control; the only difference is that the end-to-end distance L(n)
does not equal L, instead, L(y) = L — F/yic < L. In other
words, the tip of the cantilever has an equilibrium deflection
Ax = F /& for each considered force F.

Repeating the unfolding-refolding process in Fig. 12, with
the only difference of the finite value of the stiffness, we have
obtained the results shown in Fig. 13. The unfolding-refolding
cycles in both figures are very similar, although they would
not match perfectly when superimposed. To obtain complete
agreement with the perfect length control situation shown in
Fig. 12, we should have employed a larger value of the spring
constant, around 150 pN/nm or x;c = 45. In particular, the
refolding curve is again much smoother than the unfolding
sawtooth pattern found with either the quartic or the BGMKUF
potential, but with some minor upward traces for L < 0.2.
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APPENDIX B: EQUIVALENT ISING MODEL
FOR THE FREE ENERGY MINIMA

We can write down the length and Gibbs free energy (37)
in an Ising-like manner. Let us assign a spin-down variable to
the folded units, so that o; = —1 if n;% =", and a spin-up
o; = +1 to the unfolded ones, with 77{, = 7. The number
of unfolded units and domain walls are

ARy e
4 oo
I=>" Lom=)Y —212 B
j=1 j=1

2 2

Except for an additive constant, the free energy (37b) becomes

N-1

N
G0)=-H)Y 0, -8 001+ 0K,
j=1

j= j=1

(B2)

an Ising system with an external field H and ferromagnetic
nearest-neighbor coupling & given by

3) _ oM k 3) _ (D72
g8 g == [n n']
2 4

> 0. (B3)
Interestingly, a similar expression for the free energy was
proposed in Ref. [71]. The sign of H determines which
minimum of the Gibbs free energy g(n) is deepest, n" or
n¥; at the critical force F, =1, that is, H = 0, they are
equally deep. The ferromagnetic coupling E o k favors the
configurations with domains of parallel spins and thus a
minimal number of domain walls for a given number of
unfolded units J [72]. Then M = 0, when all the units are
either folded or unfolded, or M = 1, when there are both folded
and unfolded units, produce the minimum free energy (B2).
Given Eq. (B1), the length of the system at equilibrium is

N
L) = 3(77(1) +7P) + (N - DA

n® — M N N-I
+TZO’j—AZO’jO’j+1, (B4)
j=1 j=1
where
ky® — 5O
A = M (B5)

ZX(I)X(3)
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The parameter A can be positive or negative. For the simple
quartic potential we are considering, A = 0 at the critical force
F.=1,A >0for F < F,,and A < Ofor F > F,.

We have not considered here the quadratic corrections,
proportional to k2, which only affect sites at the domain walls
and their nearest neighbors. In this equivalent Ising description,
they (i) change the first-order coupling constants = and A, and
(ii) introduce a second-nearest-neighbor interaction. Similarly,
by taking into account higher-order corrections, up to order k",
we get an Ising model with longer-ranged interactions up to
the nth-nearest neighbors.

APPENDIX C: LYAPUNOYV FUNCTION FOR THE
DETERMINISTIC DYNAMICS IN THE
LENGTH-CONTROLLED CASE

Unlike the Gibbs free energy G in the force-controlled case,
the Helmholtz free energy A, as given by Eq. (1), is no longer
a Lyapunov function of the zero-noise dynamics under length-
controlled conditions with a known length dependence L(¢).
However,

ANy
i 2
A =A@ + Z [E(n,ﬂ —n))

j=1

N .
_nj (Za’(m) n d_L> _a()) —]\;’lja (m)] 1)

is a Lyapunov function in this case. In fact, the governing
nondimensional equations can be written as

dn; 0 -
=== A,
dt 8T}j

after eliminating F' by means of Eq. (7a). Then,

d - Nra . TP
EA(")Z_;[B_WA(")} <0.

(C2)

Also,

A(n) > Nmin[a(u)_Fu_%W,(”)}

for
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