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Abstract: This paper proposes a new ellipsoid-based guaranteed state estimation approach
for linear discrete-time systems with bounded perturbations and bounded measurement noise.
This approach is based on the minimization of the radius of the ellipsoidal state estimation set.
Firstly, the ellipsoidal state estimation is computed by off-line solving a Linear Matrix Inequality
optimization problem. Secondly, a new online method is developed in order to improve the
accuracy of the estimation but it leads to an increase of the online computation load. A new
scaling technique is proposed to reduce the computation time, while keeping a good accuracy
of the state estimation. An illustrative example is analyzed in order to show the advantages of
the proposed approach.
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1. INTRODUCTION

Knowing the system state is crucial for solving many
control problems. However, in many cases, the full state is
not directly measurable and an estimation of the system
state is required. Stochastic and set membership methods
for state estimation have been proposed in the literature.

The stochastic approaches (e.g. Kalman filter theory –
see Kalman (1960)) assume that the perturbations and
measurement noises have a known (usually Gaussian) dis-
tribution. This assumption is in many cases difficult to
validate. Thus, it may be more realistic to assume that the
perturbations and measurement noises are unknown but
bounded. This leads to the problem of guaranteed state
estimation introduced by Schweppe (1968), Wistenhausen
(1968). Set-membership approaches have been developed
in Bertsekas and Rhodes (1971), Fogel and Huang (1982).
In these approaches, the idea is to compute a compact
set that guarantees to contain the set of states that are
consistent with the model of the system, the realiza-
tion of the measurement and the bounded perturbations
and measurement noises. To implement set-membership
estimation techniques, several sets are used: ellipsoids
(Kurzhanski and Vályi (1996), Durieu et al. (2001), Polyak
et al. (2004), Daryin et al. (2006), Daryin and Kurzhanski
(2012), Chernousko (1994)), polytopes (Walter and Piet-
Lahanier (1989)), parallelotopes (Chisci et al. (1996)), and
zonotopes (Puig et al. (2001), Combastel (2003), Alamo
et al. (2005), Le et al. (2013)).

Ellipsoids are widely used due to the simplicity of their
formulation and resulting estimation stability properties
(Hu and Lin (2003)). To minimize the size of the esti-

mation ellipsoidal set, two methods are mainly considered
(see Durieu et al. (2001)). Firstly, the determinant-based
criterion is minimized, which is equivalent to minimize the
volume of the ellipsoidal set. Secondly, the minimization of
the trace criterion, which is equivalent to minimize the sum
of squares of the half length of the axes of the ellipsoid, is
considered in the literature. These two methods offer low
complexity, but with a loss of accuracy compared to the
polytopic estimation (Durieu et al. (2001)).

In this paper, a new approach for guaranteed state esti-
mation for Multi-Input Multi-Output linear systems by
minimizing the radius of the ellipsoidal estimation set is
proposed. First, off-line solving a Linear Matrix Inequality
(LMI) problem leads to a constant observer gain matrix
related to the center of the ellipsoid. Second, to improve
the state estimation, this observer gain is updated online
at each iteration by solving an LMI optimization problem.
This leads to a more accurate estimation than the off-line
method, but with a significant increase of the computation
burden. Third, in order to reduce the computation load,
while keeping a suitable level of the estimation accuracy,
a new scaling technique is further proposed.

The paper is organized as follows. Section 2 presents
a new off-line method for guaranteed state estimation
using ellipsoids. Based on a first solution obtained off-line,
Sections 3 proposes an online approach that will improve
the convergence of the ellipsoidal state estimation method.
A scaling technique is proposed in Section 4 in order to
reduce the computation time of the online method. An
illustrative example comparing the proposed methods is
analyzed in Section 5. Finally, some concluding remarks
and perspectives are drawn.
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Notations and definitions

An interval [a, b] is defined as the set {x ∈ R : a ≤ x ≤ b}.
A unitary interval is B = [-1,1]. A box ([a1, b1], . . . , [an, bn])>

is an interval vector. A unitary box in Rm, denoted by Bm,
is a box composed by m unitary intervals.

A symmetric matrix M = M> ∈ Rn×n is called a positive
definite matrix (resp. negative definite matrix ), denoted
M � 0 (resp. M ≺ 0), if z>Mz > 0 (resp. z>Mz < 0) for
all non-zero vectors z with real entries (z ∈ Rn\{0n}).
Given a matrix P = P> � 0, a vector x̄ ∈ Rnx and a
scalar ρ ∈ R∗+, the bounded ellipsoid E(P, x̄, ρ) is the set:

E(P, x̄, ρ) = { x ∈ Rnx : (x− x̄)>P (x− x̄) ≤ ρ }, (1)

where P is the shape matrix of the ellipsoid, x̄ its center
and ρ its radius.

A polyhedral set in a finite-dimensional euclidean space is
the intersection of a finite number of closed half-spaces.
Given a bounded polyhedral set X , denote by VX the set
of its vertices.

2. GUARANTEED ELLIPSOIDAL STATE
ESTIMATION

Consider the following discrete-time Linear Time Invariant
(LTI) system: {

xk+1 = Axk +Buk + Eωk
yk = Cxk +Duk + Fωk

(2)

where xk ∈ Rnx is the state vector of the system, uk ∈ Rnu

is the input vector, and yk ∈ Rny is the measured output
vector at sample time k. The vector ωk ∈ Rnx+ny contains
the state perturbations and the measurement perturba-
tions (noise, offset, etc.), which can be non-correlated.
Matrices A, B, C, D, E, and F have the appropriate
dimensions, with the pair (C,A) detectable and the pair
(A,B) stabilizable. It is assumed that the perturbations
ωk are bounded by the unitary interval Bnx+ny and the
initial state x0 is bounded by the ellipsoid:
E(P0, x̄0, ρ0) = { x ∈ Rnx : (x − x̄0)>P0(x − x̄0) ≤ ρ0 },
with x̄0 the initial nominal state. In fact, the matrices E
and F represent weights for the normalized perturbations
ωk ∈ Bnx+ny .

Given an ellipsoidal estimation set for xk of the form
E(P, x̄k, ρk), with x̄k the nominal estimated state, the aim
of this paper is to provide an ellipsoidal state estimation
set for xk+1 of the form E(P, x̄k+1, ρk+1) in such a way
that:

ρk+1 ≤ βρk + σ (3)

where β ∈ (0, 1) and σ is a bounded positive scalar (σ > 0).
Imposing this condition allows us to guarantee the non-
increasing property of the ellipsoidal radius. A similar
condition is considered by Le et al. (2013) for zonotopic
guaranteed state estimation.

Finding a guaranteed ellipsoid which contains the state
vector xk at each sampling time k is formulated by the
following theorem.

Theorem 1. Consider an initial state vector x0 and assume
that xk ∈ E(P, x̄k, ρk) at time k. Given a scalar β ∈
(0, 1), if there exist a symmetric positive definite matrix
P = P> � 0 in Rnx×nx , a matrix Y ∈ Rnx×ny and a

scalar σ > 0 for which the following LMI holds for every
ωk ∈ VBnx+ny : βP 0 A>P − C>Y >

0 σ ω>k (E>P − F>Y >)
PA− Y C (PE − Y F )ωk P

 � 0,

(4)
then the system state xk+1 at time k + 1 is guaranteed
to belong to the ellipsoid E(P, x̄k+1, ρk+1),∀ωk ∈ Bnx+ny ,
with the following notations:

Y = PL, (5)

x̄k+1 =Ax̄k +Buk + L(yk − Cx̄k −Duk), (6)

ρk+1 ≤ βρk + σ. (7)

Proof: Denote by zk = xk − x̄k the error between the
real state and the nominal estimated state at time k.
Computing the error zk+1 at the next time instant leads
to:

zk+1 = (A− LC)zk + (E − LF )ωk = ALzk + ηk, (8)

with AL = A− LC and ηk = (E − LF )ωk.

To prove the result of Theorem 1, we will show that:

z>k Pzk ≤ ρk ⇒ z>k+1Pzk+1 ≤ ρk+1 ≤ βρk + σ. (9)

Denote F0(zk) = ρk+1 − (ALzk + ηk)>P (ALzk + ηk) =
ρk+1 − z>k+1Pzk+1 and F1(zk) = ρk − z>k Pzk. Using the
S-Procedure (Boyd et al. (1994)) detailed in Appendix,
with p = 1, expression (9) is verified if there exists µ > 0
such that F0(zk)− µF1(zk) ≥ 0, ∀ωk ∈ Bnx+ny , which is
equivalent to:
z>k+1Pzk+1 + µ(ρk − z>k Pzk) ≤ ρk+1, ∀ωk ∈ Bnx+ny .
From ρk+1 ≤ βρk + σ, it infers that:
z>k+1Pzk+1 + µ(ρk − z>k Pzk) ≤ βρk + σ, ∀ωk ∈ Bnx+ny .

Fixing the value of µ equal to β, we obtain:
z>k+1Pzk+1 + β(ρk − z>k Pzk) ≤ βρk + σ, ∀ωk ∈ Bnx+ny .
Replacing the term zk+1 with the equation (8), the follow-
ing inequality is obtained:
(ALzk+ηk)>P (ALzk+ηk)−βz>k Pzk ≤ σ, ∀ωk ∈ Bnx+ny .
This is equivalent to:
z>k A

>
LPALzk + η>k Pηk + 2η>k PALzk − βz>k Pzk − σ ≤ 0,

∀ωk ∈ Bnx+ny , which can be rewritten as:[
zk
1

]> [
A>LPAL − βP A>LPηk

η>k PAL −σ + η>k Pηk

] [
zk
1

]
≤ 0,

∀ωk ∈ Bnx+ny , ∀zk ∈ Rnx . This is satisfied if:[
−A>LPAL + βP −A>LPηk
−η>k PAL σ − η>k Pηk

]
� 0, ∀ωk ∈ Bnx+ny ,

which is equivalent to[
βP 0
0 σ

]
−
[
A>LP
η>k P

]
P−1 [ PAL Pηk ] � 0, ∀ωk ∈ Bnx+ny .

Applying Schur complement (Boyd et al. (1994)) leads to: βP 0 A>LP
0 σ η>k P

PAL Pηk P

 � 0, ∀ωk ∈ Bnx+ny .

From the equalities AL = A− LC, ηk = (E − LF )ωk and
Y = PL, the equivalent expression follows:
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 βP 0 A>P − C>Y >
0 σ ω>k (E>P − F>Y >)

PA− Y C (PE − Y F )ωk P

 � 0,

∀ωk ∈ Bnx+ny .

Since ωk appears in an affine way in the previous LMI, the
inequality is satisfied if and only if it is verified for all the
vertices of Bnx+ny . This completes the proof. 2

Remark 1. The center of the ellipsoid x̄k+1 (which is the
nominal state estimation at time k + 1) is computed like
a Luenberger observer which is motivated by the fact that
the system is linear. The gain L = P−1Y is obtained after
solving LMI (4). Note that when β is a free variable in
the interval (0, 1), expression (4) becomes a very simple
case of Bilinear Matrix Inequality (BMI). As β ∈ (0, 1)
is a bounded scalar, this expression can be rewritten as
a LMI problem by successively fixing the value of β via
the bisection algorithm or using any available BMI solver
from the literature (e.g. penbmi solver Kočvara and Stingl
(2003)).

Remark 2. A sufficient condition is to choose ρk+1 =
βρk + σ in the equation (7), which means to consider the
worst case.

Remark 3. At infinity, the sequence ρk converges to ρ∞ =
σ

1−β . Reducing the size of the associated ellipsoid can

be done by minimizing σ subject to LMI (4) and the
additional constraint trP ≤ 1. Another possibility is to
impose P � I as additional constraint.

The proposed optimization problem is solved off-line.
Online, it is possible to take advantage of the knowledge of
matrix P in order to obtain a different gain Lk at each time
instant k. The online method improves the rapidity of the
convergence of the estimation. Given x̄k and ρk, it consists
in minimizing the radius ρk+1 at each time instant. This
method will be developed in the next section.

3. ONLINE ELLIPSOIDAL STATE ESTIMATION

This section proposes a new online method which improves
the convergence of the state estimation. In fact, once the
matrix P is computed off-line, it is possible to improve the
convergence by computing an optimal value for Lk at each
iteration. The existence of P , L, and β (initially computed
via the off-line method) guarantees the existence of Lk
satisfying the considered constraints. This method allows
minimizing the radius ρk+1 at each iteration. Therefore,
it ensures the non-increasing condition of the ellipsoidal
radius. The following proposition formulates the proposed
online approach.

Theorem 2. Consider that at time instant k the system
state xk belongs to the ellipsoid E(P, x̄k, ρk), with the
matrix P , the radius ρk and the scalar σ computed off-line
(using the result of Theorem 1 ). If there exist a matrix
Yk ∈ Rnx×ny , a scalar β ∈ (0, 1) and a radius ρk+1

satisfying the following LMI optimization problem for all
ωk ∈ VBnx+ny :

min
β,Yk,ρk+1

ρk+1

subject to


 βP 0 A>P − C>Y >k

0 ρk+1 − βρk ω>k (E>P − F>Y >k )
PA− YkC (PE − YkF )ωk P

 � 0

ρk+1 ≤ βρk + σ
(10)

then the system state xk+1 at time k + 1 is guaranteed
to belong to the ellipsoid E(P, x̄k+1, ρk+1), for all ωk ∈
Bnx+ny , with:

PLk = Yk (11)

x̄k+1 =Ax̄k +Buk + Lk(yk − Cx̄k −Duk). (12)

Proof: The proof is similar to the proof of Theorem 1, re-
placing σ by ρk+1−βρk and L by Lk. 2

The second constraint ρk+1 ≤ βρk+σ of LMIs (10) ensures
the non-increasing condition of the ellipsoidal radius. In
fact, this implies a reduction on the ellipsoidal radius only
if the radius ρk is larger than ρ∞.

Online verifying the LMI problem (10) for all the vertices
of Bnx+ny requires a large computation time and it is
suitable to find a technique reducing the number of the
vertices to be checked. This will be detailed in the next
section.

4. NEW SCALING TECHNIQUE FOR THE ONLINE
ELLIPSOIDAL STATE ESTIMATION METHOD

To avoid the vertex enumeration and reduce the computa-
tion time when solving problem (10) online, a new scaling
technique is proposed in this section. This technique is
based on the results developed by Alamo et al. (2008) and
it will be applied to the LMI optimization problem (10).

The perturbation vector ωk can be written as:
ωk = [ωk1 ωk2 . . . ωknx+ny

]> ∈ Bnx+ny . In the element-
wise formulation, the following expressions are true:

|ωk| ≤ 1 and ω2
k ≤ 1.

Denote by ei the columns of the following identity ma-
trix Inx+ny =

[
e1 e2 . . . enx+ny

]
. This permits writing:

ω>k eie
>
i ωk ≤ 1, i = 1, . . . , nx + ny. Then, denoting by

Ti = eie
>
i the matrix having only the element (i, i) equal

to 1, it leads to the following scalar inequalities:

ω>k Tiωk ≤ 1, i = 1, . . . , nx + ny. (13)

Property 1. Consider a positive definite matrix S ∈
R(nx+ny)×(nx+ny) and the positive real scalars ρ > 0 and
τi ≥ 0, i = 1, . . . , nx + ny. If:

ω>k Tiωk ≤ 1, i = 1, . . . , nx + ny, (a)
nx+ny∑
i=0

τi < ρ, i = 1, . . . , nx + ny, (b)

nx+ny∑
i=0

τiTi � S, with S � 0, (c)

(14)

then the following inequality holds
ωkω

>
k

ρ ≺ S−1.

Proof: From (14.b), it is trivial to see that:

ρ >
nx+ny∑
i=0

τi ≥ 0.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6535



Multiplying left and right expression (14.c) by ω>k and ωk,
respectively, and then using (14.a), leads to:

ω>k Sωk < ω>k (

nx+ny∑
i=0

τiTi)ωk =

nx+ny∑
i=0

τi(ω
>
k Tiωk)

≤
nx+ny∑
i=0

τi < ρ.

This can be rewritten as ρ−ω>k Sωk > 0, S � 0 and further
reformulated using the Schur complement:[

ρ ω>k
ωk S

−1

]
� 0, S � 0

or equivalently: [
S−1 ωk
ω>k ρ

]
� 0, ρ > 0.

Applying again the Schur complement, gives:

S−1 − ωkρ−1ω>k � 0, ρ > 0.

which leads to
ωkω

>
k

ρ ≺ S−1. This completes the proof. 2

Applying Property 1 to problem (10), the following prop-
erty is obtained.

Property 2. If the first LMI constraint of the optimization
problem (10) is verified: βP 0 A>P − C>Y >k

0 ρk+1 − βρk ω>k (E>P − F>Y >k )
PA− YkC (PE − YkF )ωk P

 � 0

(15)
∀ωk ∈ VBnx+ny , then there exist a scalar β > 0 and
a matrix S = S> ∈ R(nx+ny)×(nx+ny) verifying the
constraints (14.a), (14.b) and (14.c) of Property 1 such
that:


 βP A>P − C>Y >k 0
PA− YkC P PE − YkF

0 E>P − F>Y >k S

 � 0,

ρk+1 − βρk > 0.

(16)

Proof: Pre multiplying and post multiplying inequality

(15) by

[
I 0 0
0 0 I
0 I 0

]
leads to: βP A>P − C>Y >k 0

PA− YkC P (PE − YkF )ωk
0 ω>k (E>P − F>Y >k ) ρk+1 − βρk

 � 0

(17)
with ρk+1−βρk > 0. Applying the Schur complement and
using the notation PE − YkF = Hk, gives: βP A>P − C>Y >k

PA− YkC P −Hkωk
1

ρk+1 − βρk
ω>k H

>
k

 � 0, (18)

with ρk+1 − βρk > 0. Applying Property 1 to the term
ωk

1
ρk+1−βρkω

>
k , with ρ = ρk+1 − βρk, means that ∃S =

S> � 0 such that:

ωk
1

ρk+1 − βρk
ω>k ≺ S−1 (19)

or equivalently:

−ωk
1

ρk+1 − βρk
ω>k � −S−1, ρk+1 − βρk > 0.

Therefore, if the following expression is verified:[
βP A>P − C>Y >k

PA− YkC P − (PE − YkF )S−1(E>P − F>Y >k )

]
� 0,

(20)
with S � 0, then expression (16) is verified. The constraint
(20) can be decomposed as the following:[

βP A>P − C>Y >k
PA− YkC P

]
−
[

0
PE − YkF

]
S−1[

0 E>P − F>Y >k
]
� 0, S � 0.

Applying the Schur complement leads to expression (16),
which completes the proof. 2

Remark 4. Property 2 permits avoiding the vertex enu-
meration used in Theorem 2 corresponding to the online
ellipsoidal state estimation.

5. ILLUSTRATIVE EXAMPLE

Consider the following linear discrete-time invariant sys-
tem:

xk+1 =

[
1 0 0.2
0 0.8 1
0 0 1

]
xk +

[
0.1 0 0 0 0
0 0.05 0 0 0
0 0 0.05 0 0

]
ωk

yk =

[
1 0 2
0 −1 1

]
xk +

[
0 0 0 0.15 0
0 0 0 0 0.15

]
ωk

(21)
with ‖ωk‖∞ ≤ 1. The value of ωk is generated by a
random function. The initial state belongs to the ellipsoid
E(I3, (0, 0, 0),

√
2) as an arbitrary initialization. In this

example, the results obtained by the off-line ellipsoidal
state estimation method (detailed in Section 2), the online
ellipsoidal state estimation method (detailed in Section 3)
and the online method with the scaling technique (detailed
in Section 4) are analyzed.

Figures 1, 2 and 3 compare the bounds of xk obtained
via the proposed methods: the off-line ellipsoidal estima-
tion method (blue dashed lines), the online ellipsoidal
estimation method (magenta dashdot lines), and online
ellipsoidal estimation method with the scaling technique
(black solid lines). The red stars represent the real state
of the system. These points are found between the upper
bound and the lower bound of xk, which confirms that
the bounds are well estimated. The online method offers a
faster convergence rate of the estimation than the off-line
method (see Fig. 1, 2, 3).

The simulation results have been obtained with an Intel
Core i7 − 3770 3.40 GHz, using the LMI solver mincx of
MATLABTMRobust Control Toolbox.

Figures 4, 5, and 6 illustrate the comparison of the width of
the bounds of xk computed by the proposed methods and
the off-line P -radius-based zonotopic estimation, consid-
ering the off-line method as reference. The best accuracy
of the estimation is obtained using the online ellipsoidal
estimation method. Using the scaling technique will sig-
nificantly increase the accuracy compared to the off-line
P -radius-based zonotopic estimation method and reduce
the complexity comparing to the online method (see Table
1), but with a small loss on the accuracy compared to the
results obtained via the online method (Fig. 1, 2, 3). The
increase of the bounds width of xk for the P -radius-based
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Fig. 1. Bounds on x1

Fig. 2. Bounds on x2

Fig. 3. Bounds on x3

zonotopic estimation method at the beginning is related to
the rate of convergence of this method. In conclusion, the
online estimation method with the scaling technique offers
a good trade-off between the accuracy of the ellipsoidal
state estimation and the computation time.

Table 1. Total computation time after 50 time
instants

Algorithm Time(second)

Off-line method (without off-line optimization) 0.5148
Off-line method (with off-line optimization) 1.1232
Online method 7.8625
Online method with scaling technique 1.7628

Fig. 4. Comparison of the bound’s width of x1

Fig. 5. Comparison of the bound’s width of x2

Table 2 shows the volume of the ellipsoidal estimation sets
at the steady-state obtained by different methods. This
confirms that the online method with the scaling technique
offers good accuracy compared to the off-line estimation,
with a gain on the computation time compared to the
online estimation method (see Table 1).

Table 2. Comparison of the volume of the
estimation sets at the steady-state

Algorithm Volume

Off-line method 8.9666
Online method 0.0041
Online method with scaling technique 0.0247

6. CONCLUSION

A new approach to guaranteed ellipsoidal state estima-
tion for multivariable linear discrete-time systems with
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Fig. 6. Comparison of the bound’s width of x3

bounded perturbations and measurement noise has been
proposed. The proposed approach bounds the set of the
system states that are consistent with the output measure-
ment by an ellipsoid. First, this ellipsoidal set is minimized
at each iteration by off-line solving an LMI problem. A
new online method is further proposed to improve the
accuracy of the estimation. Using a new scaling technique
together with the online method, the computation time
is significantly reduced, while keeping an acceptable level
of the estimation accuracy. An example illustrates the
performance of the proposed methods.

Two interesting perspectives are to extend these methods
to the case of systems with interval uncertainties and to
apply them to fault detection and fault tolerant control
purposes.

7. APPENDIX

S-procedure for quadratic functions and nonstrict inequal-
ities (see Boyd et al. (1994)): Let F0, . . . , Fp be quadratic

functions of variable ζ ∈ Rn: Fi(ζ)
∆
= ζ>Tiζ + 2µ>i ζ + vi,

with i = 0, . . . , p and Ti = T>i . Consider:

F0(ζ) ≥ 0 for all ζ such that Fi(ζ) ≥ 0, i = 1, . . . , p (22)

If ∃τi ≥ 0, i = 1, . . . , p, such that F0(ζ) −
p∑
i=1

τiFi(ζ) ≥ 0

for all ζ, then expression (22) holds. It is a non trivial fact
that when p = 1, the converse holds meaning that there is
some ζ0 such that F0(ζ0) ≥ 0.
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