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Optimal work in a harmonic trap with bounded stiffness
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We apply Pontryagin’s principle to drive rapidly a trapped overdamped Brownian particle in contact with a
thermal bath between two equilibrium states corresponding to different trap stiffness κ . We work out the optimal
time dependence κ (t ) by minimizing the work performed on the particle under the nonholonomic constraint
0 � κ � κmax, an experimentally relevant situation. Several important differences arise, as compared with the
case of unbounded stiffness that has been analyzed in the literature. First, two arbitrary equilibrium states may
not always be connected. Second, depending on the operating time tf and the desired compression ratio κf/κi,
different types of solutions emerge. Finally, the differences in the minimum value of the work brought about by
the bounds may become quite large, which may have a relevant impact on the optimization of heat engines.
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I. INTRODUCTION

One of the key parameters in nonequilibrium transfor-
mations is the characteristic relaxation time of the system
under study. In general, equilibrium states of a system depend
on the values of certain physical properties λ that can be
externally controlled, such as the available volume for a gas
or the spring constant of the harmonic potential that confines
a colloidal particle. When one relevant external parameter
is abruptly changed from λi to λf, a system that was at
the equilibrium state corresponding to λi begins to evolve
and, as time increases, approaches the new equilibrium state
corresponding to λf. The system’s equilibration time teq can be
loosely defined as the time that the system needs to reach the
new equilibrium configuration, and it is an intrinsic property
for each physical system that depends on the underlying
interactions, encoded in the transport coefficients, the external
parameters λ, and the temperature.

Recently, there has been a growing interest in the de-
velopment of engineered techniques capable of beating the
natural timescale for relaxation between equilibrium states.
Inspired by the so-called shortcut to adiabaticity processes
[1,2], specific procedures that make it possible to connect
equilibrium states using linking times much shorter than the
natural equilibration time have been devised. The term engi-
neered swift equilibration (ESE) has been coined to describe
these kinds of procedures. The general idea of an ESE process
is to design a tailor-made time dependent protocol λ(t ) for
the externally controlled parameter, such that the system is
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driven from the equilibrium state corresponding to λi to the
equilibrium state corresponding to λf in a finite time tf, ideally
much shorter than the equilibration time teq. Such protocols
have been established for an isolated dilute gas confined in
a three-dimensional (3D) isotropic harmonic trap [3], and
for nanosystems in contact with a thermostat both in the
overdamped or underdamped regime [4,5].

Here, we focus on a colloidal particle confined by a har-
monic trap of stiffness κ [4–8], the relevant physical quantity
is the variance 〈x2〉 of its position. Initially, the stiffness of the
trap is κi and the particle is equilibrated at the temperature
T of the fluid in which it is immersed, 〈x2〉i = kBT/κi, kB

being Boltzmann’s constant. Throughout this work, we con-
sider processes in which the temperature of the bath is kept
constant, at difference with the approach in Ref. [8]. In a STEP
process, defined by the stiffness of the trap being suddenly
changed to a different value κf at t = 0+, the relaxation of
the colloidal particle to the new equilibrium state is tracked.
Basically, its variance 〈x2〉 relaxes exponentially to its new
equilibrium value 〈x2〉f = kBT/κf after a characteristic time
teq � 3kBT/(κD), where D is the diffusion coefficient. Al-
ternatively, the system can be compressed or decompressed
isothermally by introducing a suitable time protocol κ (t ) for
the stiffness that drives the system from the initial equilibrium
state with κi to the final equilibrium state with κf in a finite
time tf. The ESE procedure consists of choosing in a smart
way the stiffness protocol κ (t ), so that tf � teq, thus beating
the system’s natural rate of equilibration. For example, the
protocol employed in Ref. [4] beats the natural relaxation time
by two orders of magnitude, tf/teq � 0.01.

Once it has been shown that ESE processes are indeed
possible, an optimization problem arises. There is a wide class
of functions λ(t ) that connect the initial and final equilibrium
states in a given time tf. For each of the possible functions
λ(t ), one can calculate the work performed in the process

2470-0045/2019/99(1)/012140(14) 012140-1 ©2019 American Physical Society



PLATA, GUÉRY-ODELIN, TRIZAC, AND PRADOS PHYSICAL REVIEW E 99, 012140 (2019)

W = ∫ tf
0

∂H
∂λ

λ̇ dt , where H is the Hamiltonian of the system
[9]; mathematically, W is a functional of λ. Hence the ques-
tion, for a given connection time tf: What is the optimal time
evolution λ∗(t ) that minimizes (on average) the work W ?

For the colloidal particle in a harmonic trap, the optimal
time evolution for the stiffness κ∗(t ) has been obtained for
different boundary conditions [10,11]. The specific boundary
conditions that are adequate for the ESE process were con-
sidered in Ref. [11], in the context of building a stochastic
heat engine. This result has also been rederived in later
works (see for example [12]). The optimal protocol for the
stiffness has finite jumps both at the initial and final times
κ∗(t = 0+) �= κi and κ∗(t−

f ) �= κf. This kind of discontinuity
at the end points of the time interval is usual in stochastic
thermodynamics and stems from the “Lagrangian” of the
considered variational problem being linear in the “velocities”
[13], which is sometimes known as the Miele problem [14].
These discontinuities can be regularized by introducing an
additional small term in the Lagrangian, which introduces two
boundary layers of finite width at the end points of the time
interval that eliminates the finite jumps [15,16].

The main shortcoming of previous protocols, be they opti-
mal or not, comes about in decompression processes. Any pro-
tocol involving a short enough time tf entails that the stiffness
has to be transiently negative inside a certain time window
[7,8], similarly to the situation found in other systems [3,17].
The arising of negative values for the stiffness is challenging
from an experimental point of view since the potential should
change from confining to repulsive. In the usual experimental
setups, the stiffness κ of the harmonic potential is always
positive and, in addition, has a certain upper bound κmax

depending on the technique employed [mainly atomic force
microscopy (AFM) or laser optical tweezers (LOT) [6,18–23]]
to implement the harmonic trap. The existence of this upper
limit is related to the validity of the harmonic approximation.
The intrinsic limit of ESE protocols is dictated by the accu-
racy of the mathematical model that describes the physical
system.

In light of the above remarks, it is relevant to investigate
the optimization problem of the work described above when
the stiffness of the trap is restricted to a certain interval κ ∈
[0, κmax]. The existence of an upper bound also changes the
problem since very high compression ratios κ (t )/κi have to be
applied to accelerate the equilibration in the compression case.
For example, in Ref. [4], transient compression ratios of the
order of 40 were applied in order to speed up the equilibration
of the particle, even when κf only doubled κi.

These drawbacks are important for the optimization of irre-
versible heat engines, a field of research that has become quite
active in the last few years [24–29]. In fact, Brownian particles
trapped by optical tweezers have been recently employed to
build stochastic heat engines, both theoretically and experi-
mentally [11,26,30] (for a review see [23]). In these studies,
the stiffness of the trap is changed as a function of time by
tuning the laser power, and decreasing (respectively increas-
ing) the stiffness is equivalent to decompressing (respectively
compressing) the system. Cyclic engines are thus built by con-
necting isothermal compression and decompression branches
with either isochoric [30] or isoentropic branches [11,30]. In
the decompression (compression) branch, the corresponding

work Wd (Wc) is negative (positive), and the total work W =
Wc + Wd must be negative to build a heat engine.

In this work, we focus on the analysis of isothermal
compression and decompression processes, i.e., the isother-
mal branches of the heat engines described in the previous
paragraph. Note that the optimization of the work considered
here is relevant in the context of heat engines since the
extracted work −W has to be a maximum, i.e., W must be
minimum [11]. In addition, the stiffness is restricted in exper-
iments to a certain interval as explained above, and thus the
externally controlled function κ (t ) obeys the nonholonomic
constraint 0 � κ � κmax. Therefore, the currently available
“unconstrained” results [11,12] are not useful for short enough
times tf because the optimal κ (t ) becomes negative (larger
than κmax) in decompression (compression) processes.

The time evolution of the colloidal particle is governed by
a first-order differential equation

d〈x2(t )〉
dt

= ϕ(〈x2(t )〉, κ (t )), (1)

where ϕ is a smooth function of both 〈x2〉 and κ (see for
example [4,11]). Then, κ (t ) is a control function, in the
sense used in control theory. The mean work in a finite time
isothermal process can be written as

W = 1

2

∫ tf

0
dt 〈x2〉 κ̇ (t ) = −1

2

∫ tf

0
dt κ (t )ϕ(〈x2(t )〉, κ (t )),

(2)

where we have made use of the relation κi〈x2〉i = κf〈x2〉f =
kBT . By defining

L(〈x2〉, κ ) = −κ

2
ϕ(〈x2〉, κ ), (3)

we can write

W =
∫ tf

0
dt L(〈x2(t )〉, κ (t )). (4)

We then have a well-posed problem in control theory [31,32].
We seek the minimum of W , taking into account that the
evolution of 〈x2〉 is controlled by κ , as described by (1), where
κ (t ) satisfies the nonholonomic constraint

0 � κ (t ) � κmax. (5)

This kind of optimization problem cannot be tackled with the
usual tools of variational calculus, i.e., the Euler-Lagrange
equations; they must be addressed by applying more so-
phisticated tools from control theory, such as Pontryagin’s
maximum principle [31,32].

The plan of the paper is as follows. Section II is devoted to
the statement of the minimization of the work as a control
problem. Therein, we explain how Pontryagin’s principle
can be applied to this particular situation. In Sec. III, we
address the minimization problem when the stiffness is not
bounded and can thus have any value, including negative ones.
Next, we look into the minimization problem with bounds in
Sec. IV, first for the decompression case in Sec. IV A and
afterwards for the compression case in Sec. IV B. Section V
discusses the different phases that appear in the minimization
problem and a detailed comparison between the values of the
optimal work for the unbounded and the bounded cases is
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carried out. The main conclusions are presented in Sec. VI.
Finally, the Appendices deal with some technicalities that are
omitted in the main text.

II. CONTROL PROBLEM

A. Statement

We consider a colloidal particle immersed in a fluid at
temperature T . The particle is in a harmonic trap of stiffness
κ (t ), the time dependence of which is externally controlled,
and we are interested in timescales such that the overdamped
limit holds. Thus, the dynamics of the particle position x is
governed by the Langevin equation

γ
dx(t )

dt
= −κ (t )x(t ) + ξ (t ), (6)

where γ is the friction coefficient and ξ (t ) is a Gaussian white
noise force,

〈ξ (t )〉 = 0, 〈ξ (t )ξ (t ′)〉 = 2Dδ(t − t ′), (7)

in which D is the diffusion coefficient that is connected to γ

by the fluctuation-dissipation relation D = kBT/γ . Implicitly,
our modeling assumes that the relaxation of the surrounding
fluid to equilibrium can be regarded as instantaneous on the
timescale over which the stiffness varies.

The Fokker-Planck equation associated to the Langevin
equation (6) is linear. Therefore, in the class of ESE processes
described in the Introduction, the probability distribution
function ρ(x, t ) is Gaussian for all times since it is so initially,
and we can characterize the stochastic process completely by
its variance 〈x2(t )〉. To do the calculations, it is convenient to
introduce dimensionless variables

κ̂ = κ

κi
, t̂ = κi

γ
t, ŷ1 =

√
〈x2〉
〈x2〉i

, (8)

where the initial value of the variance is 〈x2〉i = kBT/κi.
Therefore, ŷ1(t ) is the nondimensional standard deviation. In
order not to clutter our formulas, we omit the hats in the
dimensionless variables henceforth.

The time evolution of the standard deviation y1 is governed
by the first-order differential equation

dy1(t )

dt
= f1(y1(t ), κ (t )), (9a)

with

f1(y1, κ ) ≡ 1

y1
− κy1 (9b)

for each given time-dependent stiffness κ (t ).
The mean work performed on the system is defined at the

average level as đW = 1
2 〈x2〉 dκ [9], which is positive when

energy is transferred from the environment to the particle
and negative otherwise. The unit of energy is kBT , then the
dimensionless work for a finite transformation from t = 0 to
tf is, after using integration by parts [10],

W = 1

2
ln κf +

∫ tf

0
dt [ f1(y1(t ), κ (t ))]2, (10)

where we have made use of the boundary conditions for our
ESE problem

κ (0) = κi = 1, κ (tf ) = κf, (11a)

y1(0) ≡ y1,i = 1, y1(tf ) ≡ y1,f = 1√
κf

. (11b)

The first term on the right-hand side of (10) is the free
energy difference between the initial and final states. Then,
the second term on the right-hand side, which is non-negative,
is the irreversible work and vanishes only in the quasistatic
limit, when tf → ∞ [10,11].

Here, we are interested in minimizing W (i.e., maximizing
the “extracted” work −W ) for a fixed time interval tf, starting
from the equilibrium state corresponding to κi, equal to unity
in dimensionless variables, and ending up in the equilibrium
state corresponding to κf. Therefore, we have to minimize the
irreversible work as given by the functional

Wirr[y1, κ] =
∫ tf

0
dt f0(y1(t ), κ (t )), (12a)

f0(y1, κ ) ≡ [ f1(y1, κ )]2, (12b)

where the stiffness of the trap κ (t ) is an externally controlled
function and the time evolution of y1(t ) is linked thereto by
(9a). For the ESE processes, we are especially interested in
the regime

tf < teq, teq � 3

κf
, (13)

where teq is the equilibration time when the system relaxes to
equilibrium with time-independent stiffness κ (t ) = κf for all
times [4].

Let us be more specific. For each time-dependent control
function κ (t ), we obtain a certain time evolution for y1(t )
by integrating (9a), and therefore a certain value for our
functional Wirr. What we are interested in is finding out
whether there is an optimal control function κ∗(t ), for which
the corresponding time evolution of the standard deviation
is y∗

1(t ), such that Wirr[y1, κ] � W ∗
irr ≡ Wirr[y∗

1, κ
∗] within a

certain class K of admissible control functions. From a phys-
ical point of view, it is reasonable to admit functions κ (t )
with finite instantaneous jumps at certain times t ∈ [0, tf];
therefore, we assume that κ (t ) is piecewise continuous in
[0, tf]. Note that this entails that y1(t ) must be continuous in
[0, tf] since Eq. (9a) implies that ẏ1 has at most finite jump
discontinuities.

The boundary conditions for our minimization problem
stem from the ESE process we are interested in, and are
given by (11a). At this point, we have a well-posed optimal
control problem [31–33]. We want to minimize the functional
(12), in which the time evolution of y1(t ) is controlled by the
imposed program κ (t ) by means of the evolution equation
(9a), with the boundary conditions for y1 given by (11b). This
minimization is done over the class of admissible controls:
piecewise continuous functions κ (t ) that verify the prescribed
boundary conditions for κ , as given by (11a). In addition, we
may have more restrictions on κ , which we summarize here
by saying that the possible values of the control κ (t ) ∈ U .
The so-called control set U is a certain subset (interval) of the
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real numbers U ⊆ R. Although our notation does not make it
explicit, the control set U can vary in time (see, for example,
Sec. 3.3 of [32]).

B. Pontryagin’s procedure

The solution to this control problem is obtained by apply-
ing Pontryagin’s principle (see Sec. 1.8 of [31] or Sec. 4.3.1 of
[32] for its general formulation). Following, we explain how
Pontryagin’s maximum principle is applied to our particular
physical situation.

First, we define a variable y0 such that y0(0) = 0 and

dy0

dt
= f0(y1(t ), κ (t )) = [ f1(y1(t ), κ (t ))]2. (14)

It is clear that, for each choice of the control function κ (t ),
y0(tf ) equals the value of the functional Wirr[y, κ]. Next, we
introduce variables ψi conjugate to each yi, i = 0, 1, and
define a function

�(y1, ψ0, ψ1, κ ) = ψ0 f0(y1, κ ) + ψ1 f1(y1, κ )

= ψ0[ f1(y1, κ )]2 + ψ1 f1(y1, κ ). (15)

Note that, by construction, � does not depend on y0. For fixed
(y1, ψ0, ψ1), the function � becomes a function of κ , which
belongs to the control set κ ∈ U . We denote the supremum of
this function by H:

H(y1, ψ0, ψ1) = sup
κ∈U

�(y1, ψ0, ψ1, κ ). (16)

In conjunction with (15), the following system of equations
hold for the variables (y0, y1, ψ0, ψ1):

dyi

dt
= ∂�

∂ψi
,

dψi

dt
= −∂�

∂yi
, i = 0, 1 (17)

i.e., we recover (14) and (9a) for the evolution of (y0, y1)
and obtain the evolution equations for the conjugate variables
(ψ0, ψ1):

dψ0

dt
= 0 ⇒ ψ0(t ) = ψ0 (constant), (18a)

dψ1

dt
= −ψ0

∂ f0

∂y1
− ψ1

∂ f1

∂y1
= −∂ f1

∂y1
(2ψ0 f1 + ψ1). (18b)

For any control function κ (t ) linking y1,i and y1,f in a time tf,
we have a solution y1(t ) of (9a). Inserting both κ (t ) and the
associated y1(t ) into (18), we also obtain the solutions for the
conjugate variables (ψ0, ψ1(t )) associated to the considered
control. This construction defines the conjugate variables, and
consequently the function �.

Pontryagin’s extremum principle states a necessary con-
dition for having an optimal control κ∗(t ) that minimizes
the functional W , within the considered class of admissible
controls. Let κ∗(t ) be an admissible control and y∗

1 (t ) the
associated solution of (9a). In order that κ∗(t ) yield a solution
of the minimization problem, there must exist a solution
of (18) (ψ∗

0 , ψ∗
1 (t )) �= (0, 0) for all t ∈ [0, tf] such that the

following applies:
(1) For all t ∈ [0, tf], it is at the point κ = κ∗(t ) that the

function �(y∗
1 (t ), ψ∗

0 (t ), ψ∗
1 (t ), κ ) attains its maximum, i.e.,

�(y∗
1 (t ), ψ∗

0 (t ), ψ∗
1 (t ), κ∗(t )) = H(y∗

1(t ), ψ∗
0 (t ), ψ∗

1 (t )).

(2) The constant ψ∗
0 � 0.

The latter condition ensures that � has a maximum at
κ∗ [34]. The idea behind Pontryagin’s principle is to rewrite
the functional to be extremalized as

∫ tf
0 dt ψ0 f0 = ∫ tf

0 dt (� −
ψ1 f1). Taking advantage of the Hamiltonian structure behind
(17) yields the formalism in question.

From the optimal control, one deduces the corresponding
y∗

0 (t ) and the minimum irreversible work is

W min
irr = y∗

0 (tf ). (19)

Finally, it is straightforward to show that H(y∗
1 (t ),

ψ∗
0 (t ), ψ∗

1 (t )) does not depend on time, i.e., it is a constant of
motion.

At this point, the issue is finding the supremum of the
function �(y1, ψ0, ψ1, κ ) that leads to the optimal control
κ∗(t ). The basic idea is that, for any time t , the value of
the optimal control κ can lie either inside U or along its
boundary ∂U . This is completely analogous to the situation
found when seeking an extremum of a function of several
variables g(x1, x2, . . . , xN ) in a certain closed subset U ⊂ RN ,
which may lie inside U or on its boundary ∂U . To find it,
first we look for the extremum (x∗

1, x∗
2, . . . , x∗

N ) by imposing
(∂g/∂xi )∗ = 0; if this equation does not have a solution inside
U , the extremum must lie on the boundary ∂U . Therefore, to
obtain the supremum of �, at first κ∗ is sought by writing

0 = ∂�

∂κ

∣∣∣∣
κ̃

=
(

ψ0
∂ f0

∂κ
+ ψ1

∂ f1

∂κ

)
κ̃

=
(

∂ f1

∂κ

)
κ̃

(2ψ0 f1 + ψ1)κ̃ . (20)

We have introduced the notation κ̃ to make it clear that κ̃

may be the “right” solution, i.e., κ̃ = κ∗, or not. Being more
concrete, there appear two possibilities:

(1) The specific κ̃ found from (20) belongs to the class of
admissible controls for all times t , then we have found the
solution of the minimization problem, κ∗ = κ̃ .

(2) κ̃ does not belong to the class of admissible controls
because at a certain time t0 < tf we have that κ̃ (t0) lies outside
the control set U . Then, the optimal κ∗(t ) comprises in general
several branches: some branches stem from (20) and lie inside
U whereas other branches lie over its boundary ∂U .

Now, we derive some specific expressions for our system.
First, we write the particular evolution equation for the conju-
gate variable ψ1,

dψ1

dt
=

(
1

y2
1

+ κ

)[
2ψ0

(
1

y1
− κy1

)
+ ψ1

]
, (21)

where we have taken into account the definition of f1(y, κ )
in Eq. (9b). Second, we derive the particular equation for κ̃ .
Making use of (20) and the definition of f1(y, κ ),

0 = ∂�

∂κ

∣∣∣∣
κ̃

= −y1

[
2ψ0

(
1

y1
− κ̃ y1

)
+ ψ1

]
(22)

and, thus,

κ̃ = ψ1

2ψ0 y1
+ 1

y2
1

. (23)
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The insertion of (23) into the set of differential equations (17)
yields

dy0

dt
=

(
ψ1

2ψ0

)2

,
dy1

dt
= − ψ1

2ψ0
, (24a)

dψ0

dt
= 0,

dψ1

dt
= 0. (24b)

In the following sections, we analyze in depth two partic-
ular cases: (i) when the stiffness may have any value includ-
ing negative ones (see Sec. III), and (ii) when the stiffness
is bounded and lies within a certain interval [0, κmax] (see
Sec. IV). Note that the latter is the relevant problem at the
experimental level, as explained in the Introduction.

III. UNBOUNDED STIFFNESS

First, we consider the simplest situation: we have no other
restrictions on the control function κ (t ) aside from the bound-
ary conditions (11a). Therefore, the class of admissible con-
trol functions K comprises all piecewise continuous functions
lying inside the vertical strip Su ≡ [0, tf] × (−∞,+∞) in the
(t, κ ) plane that go from the point (0, κi ) to (tf, κf ).

Our starting point is the system of equations (24). We
add subscripts u to all the variables to mark that we are
studying the unbounded case. Both ψ0,u and ψ1,u are constants
of motion and thus y1,u has a linear shape. The boundary
conditions for y1, as given by (11b), entail that the constant
slope equals (y1,f − y1,i )/tf, i.e.,

ψ1,u

2ψ0,u
= −y1,f − 1

tf
(25)

and

y1,u(t ) = 1 + y1,f − 1

tf
t . (26)

In addition,

y0,u(t ) = (y1,f − 1)2

t2
f

t . (27)

Within the theoretical framework of Pontryagin’s max-
imum principle, the above solution is valid as long as κ̃

stemming from (23),

κ̃u(t ) = 1

[y1,u(t )]2
− y1,f − 1

tf

1

y1,u(t )
, (28)

belongs to the class of admissible controls. It can be easily
shown that κ̃u(t ) � 1 (�1) for decompression (compression).
Note that, however, κ̃u may become negative (arbitrarily large)
for decompression (compression) as tf is reduced.

As already stated at the beginning of this section, the class
of admissible controls for the unbounded case contains all
piecewise functions in the closed interval [0, tf] that verify the
boundary conditions (11a). Therefore, the obtained expression
κ̃u(t ) gives the optimal control κ∗(t ) in the open interval
(0, tf ) but not at the initial and final times. Therein, κ is
restricted to only one value, κi for t = 0 and κf for t = tf,
so it is straightforward that the respective maximums of �

are attained at κ∗(0) = κi and κ∗(tf ) = κf [35]. However, this
poses no problem because the controls have been assumed

to be piecewise continuous in our theory. Therefore, the final
result for the optimal control in the unbounded case is

κ∗
u (t ) =

⎧⎨
⎩

κi, t = 0
κ̃u(t ), 0 < t < tf
κf, t = tf.

(29)

The optimal profiles for the variables are y∗
0 (t ) = y0,u(t )

and y∗
1(t ) = y1,u(t ), with [0, tf]. Neither of them is affected by

the finite jumps in κ∗
u (t ) since they are continuous functions

of time. Then, we have that

W ∗
irr,u = y0,u(tf ) = (y1,f − 1)2

tf
= (1 − √

κf )2

κf tf
. (30)

The above results for the optimal standard deviation and
the minimum irreversible work have already been obtained
[11,12].

We would like to emphasize the important role played
by the boundary conditions to write the relevant variational
problem for the physical situation at hand. In the context of
ESE processes, one wants to connect the equilibrium states
corresponding to κi and κf in a finite time tf and, therefore, the
right boundary conditions are those given by (11). Indeed, this
is an important issue that affects the result of the variational
problem. For example, the boundary conditions considered
in Ref. [10] do not connect equilibrium states because the
system is not equilibrated at the final time ẏ(tf ) �= 0. In fact,
this shortcoming was corrected in Ref. [11].

As already stated in the Introduction, discontinuities of the
optimal stiffness at the initial and final times often appear
in stochastic thermodynamics [10–13]. They are usually ra-
tionalized in a mathematical way [13], referring to the so-
called Miele problem in which the “Lagrangian” is linear in
the highest derivative [14]. We put forward an alternative,
physically appealing, picture to understand the emergence of
these discontinuities in Appendix A.

IV. BOUNDED STIFFNESS

In experiments, the stiffness of the harmonic trap cannot
have an arbitrary value. As stated in the Introduction, the type
of device employed to design the harmonic potential (AFM,
LOT, . . .) constrains the stiffness values to a certain interval

0 � κ � κmax. (31)

For the sake of concreteness and simplicity, we have taken the
minimum stiffness as 0 throughout this work. A more general
situation with a nonzero κmin can be addressed along similar
lines as here. However, note that the most important restriction
from a physical point of view is the positiveness of κ which,
in addition, leads to simpler calculations.

We now turn our attention to the problem of minimizing
the irreversible work with the nonholonomic constraint (31).
In this case, the class of admissible control functions K
comprises all the piecewise continuous functions lying inside
the rectangle Sb ≡ [0, tf] × [0, κmax] in the (t, κ ) plane that
go from the point (0, κi ) to (tf, κf ). Evidently, both κi and κf

must lie in the interval [0, κmax]. The maximum value of the
stiffness κmax leads to a minimum equilibrium value for the
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standard deviation, namely,

ym = 1√
κmax

. (32)

Pontryagin’s maximum principle is especially adequate to
analyze problems with the kind of nonholonomic constraint in
Eq. (31). The condition (∂�/∂κ )κ̃ = 0 gives results that are
identical to the unbounded case as long as the protocol κ∗

u (t )
lies inside the rectangle [0, tf] × [0, κmax]. When the optimal
protocol for the unbounded case κ∗

u (t ) crosses the boundary of
this rectangle at a certain time t0 < tf, it can no longer be the
solution of the minimization problem.

Taking into account (23), we have three different regions,
A, B, and C, for the optimal stiffness in the bounded case κ∗

b :

κ∗
b =

⎧⎪⎪⎨
⎪⎪⎩

0 if ψ1

2ψ0
y1 + 1 < 0 (A),

ψ1

2ψ0 y1
+ 1

y2
1

if 0 � ψ1

2ψ0
y1 + 1 � y2

1
y2

m
(B),

κmax if ψ1

2ψ0
y1 + 1 >

y2
1

y2
m

(C).

(33)

Along the same lines followed in the unbounded case, it is
readily shown that y∗

1,b is linear in t in region B with slope
−ψ1/(2ψ0), as predicted by (24). We denote this behavior by
y1,lin(t ). In Appendix B, we show that if the system enters
region A or region C, it remains there. In other words, once
the optimal solution in region B “touches” the boundary at a
certain time t J , i.e., κ∗

b (t J ) equals either 0 or κmax, it moves
over the boundary from then on, κ∗

b (t ) = κ∗
b (t J ) for all t > t J .

In regions A and C, y1(t ) is given by the solutions of (9a)
corresponding to constant κ = 0 and κmax, which we denote
by y1(t )|κ=0 and y1(t )|κ=κmax , respectively.

On physical grounds, we have three different cases depend-
ing on the values of the parameters, namely, {tf, κf, κmax}:

(1) The initial and final states cannot be linked in the
given time tf, which is too short. This is due to the impossi-
bility of compressing (decompressing) the system faster than
with a STEP protocol with κ (t ) = κmax [κ (t ) = 0].

(2) The time interval tf is such that the connection is
possible but not with the linear solution for the unbounded
case y∗

1,u(t ) since the associated κ∗
u (t ) /∈ [0, κmax] for a certain

range of times inside [0, tf]. In that case, we show below
that the optimal protocol is built as a linear evolution of
y1 that matches continuously and smoothly (continuous first
derivative) the solution of (9a) with κ = κmax (κ = 0) in a
compression (decompression) process.

(3) The given time tf is long enough to make the con-
nection possible with the unbounded solution y∗

1,u(t ) because
κ∗

u (t ) ∈ [0, κmax] for all times. In this case, the bounds do not
affect the minimization problem.

A. Decompression

Let us look into the decompression case, in which 0 �
κf < 1. To begin with, we would like to discern when κ∗

u (t )
becomes negative. Looking at (28), it is readily seen that the
first term on its right-hand side becomes smaller than the
second one for large enough y1, and y1,u(t ) increases linearly
in time. Therefore, the value of the final time tf below which
the unbounded solution ceases to be valid is determined by
the condition κ̃u(tf ) = 0, i.e., y1,f(y1,f − 1) = tf. Taking into
account (11b), this is equivalent to tf = (1 − √

κf )/κf.

The condition κ � 0 implies that there are states that are
impossible to connect. The fastest decompression (shortest
possible tf) corresponds to a STEP process, in which the
stiffness is instantaneously changed to κ = 0 at t = 0+. In that
case, we have that y1(t ) = √

1 + 2t and thus y1,f = √
1 + 2tf.

Recalling once more (11b), we conclude that the fastest de-
compression occurs for κf(1 + 2tf ) = 1 or tf = (1 − κf )/(2κf ).

Therefore, cases 1, 2, and 3 above correspond here to the
following:

(1) Impossible to connect,

tf < tmin
d , tmin

d = 1 − κf

2κf
. (34)

(2) Matched solution, i.e., a first linear branch y1,lin(t ) and
a second branch moving over the line κ = 0 of Sb, y1(t )|κ=0,

tmin
d � tf � tu

d , tu
d = 1 − √

κf

κf
. (35)

(3) Linear profile for the unbounded case y1,u(t ),

tf > tu
d . (36)

In case 1, there is no solution and we already know the
solution of case 3. Then, we move on to solve case 2, for
which the solution comprises two branches. First, a branch
corresponding to region B in Eq. (33), i.e., a linear profile y1,lin

that verifies only the boundary condition at t = 0 and thus has
one free parameter. This solution is valid in some subinterval
[0, t J

d ], the free parameter can be considered to be its constant
slope md = −ψ1/(2ψ0), i.e.,

y1,lin(t ) = 1 + mdt, t < t J
d . (37)

Second, a branch corresponding to region A in Eq. (33), i.e.,
obtained by setting κ = 0 in Eq. (9a), y1(t )|κ=0. This branch
verifies the boundary condition at t = tf and is valid in the
complementary subinterval [t J

d , tf]. Its specific form is given
by

y1(t )|κ=0 =
√

y2
1,f − 2(tf − t ), t > t J

d . (38)

Note that this branch does not contain any free parameter. The
two branches are matched at the joining time t J

d by imposing
the continuity of both y1(t ) and ẏ1(t ), i.e.,

y1,lin
(
t J
d

−) = y1|κ=0
(
t J
d

+)
, ẏ1,lin

(
t J
d

−) = ẏ1|κ=0
(
t J
d

+)
. (39)

Note that this is consistent, any solution y1(t ) of (9a) must
be continuous for piecewise continuous κ (t ). Moreover, since
κ (t ) is continuous for the matched solution at t = t J

d , κ (t J
d

−) =
κ (t J

d
+) = 0, ẏ1(t ) must also be continuous there. We show in

Appendix B that this simplest approach is the correct one for
our problem.

The continuity equations (39) give rise to the conditions

yJ
1,d ≡ 1 + mdtJ

d =
√

y2
1,f − 2

(
tf − t J

d

)
, (40a)

md = 1√
y2

1,f − 2
(
tf − t J

d

) , (40b)
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which can be explicitly solved for md and t J
d , with the result

t J
d = 1 + 2tf − y2

1,f +
√

1 + 2tf − y2
1,f, (41a)

md = 1

1 +
√

1 + 2tf − y2
1,f

. (41b)

Note that the matching time t J
d is an increasing function of

tf, vanishing in the limit as tf → tmin
d and approaching tf in

the limit as tf → tu
d . In fact, this solution only makes sense in

case 2: in case 1, the argument of the square root is negative
whereas in case 3 we have that t J

d > tf. Recall that y1,f is given
as a function of κf by (11b).

Then, the optimal protocol for the stiffness is

κ∗
d (t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

κi = 1, t = 0
1

[y1,lin (t )]2 − md
y1,lin (t ) , 0 < t < t J

d

0, t J
d � t < tf

κf, t = tf.

(42)

The finite jumps of the stiffness at the initial and final times
have the same reason as in the unbounded case and thus we
will not repeat the discussion here. The initial jump in the
stiffness decreases it to a positive value κ∗

d (t = 0+) = 1 − md ,
and 0 < 1 − md < 1. In addition, note that κ∗

d (t ) is continuous
at t = t J

d since the condition md = 1/y1,lin(t J
d ) holds as a

consequence of the continuity of the derivative of ẏ1(t ) at t =
t J
d , as expressed by (40b). Consistently with our discussion

below (41), the expression in Eq. (42) only makes sense for
tmin
d � tf � tu

d .
Optimal protocols for the decompression case are plotted

in Fig. 1. We have chosen κf = 0.5 and several values of
the connection time tf. The unbounded solution κ∗

u (t ) (dashed
lines) only works for the longest time tf = tu

d + 0.25(tu
d −

tmin
d ), when it remains positive over the whole time interval.

For the remainder of shorter connecting times, κ∗
u (t ) becomes

negative as observed in the figure and the optimal protocol
equals κ∗

d (t ), as given by (42) (thick solid lines). There is no
solid line for the longest time since (42) is well defined only
for tmin

d � tf � tu
d .

B. Compression

When the colloidal particle is compressed, κmax � κf > 1,
the unbounded κ∗

u (t ) may become greater than κmax. When
this is the case, the solution to the minimization problem is
built in a manner completely analogous to the decompres-
sion case, but the second branch is obtained by substituting
κmax into (9a), i.e., y1(t )|κ=κmax . Again, the two branches are
smoothly joined at a certain t = t J

c , i.e., with y1 and ẏ1 being
continuous.

Since the scenario is analogous to that for decompression,
we do not repeat the complete analysis here.

(1) Impossible to connect:

tf < tmin
c , tmin

c = 1

2κmax
ln

κf(κmax − 1)

κmax − κf
. (43)

(2) Matched solution, i.e., at first a linear branch y1,lin(t )
and afterwards moving over the line κ = κmax of Sb,

FIG. 1. Optimal protocols for the stiffness in the decompression
case. We have chosen a decompression factor κf = 0.5, for which
the minimum time for connection is tmin

d = 0.5 and the time above
which the unbounded solution works is tu

d = 0.5858. We compare the
actual optimal protocol κ∗

d (t ) (thick solid) with the optimal protocol
for unbounded stiffness κ∗

u (t ) (dashed line) for several values of the
connection time tf = tmin

d + ξ (tu
d − tmin

d ), where ξ from left to right is
0.1 (green), 0.25 (magenta), 0.5 (blue), 1 (orange), and 1.25 (black).
In order to show all the curves together, we plot them as a function
of the scaled time t/tf. The bounded solutions κ∗

d (t ) remain at the
boundary κ = 0 once they touch it at the corresponding matching
time t J

d . For ξ = 1 (orange curve), the solid and the dashed lines
coincide, t J

d = tf. For the sake of clarity, the optimal protocols are
shown for t ∈ (0, tf ); all of them have sudden jumps to κi = 1 and
κf = 0.5 at t = 0 and tf, respectively.

y1(t )|κ=κmax ,

tmin
c � tf � tu

c , tu
c =

√
κf − 1

κmax − κf
. (44)

(3) Linear profile for the unbounded case y1,u(t ),

tf > tu
c . (45)

Again, we consider case 2, for which the solution com-
prises two branches. First, the linear branch y1,lin valid in
[0, t J

c ], which has the slope mc = −ψ1/(2ψ0):

y1,lin(t ) = 1 + mct, t < t J
c . (46)

Second, the branch obtained by substituting κ = κmax in
Eq. (9a), y1(t )|κ=κmax , which verifies the boundary condition
at t = tf and is valid in [t J

c , tf]:

y1(t )|κ=κmax =
√

1 + (
κmaxy2

1,f − 1
)
e2κmax(tf−t )

√
κmax

, t > t J
c .

(47)

At the joining time t J
c , y1(t ) and ẏ1(t ) are continuous, which

yields

yJ
1,c ≡ 1 + mct

J
c =

√
1 + (

κmaxy2
1,f − 1

)
e2κmax(tf−t J

c )

√
κmax

, (48a)

mc = −
√

κmax
(
κmaxy2

1,f − 1
)
e2κmax(tf−t J

c )√
1 + (

κmaxy2
1,f − 1

)
e2κmax(tf−t J

c )
. (48b)
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FIG. 2. Same as Fig. 1 for a compression. Here, κmax = 5 (hori-
zontal red thick line) and the compression factor is κf = 2. With these
parameters, tmin

c = 0.098 08 and tu
c = 0.1381. We compare the actual

optimal protocol κ∗
c (t ) (thick solid line) with κ∗

u (t ) (dashed line) for
tf = tmin

c + ξ (tu
c − tmin

c ), where ξ from left to right is 0.1 (green),
0.25 (magenta), 0.5 (blue), 1 (orange), and 1.25 (black). As for
decompression, the matched solutions κ∗

c (t ) remain at the boundary
(here κ = κmax) for t > t J

c , and the unbounded solution gives the
correct optimal protocol only when tf > tu

c because it remains smaller
than κmax for all times.

At variance with the decompression case, this system cannot
be explicitly solved for mc and t J

c but we can obtain their
values for any set of the parameters {tf, κf, κmax} numerically.
Once more, y1,f is given by (11b) as a function of κf. Note that
mc < 0 because the standard deviation decreases in time for
compression.

Finally, we obtain the optimal protocol for the stiffness in
the compression process

κ∗
c (t ) =

⎧⎪⎪⎨
⎪⎪⎩

κi = 1, t = 0
1

[y1,lin (t )]2 − mc
y1,lin (t ) , 0 < t < t J

c

κmax, t J
c � t < tf

κf, t = tf.

(49)

Again, the initial jump in the stiffness goes in the “right”
direction; it increases to κ∗

c (t = 0+) = 1 − mc > 1 because
mc as given by (48b) is negative.

Figure 2 is similar to Fig. 1 but for compression. We
have chosen the parameter values κmax = 5 and κf = 2. The
different curves correspond to different connection times tf.
Similarly to the decompression case, the optimal protocol
κ∗

c (t ) �= κ∗
u (t ) except for the longest time since for the remain-

der of them κ∗
u (t ) violates the inequality κ � κmax. Also, the

matching time t J
c increases with tf, t J

c → 0 as tf → tmin
c , and

t J
c → tf as tf → tu

c . Similarly to the decompression case, (48)
and (49) only make sense in case 2.

V. PHASE DIAGRAM AND AVERAGE WORK

A. Inaccessible and accessible states

Depending on the values of the parameters {tf, κf, κmax}, we
have three different “phases” when the stiffness is bounded,
which correspond to each of the cases enumerated in the
previous section. For each value of the maximum stiffness
κmax, there are target points (κf, tf ) that

FIG. 3. Phase diagram of the system in the (τf, κf ) plane for
the control problem with bounded κ , 0 < κ < κmax. Specifically, we
are showing the case κmax = 50. Note the logarithmic scale on the
vertical axis. Target points (τf, κf ) inside the gray regions cannot
be reached. As compared to the unbounded case, on the one hand,
the solution of the optimal control problem remains unchanged for
target points inside the green region since they can be reached by
the optimal control for the unbounded case κ∗

u (τ ). On the other
hand, target points inside the red regions cannot be reached with
the unbounded solution. Thus, there appears a new optimal solution
κ∗

b (τ ), which comprises two branches that are smoothly matched, as
described in Sec. IV.

(1) are inaccessible; there is no control κ (t ) capable of
linking the initial and final states,

(2) can be reached by means of a matched solution; the
optimal control moves partially over the boundary of the
rectangle Sb ≡ [0, tf] × [0, κmax], and

(3) can be reached with the optimal control for the un-
bounded case; the standard deviation has the simple linear
form y1,u(t ) in Eq. (26).

In order to look into the different phases, it is worth going
to the natural timescale for relaxation at the final stiffness κf,
i.e., we define

τ = κft . (50)

In this timescale, the equilibration time is the same for all κf,
τeq � 3 [see (13)]. Therefore, the value of the connection time
in the τ scale, τf = κftf, directly gives the acceleration of the
ESE process with respect to the STEP one. The times separat-
ing the different regions (inaccessible, matched, unbounded)
are readily obtained from (34) and (35) in decompression,

τmin
d = 1 − κf

2
, τ u

d = 1 − √
κf, (51)

and (43) and (44) in compression,

τmin
c = κf

2κmax
ln

κf(κmax − 1)

κmax − κf
, τ u

c = κf (
√

κf − 1)

κmax − κf
. (52)

In Fig. 3, we plot the different regions in the plane (τf, κf )
for the specific case κmax = 50. We have shaded regions in
(i) gray, (ii) red, and (iii) green. The dashed red lines separate
regions (i) and (ii), i.e., they are given by τf = τmin

p , where
p = c or d depending on the type of process, compression
or decompression. The optimal protocol over these lines is
an initial abrupt change from κ (0) = κi = 1 to κ = 0 in the

012140-8



OPTIMAL WORK IN A HARMONIC TRAP WITH BOUNDED … PHYSICAL REVIEW E 99, 012140 (2019)

decompression process (to κ = κmax for compression) and
another sudden jump from this value to the target stiffness
κf at the final time. The solid green lines separate regions
(ii) and (iii), i.e., they are given by τf = τ u

p , again p = c
or d depending on the type of process. Over these lines,
the unbounded solution becomes valid throughout the whole
time interval, reaching the border (κ = 0 for decompression,
κ = κmax for compression) at t = t−

f .
The decompression case deserves further commenting.

Both the minimum connection time τmin
d and the time above

which the unbounded solution is valid τ u
d are bounded, specif-

ically,

τmin
d � τ

(1)
d = 1/2, τ u

d � τ
(2)
d = 1. (53)

As it is clearly seen in Fig. 3, this means that τ
(2)
d = 1 is a

critical time in decompression: above it, the initial equilibrium
state can always be connected to another equilibrium state
corresponding to an arbitrary value of the stiffness with the
protocol valid for the unbounded case. Moreover, τ (1)

d = 1
2 is a

second critical time in decompression: for τ
(1)
d < τf < τ

(2)
d , all

the final equilibrium states are accessible but the unbounded
solution is only valid for weak enough decompression, mean-
ing κf smaller but not too far from unity, whereas for τf < τ

(1)
d

there appear inaccessible states. This is to be contrasted with
the compression case. In this latter case, the three possible
phases, inaccessible, matched, and unbounded, are possible
for all the connecting times τf.

Note that the existence of an upper (lower) bound on κ

does not affect the decompression (compression) case. This
stems from the monotonicity of the optimal protocols for the
stiffness, as explicitly proven in Appendix B.

B. Properties of the mean work

At this point, it is worth looking into the optimal average
work and elucidate how the problem changes upon constrain-
ing the stiffness κ . The optimal value for the irreversible
work W ∗ can be computed in regions (ii) and (iii), when
the connection between the initial and final states is possible.
In region (iii), the bound on the stiffness plays no role for
calculating W ∗

irr, W ∗
irr = W ∗

irr,u as given by (30). In region (ii),
we have to use the matched solutions in Secs. IV A and IV B
to derive the minimum work. We employ again p = c or d to
label the kind of process. The integral in Eq. (12) is split into
two parts: the first one from 0 to t J

p , where y1(t ) is linear in
time with slope mp, and the second one from t J

p to tf, where
y1(t ) is given by the boundary solution y1(t )|κ=κp ; κp stands
for the relevant boundary value of κ , κd = 0 and κc = κmax.
Then,

W ∗
irr,p = m2

pt J
p +

∫ tf

t J
p

dt [ẏ1(t )|κ=κp]
2. (54)

Integrating over y1 instead of t in the second term of the right-
hand side and making use of (9b) and the continuity of y1 at
the matching time, y1,p(t J−

p ) = y1,p(t J+
p ) = yJ

1,p, one gets

W ∗
irr,p = m2

pt J
p + ln

y1,f

yJ
1,p

− κp

y2
1,f − (

yJ
1,p

)2

2
. (55)

Let us particularize (55) for decompression and compres-
sion. First, in the decompression case we have that

W ∗
irr,d = m2

dt J
d + ln

y1,f

yJ
1,d

, (56)

in which md and t J
d are given by (41) in terms of (tf, κf ), and

yJ
1,d is the value of y1 at the joining time t J

d as defined in Eq.
(40a). Second, for compression we obtain

W ∗
irr,c = m2

ct J
c + κmax

(
yJ

1,c

)2 − y2
1,f

2
− ln

yJ
1,c

y1,f
, (57)

where mc and t J
c are the solutions of the system of equations

(48b) and yJ
1,c is given by (48a).

In what follows, we plot with dashed lines the optimal
work coming from the unbounded expression, as given by
(30). Solid lines are used for the optimal work when the bound
0 � κ � κmax is relevant, (56) for decompression and (57) for
compression. In addition, we have shaded the different regions
with the same color code employed in the phase diagram.
The solid lines are always above the dashed ones because
the minimum with no constraints is logically lower than the
constrained one.

First, we investigate the optimal work as a function of the
final time τf, for different values of κf. Specifically, we con-
sider a compression protocol with κf = 2 and a decompression
protocol with κf = 0.5 in Fig. 4. The stiffness is bounded in
the interval 0 � κ � κmax = 5. The difference between the
constrained and unconstrained optimal values of the work
becomes more important as the connection time τf decreases,
as discussed below.

Let us investigate the decompression case in more detail.
We focus on the difference between the actual optimal work
W ∗

irr,d and its value for the unconstrained case W ∗
irr,u for the

minimum connection time τf → τmin
d (or tf → tmin

d ), which
is given by (51). At this point, this difference reaches its
maximum value. Therefore, the first term on the right-hand
side of (56) for the optimal work W ∗

irr,d does not contribute
thereto because t J

d → 0, and we have

lim
tf→tmin

d

W ∗
irr,d = −1

2
ln κf, lim

tf→tmin
d

W ∗
irr,u = 2

1 − √
κf

1 + √
κf

. (58)

In Fig. 5 we plot the relative difference (W ∗
irr,d − W ∗

irr,u)/W ∗
irr,u

as a function of κf. It remains small for κf � 0.3, for instance,
for κf = 0.5 it is below 1%. As κf decreases, it starts to grow;
in fact, W ∗

irr,d diverges as κf → 0. For example, for κf = 0.1
the relative difference is around 10%, for κf = 0.01 it has
increased to 40% and for κf = 10−3 it exceeds 80%.

Second, we study the optimal work as a function of the
compression ratio κf for a fixed value of the connection time
τf. Similarly to the situation found when τf was varied for
fixed κf, we have again inaccessible, matched, and unbounded
regions. Especially interesting is the decompression case: in
principle, the minimum value of the stiffness κmin

d for having
connected states and the value κu

d above which the unbounded
solution works should be obtained by using (51). Notwith-
standing, the situation is a little more complex. Specifically,
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FIG. 4. Optimal irreversible work of the system as a function
of the final time τf = κftf. Top: decompression (κf = 0.5). Bottom:
compression (κf = 2 with κmax = 5). Dashed lines correspond to
the unconstrained result (30), whereas the solid lines stand for the
solutions in the constrained case. Note that the latter only exist within
the red region: color codes for the regions is the same as in Fig. 3,
and are given by (56) (decompression) and (57) (compression). The
minimum irreversible work for the bounded case is, logically, always
above that for the unbounded situation.

we have that

κmin
d =

{
1 − 2τf, τf � τ

(1)
d

0, τf > τ
(1)
d

;
√

κu
d =

{
1 − τf, τf � τ

(2)
d

0, τf > τ
(2)
d .

(59)

The piecewise definitions of κmin
d and κu

d are readily ratio-
nalized by looking at Fig. 3: obtaining κmin

d (51) only makes
sense as long as τf � τ

(1)
d = 1

2 , above it κmin
d = 0 because all

the states with τf > τ
(1)
d are accessible. A similar reasoning

applies to κu
d : for τf > 1, all the states can be connected with

the unbounded solution. The most interesting region in the
ESE context is τf < τ

(1)
d , which corresponds to the higher

acceleration of the equilibration process τf/τeq < 1
6 .

Figure 6 corresponds to the specific case κmax = 5 and
τf = 1

3 . Therefore, the connection time is roughly one tenth
of the equilibration time τf/τeq = 1

9 , and we plot compression
(κf > 1) and decompression (κf < 1) processes in the same
graph. For these values of the parameters, the main effect of
the bounds is the reduction of the effectively accessible region
for κ , which is much smaller than the whole interval [0, κmax].
The matched solutions are needed in two layers close to the
borders of the accessible region, but the differences between

FIG. 5. Relative difference between the bounded and unbounded
optimal values of the irreversible work as a function of κf. The plot
corresponds to the decompression region κf < 1. Specifically, we use
the work values at the minimum connection time τmin

d , for which the
relative difference attains its largest value. Note the divergence that
appears in the limit as κf → 0.

the bounded optimal work and the unbounded value are quite
moderate.

We consider a value of the connecting time close to the
critical value τ

(1)
d in Fig. 7, specifically, τf = 0.498. The in-

accessible region becomes very small since κmin
d = 0.004 but

FIG. 6. (Top) Optimal irreversible work of the system as a
function of the compression ratio κf. The graph corresponds to the
parameter values κmax = 5 and τf = 1

3 , so that the connection time
is roughly one tenth of the equilibration time τeq � 3. Color code is
the same as in Fig. 4. (Bottom) Zoom into the red region (matched
solution) for decompression.
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FIG. 7. (Top) Optimal irreversible work as a function of κf for
a connecting time close to the critical value τ

(1)
d = 1

2 . We show
only the decompression region κf < 1 for the specific case τf =
0.498. (Bottom) Zoom into the red region, inside which the matched
solution is needed. It is observed that the differences between the
bounded and unbounded optimal values can become quite large, up
to the order of 60% in this particular case.

the bounded irreversible work W ∗
irr,d is about 60% higher than

the unbounded irreversible value W ∗
irr,u at κf = κmin

d . In fact, as

τf → τ
(1)
d we have that κmin

d → 0 and the corresponding W ∗
irr,d

diverges logarithmically whereas the bounded value remains
finite W ∗

irr,u → 2, as expressed by (58). We further illustrate
this fact by plotting both W ∗

irr,d and W ∗
irr,u at κf = κmin

d as
a function of τf in Fig. 8. It is observed that, consistently
with the discussion above and the picture shown in Fig. 5,
the difference between the two is largest for τf → τ

(1)
d . In

principle, it may seem strange that W ∗
irr,d and W ∗

irr,u tend to
coincide in the limit as τf → 0. Looking once more at Fig. 3,
it is seen that the inaccessible region grows as τf is decreased
and fills the whole decompression region as τf → 0, i.e.,
κmin

d → 1 in this limit. Therefore, a very large acceleration
of the process is only possible in the linear response regime
1 − κf � 1, for which both works are infinitesimally small.
In fact, their relative difference can also be shown to be very
small.

VI. CONCLUSIONS

In experiments with confined colloids, a natural con-
straint on the trap stiffness is that expressed by (5). This
nonholonomic constraint makes it impossible to solve the

FIG. 8. Comparison between the bounded and unbounded opti-
mal values of the irreversible work as a function of τf. Specifically,
the irreversible work is evaluated at the minimum value of the
stiffness allowing for connection κmin

d , always in the decompression
region. The divergence of the bounded optimal work W ∗

irr,d (solid
line) at the critical time τ

(1)
d = 1

2 (red dotted line) is clearly observed,
whereas W ∗

irr,u (dashed line) remains finite throughout. For τf longer
than τ

(2)
d = 1 (blue dotted line), W ∗

irr,d and W ∗
irr,u are identical, as

discussed in the text.

minimization problem of the work by employing the usual
approach involving the Euler-Lagrange equations. Instead, it
is necessary to address the problem by employing the tools of
control theory, specifically Pontryagin’s maximum principle.
Interestingly, a similar approach based on control theory has
been recently applied to address the minimization of entropy
production in the trapped colloidal particle problem [16], but
with “bounded accelerations.” The relevance of these bounds,
which were originally introduced to regularize the jumps of
the stiffness at the initial and final times [15], for experiments
is not obvious.

The bounds on the stiffness strongly modify the problem
of minimizing the work performed on the colloidal particle.
The solution for unbounded stiffness, in which the standard
deviation y1 connects linearly the initial and final states, is
no longer valid in general: the associated optimal stiffness
κ∗

u (t ) violates the inequality (5) for short enough connecting
times tf. First, there appear minimum times for connecting
the initial and final states since it is impossible to compress
(decompress) the system with any control κ (t ) faster than with
the one corresponding to κ (t ) = κmax [κ (t ) = 0] for all times.

Second, and most importantly, for times longer than the
minimum time but smaller than a certain time, there exists
an optimal control κ∗

b (t ) but it is different from κ∗
u (t ). This is

the significant time window for ESE protocols since we need
the connection to be possible but with the shortest possible
time. The associated time evolution for the standard deviation
comprises two branches. First, a linear branch y1,lin(t ), where
y denotes the position standard deviation in the first part
of the time interval while κ (t ) has not reached the bounds
yet. Second, a branch corresponding to the solution for the
appropriate boundary value of κ (κmax in compression, 0 in
decompression) in the second part of the time interval. The
two functions match smoothly, with y1(t ) and ẏ1(t ) being
continuous, at the joining time.
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Rather dramatic changes are observed in the decompres-
sion case, when the bound κ � 0 comes into play. This is not
a mathematical bound but a physical one: with a harmonic
trap, it is experimentally difficult to engineer a repulsive po-
tential, and thus the stiffness has to remain non-negative. Most
importantly, there appear two critical values for the con-
nection time: for τf < τ

(2)
d the bounded optimal work W ∗

irr,d
deviates from that of the unbounded problem W ∗

irr,u, and at

τf = τ
(1)
d we have that W ∗

irr,d diverges.
In the last decade, stochastic heat engines have been de-

signed by trapping a Brownian particle in a harmonic po-
tential, the stiffness of which can be externally controlled
[11,23,26,30], i.e., the physical system investigated here. The
cycles considered in these Brownian heat engines typically
comprise four branches, with two of them being isothermal
compression and isothermal decompression processes. The
work over these isothermal processes must be minimized
to maximize the power delivered by the engine: the work
performed by the system is minus the work performed on the
system, which is the one considered throughout this paper.

The changes in the optimal work derived here for isother-
mal compression and decompression processes, which are
entailed by the bounds in the stiffness, impinge on the optimal
power of the Brownian heat engines. Specifically, the optimal
power is lowered as compared with the value obtained for
unbounded stiffness. In this respect, analyzing in detail the
impact of the bounds on the power of heat engines constitutes
an interesting prospect for future research. Another relevant
venue lies in optimizing mixed quantities, such as a combina-
tion of the mean dissipated work and its standard deviation,
which may exhibit phase transitions in protocol space [36].
Also, in the realm of microfluidics [37], it seems interesting
to explore the extension of the ideas presented here to the
design of optimal devices for separating and sorting particles
in a desired time.
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APPENDIX A: “SURGERY” METHOD
FOR THE UNBOUNDED CASE

Here, we deal with the optimization of the work in the un-
bounded case from an alternative point of view. In absence of
the nonholonomic constraint 0 � κ � κmax, one may hope to
address the optimization problem by employing the classical
variational approach leading to the Euler-Lagrange equations.
Following, we show the difficulties that arise and how to cope
with them by a physically appealing “surgery” procedure [38].

We start by writing the irreversible work as

Wirr =
∫ tf

0
dt ẏ2

1, (A1)

where the boundary conditions for y1 are given by (11b).
Therefore, this seems to be a “trivial” problem: the Euler-
Lagrange equation for the optimal profile y∗

1 is simply ÿ∗
1 = 0

and its solution is exactly (26). The issue arises now because
the optimal stiffness κ (t ) obtained from (9),

κ (t ) = 1

y2
1(t )

− ẏ1(t )

y1(t )
, (A2)

does not verify the boundary conditions (11a). Note that these
boundary conditions for κ are equivalent to ẏ1(0) = ẏ1(tf ) =
0, i.e., they ensure that the system is properly equilibrated at
both the initial and final states [39].

From a physical point of view, there should be an optimal
procedure, in the sense that the irreversible work attains a
minimum over it, to connect the initial and final equilibrium
states in a finite time. Therefore, there should be a time
evolution for y1 that minimizes the irreversible work and
verifies both the boundary conditions for y1 and ẏ1, i.e., a
solution of the overdetermined problem

ÿ1 = 0, y1(0) = 1, y1(tf ) = y1,f, ẏ1(0) = ẏ1(tf ) = 0.

(A3)

Following, we show that this is indeed the case by explic-
itly building a solution. With this constructive procedure, what
we basically reveal is that the extra boundary conditions for ẏ1

do not change the solution in (0, tf ): it suffices to bring to bear
the boundary conditions for y1 and introduce suitable jumps
in ẏ1 at the boundaries. Note that we have omitted the asterisk
in the solution of the variational problem, i.e., we have written
y1 instead of y∗

1 in order not to clutter (A3).
To keep expressions simpler, first we introduce suitable

rescalings for both y1 and t ,

s ≡ t

tf
, u ≡ y1 − 1

y1,f − 1
, (A4)

such that

Wirr = (y1,f − 1)2

tf

∫ 1

0
ds(u′)2, (A5)

where the prime indicates derivative with respect to s, and the
overdetermined problem in Eq. (A3) is

u′′ = 0, u(0) = 0, u(1) = 1, u′(0) = u′(1) = 0.

(A6)
We build the family of functions in the half-interval s ∈

[ 1
2 , 1]. We split the interval [ 1

2 , 1] into two parts, [ 1
2 , 1 − ε]

and [1 − ε, 1], and write the following family of piecewise
defined functions:

uε (s) = 1

2
+ με

(
s − 1

2

)
,

1

2
� s � 1 − ε, (A7a)

uε (s) = 1

2
+ με

(
1

2
− ε

)
+ 2εμε

π
sin

[
π

2ε
(s − 1 + ε)

]
,

1 − ε � s � 1, (A7b)
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FIG. 9. The surgery procedure. Specifically, we have considered
a decompression process with κf = 0.5 and tf = 2. The optimal
stiffness for the unbounded problem κ∗

u (t ) (solid black line), as given
by (28), is compared with the stiffness protocols κε (t ) stemming
from (A2) for different values of ε: ε = 0.1 (dashed red) and ε =
0.02 (dotted blue). For any value of ε, κε (t ) verifies the boundary
condition at t = tf, being continuous with continuous derivative
throughout. This is compatible with approaching κ∗

u (t ) as ε → 0+,
including the finite jumps at t = 0 and tf.

with

με =
[

1 − 2ε

(
1 − 2

π

)]−1

. (A8)

It is easily shown that that the functions uε (s) (i) satisfy the
boundary conditions at the right end point s = 1 in Eq. (A6)
for all ε and (ii) are continuous and have continuous derivative
in [ 1

2 , 1], including the connection point s = 1 − ε. Neverthe-
less, in the limit as ε → 0+ the “boundary layer” [1 − ε, 1]
collapses with uε (s) remaining continuous at the end point
s = 1 but u′

ε (s) becoming discontinuous. Specifically,

lim
s→1−

uε (s) = u(1) = 1, lim
s→1−

u′
ε (s) = 1 �= u′

ε (1) = 0,

(A9)

because με → 1 in the considered limit. Therefore, in the
limit as ε → 0 we generate the discontinuity in the derivative
of u, and thus of ẏ1 and κ .

In the other half-interval s ∈ [0, 1
2 ] the function is defined

by a “mirroring” process (both left-right and up-down) with
respect to the central point s = 1

2 , u = 1
2 , i.e.,

1
2 − uε (s) = uε (1 − s) − 1

2 , 0 � s � 1
2 . (A10)

The boundary conditions at s = 0 are automatically fulfilled
as a consequence of the boundary conditions at s = 1.

It is a matter of simple algebra to show that

lim
ε→0+

∫ 1

0
ds(u′

ε )2 = 1. (A11)

Therefore, the irreversible work for this family of functions
approaches the minimum value for the standard problem, with
only the values of u fixed at the boundaries, as ε goes to zero.
Since the minimum in the overdetermined problem, with extra
conditions on the derivative, cannot be smaller than that for
the standard problem, we conclude that the solution for the

overdetermined problem is given by limε→0+ uε (s). In other
words, the solution for the standard problem with a sudden
finite jump at the boundary.

Figure 9 shows the corresponding stiffness protocols κε (t ),
as given by inserting the family uε (t ) into (A2), for several
values of ε. They are compared with the solution κ∗

u (t ) that we
calculate in the main text by applying Pontryagin’s principle,
which has finite jumps at the boundaries. It is neatly observed
how the proposed surgery procedure recovers the solution
κ∗

u (t ) in the limit as ε → 0+, including the jump at the
boundary, although κε (t ) is continuous and has continuous
derivative everywhere for any finite ε.

APPENDIX B: DERIVATION OF THE SOLUTION
FOR THE BOUNDED CASE

Let us consider the solution for the bounded case in more
detail. We focus on the decompression case because the calcu-
lations are simpler as a consequence of our choosing κmin = 0.
In the main text, we have built the optimal solution κ∗(t ) by
assuming that (i) when κ∗ touches the boundary κ = 0, then
κ∗ remains over the boundary for longer times, and (ii) the
upper bound κmax plays no role in the decompression problem.
In what follows, we show that this is indeed the case.

On the one hand, the solution of the system of equations
(24) provides the optimal time evolution inside those time
windows such that the corresponding stiffness κ̃ calculated
from (23) remains non-negative, i.e.,

ψ1

2ψ0
y1 + 1 � 0. (B1)

In those time windows, the optimal stiffness is κ∗ = κ̃ and, as
a consequence, y1 is a linear function of time. Note that the
left-hand side of (B1) above is simply κ̃y2

1. On the other hand,
inside the time windows for which

ψ1

2ψ0
y1 + 1 < 0, (B2)

we have that κ∗ = 0 and y1(t ) satisfies the particularization of
(9) to κ = 0.

In principle, there may appear a number of different time
windows with several joining times [0, t1], [t1, t2], . . ., [tn, tf],
with the solution changing from linear to the κ = 0 case (or
vice versa) at each of the joining times tk . Now, we prove that
there is only one joining time t1 (t J

d in the notation of the
main text) by establishing that once κ̃ = 0 at a certain time,
the optimal control κ∗ remains over the boundary. To do this,
we show that

d

dt

(
ψ1

2ψ0
y1 + 1

)
< 0, if

ψ1

2ψ0
y1 + 1 � 0. (B3)

Since the condition ψ1

2ψ0
y1 + 1 � 0 implies that κ̃ � 0, it suf-

fices to prove that ψ1

2ψ0
y1 + 1 is decreasing for κ = 0. By using

the evolution equations for that case, it is readily shown that

d

dt

(
ψ1

2ψ0
y1 + 1

)∣∣∣∣
κ=0

=
[

2

y2
1

(
ψ1

2ψ0
y1 + 1

)
− 1

y2
1

]
κ=0

< 0.

(B4)

Second, we explain why the upper bound plays no role
in the decompression process. At stated in the main text, at
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t = 0+ the stiffness coming from the proposed solution is
positive and lower than κi = 1; (42) leads to κ∗

d (t = 0) = 1 −
md , and 0 < md < 1. Moreover, in the “linear” time window
[0, t J

d ], the stiffness monotonically decreases because

dκ∗
d

dt
= md

[y1,lin(t )]3
[md y1,lin(t ) − 2] < 0, 0 < t � t J

d .

(B5)

Initially, this derivative is negative because y1(t = 0) = 1.
The term in parentheses increases linearly but at the joining
time md y1(t J

d ) = 1 [see (40)], so the derivative is still negative.
Therefore, it does not change sign in the interval [0, t J

d ], being
always negative therein. Since once it touches the boundary,

κ∗
d remains constant, we have

dκ∗
d

dt
� 0, 0 < t < tf. (B6)

Thus, it is clear that the upper bound κmax is irrelevant
when finding the optimal stiffness protocol for decompression
κ∗

d (t ) < 1 for all times.
Along similar lines, it is shown that the solution given in

the main text is the only one for compression: there is also
only one connecting time and the lower bound κmin = 0 is
irrelevant in that case. The calculations are a little bit lengthier
and are thus not given here.
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