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Abstract. This paper presents a way of implementing a Model Based Predictive
Controller (MBPC) for mobile robot navigation when unexpected static obstacles are
present in the robot environment. The method uses a non-linear model of mobile
robot kinematics and thus allows an accurate prediction of the future trajectories.
An ultrasonic ranging system has been used for obstacle detection. A Multilayer
Perceptron is used to implement the MBPC, allowing real-time and also eliminating
the need for data sensor high level processing. The perceptron has been trained to
reproduce the MBPC behaviour in a supervised manner. Experimental results obtained
when applying the neural network controller to a mobile robot are given in the paper.
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1. INTRODUCTION

One of the main problems in the development of au-
tonomous mobile robots is the problem of path track-
ing in an environment with unexpected obstacles. Model
Based Predictive Control (MBPC) is a suitable tech-
nique for applying to this problem (Papageorgiou and
Steinkogler, 1993) because the objetive of MBPC is to
drive future system outputs (in this case robot position
and heading) close to the desired values in some way,
bearing in mind the control activity required to do so.
This is accomplished by minimizing a quadratic func-
tion that measures the tracking errors and the control
effort over the costing and control horizons. If the plant
is linear, the signals are not bounded and the objetive
function is a quadratic one, then the MBPC requires little
computation.

! This work has been partially funded by CICYT.

If the control signal is constrained, the system model
is nonlinear and the objetive function is not quadratic
(as in the case of mobile robot path tracking with un-
expected obstacles), the MBPC results in a much more
complex and time consuming problem. This paper shows
how an Artificial Neural Network can be used to solve
the problems mentioned above.

2. MODEL BASED PREDICTIVE CONTROL
NAVIGATION

2.1 MBPC strategy

The objetive of predictive control is to obtain a future
control action sequence (U(t),U(t + 1|¢t),...,U(t + Ny —
1[¢)) in such a way that the future predicted outputs
f/(t + ¢|t) will be as close as possible to the desired ref-
erences Yy(t + 1) over the prediction horizon. This is
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accomplished by the minimization of a cost function J
with respect to the control variables. Often, the cost
function J is the sum of the squared future errors in
reference tracking, é(t + i|t) = Y (¢t + i|t) — Ya(t + 9),
predicted over a prediction horizon N = Ny, — N, and
also of the sum of the squared control actions foreseen
for the future, U(t + i|t), over a control horizon N,

N2
J(N1, Np, Ny) = E{ Y p())[Y (¢ +ilt) — Ya(t + )]
=Ny

N,
+ Y MDAV +i - 1))

t=1

The future system outputs, }A’(t+i|t) for i = Ny,...,Na,
are predicted from a model of the process, from past in-
puts and outputs, and from the control actions foreseen
for the future, U(t+i|t) for i=0,...,N, — 1, which are the
unknown variables. In this way, J can be expressed as
a function of only the future control actions. It is usual
to suppose that the control actions are constant after a
predefined time instant.

After this sequence is obtained, a receding horizon ap-
proach is considered. This consists of only applying the
first calculated control action U(t). This process is re-
peated at every sampling interval in such a way that the
calculated open loop control law is applied in a closed
loop manner.

The problem raised in this paper is that of driving a
mobile robot to follow a previously calculated desired
path avoiding unexpected static obstacles.

The cost function used here is:

N2
J(Ny, Noy Ny) = D[Vt +ilt) - Ya(t +9)]° +
e =N
> o M([Awe(t +i— D] + [Aw(t +i - D)
=1 .
+D Dfwpt+i—1) —w(t+i—1)?
oy

(4
2 [distf(Y(Hut),Foj)P)

i=1 i=N

where Y (¢t +i|t) = {£(t +1|t), §(t +i|t)} is an i-step pre-
diction of the robot position made at instant ¢, w, and w;
are the right and left angular velocities of the two driv-
ing wheels, which are the control variables, and Ay, A2
and ¢ are constant weighting factors. The first term in
J penalizes the position error; the second term penalizes

the acceleration and the third penalizes the robot angu-
lar velocity. These last two terms ensure smooth robot
guidance. The last term penalizes the proximity between
the robot and the obstacles, which are detected with an
ultrasound proximity system placed on board the mobile
robot. This is a potential function term, where dist;(-)
is a measure in t + i of the distance between the robot
and a fixed obstacle F'O;, which is considered to have a
poligonal geometry in the plane. A more precise descrip-
tion of this function is presented below. A block diagram
of the system is shown in figure 1.
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Fig. 1. The predictive controller scheme.

Notice that the minimum output horizon N; should be
set to a value greater than the dead time d of the sys-
tem, since the output for smaller time horizons cannot
be affected by the first action (wr(t),w;(t)). In the fol-
lowing N; and N, will be considered to be Ny =d +1
and N, = N, and N, will be given a value of N, — d.
In this formulation it is assumed that after the control
horizon N,, further increments in control are zero. So
the controller has only one free parameter N.

The predictive problem, formulated under these circum-
stances, has to be solved with numerical optimization
methods, which are not acceptable for real time con-
trol. The controller proposed in this work will be im-
plemented using a neural network scheme, which allows
real time.

2.2 Prediction Model

For an MBPC formulation, a model of the mobile plat-
form is needed to predict the future positions and head-
ings of the robot. As a testbed for the experiments, a
TRC LABMATE mobile robot has been used (figure 2).

A model of the LABMATE mobile robot, which takes
into account the dead time produced by communications
with the host processor, was obtained by using kine-
matic equations and identification tests. The following
kinematic model (which corresponds to a differential-
drive vehicle) is used for computing the predictions:
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Fig. 2. The LABMATE mobile robot.

8(k + 1) = 6(k) + AT
ok +1) = o(k) + —;(sin(0(k) + AT) — sin(6(k)))

y(k +1) = y(k) - ;(cos(O(k) + AT) — cos(6(k)))

wr(k = 1) —wi(k - 1)

A=R S
V:me—n;mw—n

where z,y, 0 are the position and heading of the robot in
a fixed reference frame (see figure 3), T is the sample in-
terval and W is the half-distance between wheels, which
value has been estimated to be 168 mm (figure 3). V is
the linear velocity of the mobile robot, A is the steering
speed, and w,(k — 1),w;(k — 1) and R are the right and
left wheel angular velocities (which are considered to be
constant for each sample interval) and the wheel radius,
respectively. In the case of a linear trajectory (A = 0),
the equations of motion are given by:

Ok +1)=6(k)
z(k+1)=z(k) + VT cos 8(k)
y(k+1)=y(k) + VT sen 6(k)

Fig. 3. Reference Frame

Using the maximum acceleration value, the velocities
of both wheels have been considered to be constant for
each sample period.

2.3 Parametrization of the desired path.

The reference path is given to the MBPC controller as
a set of straight lines and circular arcs. The MBPC ap-
proach needs the desired positions and headings of the
mobile platform at the next NV time instants. So, given
the current position and heading of the robot, it is neces-
sary to parametrize the desired path for the next N peri-
ods of time in order to calculate the NV future path points
desired. As is shown in figure 4, the desired point for the
current instant (X4(k), Yz(k)) is obtained first. It is lo-
cated at the intersection between the desired path and
its perpendicular, traced from the actual robot position
(Xr(k),Y-(k)). The next N points are spaced equally on
the path, with a separation between them of AS, which
is a design parameter.

y(k)

¥, 0

Yy (ic+l

x(k) 1 : H
xRkl x (k4N

Fig. 4. Parametrization of the desired path.

2.4 Potential function for considering fixed obstacles

As stated above, the fixed obstacles are considered to
have polygonal geometry in the plane, and the surfaces
of the obstacles are considered to be perpendicular to
the moving plane of the mobile robot.

Two different, potential functions have been used for the
polygonal geometry case; one for the convex polygon
and another for the concave polygon.

Potential function for a convez polygon (Hwang and
Ahuja, 1992). A convex region will be described by a
set of inequalities

g(z) <0, g € L™,z € R"

where L is the set of linear functions and n is the space
dimension (in this case n=2). The function
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is zero inside the convex region and increases linearly
out of it, as the distance to the frontier is augmented.
NGSF is the number of segments of the obstacle frontier.
The following potential function is used:

1

pcvm(m) = [5 + f(m)]-l - NSF

6+ g,l (9i(x) + |gi(2)])

where § is a small constant that limits the value of
Peve () inside the convex region. peyz () reaches its max-
imum value 6! inside the region occupied by the obsta-
cle, and decreases with the distance between the robot
and the obstacle. A graphic example of this function is
shown in figure 5, where two rectangular shape static
obstacles are present in the proximity of the robot.

Fig. 5. Convex regions potential function.

Potential function for a concave polygon. A concave re-
gion will be described by a set of inequalities

viz) > 0, v € L™,z € R"

The potential function used in this case is

1
pccv(z) - 5+gccv($)

where 4 is a small constant and g..,(z) is the minimum
of the distances between the robot position and every
straight line that defines the obstacle frontier. This func-
tion has the same characteristics as peez ().

An example of cost function J, for a one step prediction
horizon (which is the only one that can be graphically
represented), is shown in figure 6. In this figure the value
of J for different left and right wheel velocities is rep-
resented. The existence of a rectangular obstacle can
be noticed. Furthermore, the influence of the non linear
prediction model can be observed.

Fig. 6. Objetive function J.
3. THE NEURAL NETWORK APPROACH

As was mentioned before, the minimization of the cost
function J has to be carried out by a numerical opti-
mization method which requires too much computation
to be used in real time. A Neural Network solution is
proposed, which guarantees real time for the robot con-
trol. Neural Network approaches for robot guidance has
been proposed by other researchers (Pomerlau, 1990),
(Meng and Kak, 1993).

The modules of the control scheme used in this work

(see figure 7) are:
Past control
actions.
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Fig. 7. Predictive neural network scheme for mobile
robot navigation.

e Artificial neural network controller. The ANN
architecture chosen here is a Multilayer Perceptron,
with one hidden layer (see figure 8).

The input layer consists of twelve neurons (see
figure 8). The first two inputs correspond to the
previous linear and angular velocities of the robot.

The next three inputs are associated to the parametriza-

tion of the desired trajectory over the prediction
horizon. In order to reduce the number of inputs,
the parameters given to the network are the dis-
tance d from the robot guide point to the path, the
angle § between the robot heading and the path ori-
entation and an average of the inverse of the curva-
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Fig. 8. Neural Network Scheme

ture of the future desired points (1/p) (see figure 4).
The last seven inputs correspond to the distances
measured directly by the ring of sonar sensors. This
fact avoids the high level process that usually has to
be carried out with sensor data in order to provide
useful environment information, which is a difficult
and high computation time consuming phase.

The output layer consists of two nodes which cor-
respond to the control commands (the linear and
angular robot velocities).

¢ Inputs vector generation module. A symetry
analysis is made here in order to reduce the number
of training patterns needed to provide good per-
formance of the neural network controller (Gémez
Ortega and Camacho, 1994). Also a normalization
is made which leads to better performance at the
ANN training stage.

¢ Outputs vector generation module. This per-
forms the inverse transformation of that made at
the symetry input module when required.

e Reference path coordinates transformation
module. The desired path coordinates are trans-
formed from a global reference system to a local ref-
erence system, attached to the mobile robot. This
avoids the use of additional ANN inputs for the
robot position and heading, which are implicitly
given to the ANN in the reference path.

¢ Past control actions. These are needed for ANN
to consider the delay time of the robot system.

¢ Sonar range measurements. Their measurements
are directly used as inputs for ANN. ANN learns
from the input patterns set, where different situa-
tions of static obstacles are present. Thus, there is
no need for a high level sonar measurements pre-
process, which guarantees real time.

3.1 Training phase

The ANN controller has been trained using a classic
supervised training scheme as the backpropagation al-
gorithm (see figure 9). The training patterns set have

Global puth i
plunning SIMULATED
Por— SIMULATED
o PREDICTIVE
E OUTPUTS
ol
I Ohsuacle position l NIROLLER
3 SONARS -
MEASTRES _-~_,(B
OUTPUTS +
Kt
HE
g 7
E
3|«
BACKPROPAGATION ERROR

MODULE

Fig. 9. ANN supervised training scheme.

been obtained from an off-line simulation system. For
the minimization phase a Powell iterative algorithm has
been used, where constraints on the control variables are
considered. Also, the sonar system measurements have
been simulated using a sonar model where the objects
in the environment are described as a set of geometric
primitives such as planes, cylinders, edges and corners
(Leonard and Durrant-Whyte, 1992).

4. RESULTS

The proposed control structure has been tested with
the LABMATE mobile robot. The ANN used consisted
of twelve input neurons, a hidden layer with eighteen
neurons and the output layer with two neurons (see fig-
ure 8).

The ANN was trained in a supervised manner, as de-
scribed previously. The sampling interval T" was given a
value of 2 s. The value of N chosen for the MBPC was
made equal to seven, thus N;, N; and N, were given
the values 2, 7 and 6, respectively, and the weighting
factors were given the following values: A; = 35, 2 =5
and ¥ = 0.5. The maximum and minimum linear and
angular velocities were given the following values respec-
tively: 0 m/s, 0.4 m/s, -20 °/s and 20 °/s . For As, a
value of 0.15 m was chosen, which leads to an average
linear robot velocity of 0.25 m/s.

Figure 10 shows some of the experimental results ob-
tained in the laboratory when applying the proposed
algorithm to the LABMATE mobile robot. Although it is
drawn as straight lines in the figures, the real environ-
ment includes laboratory objects such as chairs, tables,
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Fig. 10. Experimental results of the Neural predictive
controller for mobile robot navigation.

etc. This shows the robustness of the neural controller
as it has been trained with only a set of geometric prim-
itives such as planes, corners, etc.

Figure 10(a) shows the desired trajectory and the real
trajectory through the laboratory where unexpected static
obstacles have been positioned. It is important to notice
how the mobile robot returns to the reference path after
an unexpected obstacle has been avoided.

Figure 10(b) shows an experiment where an unexpected

obstacle is situated in the path that the robot must
follow in order to avoid a previous unexpected obsta-
cle. Again, the controller performance is quite good. Fi-
nally, figure 10(c) shows another test for a path where
small curvature radii are specified. The tracking error
observed in figure 10(c) is due to saturation in the an-
gular velocity and to the penalization chosen for the
control actions.

5. CONCLUSIONS

A predictive ANN controller for mobile robot navigation
in partially structured static environments has been pre-
sented. The ANN has been trained in a supervised way
with a backpropagation algorithm. The desired ANN
output was computed off line by a predictive controller.
Control signal saturations and non linearities of the model
were considered in order to obtain accurate predictions
of the robot trajectories. The computation time required
to solve this MBPC problem under these circumstances
with numerical methods would be prohibitive for real
time. The ANN approach has proved to be an effective
way of implementing the path tracking predictive algo-
rithm as shown by experimental tests.
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