
Copyright © IFAC Intelligent Components for Vehicles,
Seville, Spain, 1998

APPLICATION OF A NATURAL LANGUAGE INTERFACE TO THE
TELEOPERATION OF A MOBILE ROBOT

J.M. Gonzalez Romano*, J. G6mez Ortega** and E.F. Camacho**

*Dpto. Lenguajes y Sistemas Informaticos. Facultad de Informatica. Universidad de Sevilla.
Avda. Reina Mercedes sin. 41012 Sevilla.

**Dpto. Ing. de Sistemas y Automatica. Escuela Superior de Ingenieros. Universidad de
Sevilla. eamino de los Descubrimientos sin. 41092 Sevilla.

Abstract: This paper describes the application of a natural language interface to the
teleoperation of a mobile robot. Natural language communication with robots is a major goal,
since it allows for non expert people to communicate with robots in his or her own language.
This communication has to be flexible enough to allow the user to control the robot with a
minimum knowledge about its details. In order to do this, the user must be able to perform
simple operations as well as high level tasks which involve multiple elements of the system.
For this ones, an adequate representation of the knowledge about the robot and its
environment will allow the creation of a plan of simple actions whose execution will result in
the accomplishment of the requested task. Copyright © 1998 IFAC

Keywords: Telerobotics, Man-machine interfaces, Natural language.

1. INTRODUCTION

One important goal in the robotic field is the
developing of friendly human-robot interfaces that
allow inexperienced operators to deal with robots. For
instance, a robotized assembly system could be better
controlled by an expert in assembly systems instead of
an expert in robotics. The design of such an interface is
a complex task because a number of different
technologies in robot control, computer vision, man­
machine communication and learning fields have to be
put together.

With respect to the man-machine interface, one
interesting approach is the use of natural language
interfaces (NU), which allow the interaction with the
robot through commands given in the own robot
operator's language. NU have been successfully used
in a wide variety of fields like communication with
expert systems, database access systems or operating
systems. Their main advantages are that a very short
training period is required and that they seem natural
to the operator.

In the robotics field, several works can be found in the
literature where NU are used for robot control and
operation. Two of the first systems, developed in the
seventies, at the beginnings of the Artificial
Intelligence, were ROBOT (Harris, 1997) and
SHRDLU (Winograd, 1972). Both systems worked
with a simulated robot. The improvement in
computational facilities has lead to the development of

413

more powerful systems which can interact in real time
with real robots. Selfridge (Selfridge and Vannoy,
1986) developed a NU for a robotized assembly
system which allows the operator to hold a
conversation with the system in order to carry out
several manipulation and vision tasks like object
recognition and assembly to built more complex
objects. SAM (Brown, 1992) combines written and
spoken language; the robot has a video camera in order
to recognise the objects. Torrance (Torrance, 1994)
developed a NU to a mobile robot through which the
user can command the robot to move through an
environment and to memorise it.

This paper presents the application of a NU to the
teleoperation of a NOMAD 200 mobile robot. The
work is focused on the communication between the
robot and the human operator. The operator will be
able to issue high level commands to the robot, and the
NU will decompose them in a set of lower level
commands which will be executed directly by the
robot navigation and control system. The operator does
not need any knowledge about this robot-level
commands. The information needed for this task is
stored in a previously created knowledge database.
Section 2 presents the main characteristics of the NU.
Section 3 describes the tasks that can be carried out by
the system. Finally, section 4 shows the conclusions.

2. DESCRIPTION OF THE NU

The 1\11-1 is a part of a more complex system aimed at

communicating in natural language with complex
interactive systems (Gonzalez, 1997b). This system
uses a NU to acquire the knowledge of a generic
complex system and another NU to operate it. The
system is composed of two different parts: the
acquisition module and the operation module. The fIrst
one works off-line, while the second one works on­
line. The acquisition module allows the user to
describe a system by introducing phrases in his own
natural language, and stores the acquired knowledge in
a knowledge database. By using this knowledge, the
operation module allows to operate the system through
simple or complex natural language commands. The
accomplishment of the latter ones requires a previous
planning of the actions to be carried out.

Fig. 1 shows the block diagram of the developed
system, from which there exists a running prototype
(Gonzalez, 1991). This prototype connects to the real
system through its control system, which receives the
commands from the prototype and executes them over
the system. It is also possible to connect the prototype
to a program which simulates the behaviour of the
system when the connection is not possible or for
operator training purposes. The prototype has been
applied to different complex systems such as an
industrial process (Gonzalez, 1993) or an electric
network (Gonzalez, 1997a, b). This paper describes its
application to a mobile robot wich navigates in a
structured environment.

In/Out

Uoer

Input

Output

Natural
language
Intertace

ON·L1NE

Fig. I Block diagram of the developed prototype

2.1 The Knowledge Database

The knowledge database is an important part of the
prototype. It consists of two parts: the linguistic
knowledge database and the system knowledge
database. The fIrst one contains the linguistic
knowledge that is necessary to analyze and extract the
meaning of the user's phrases, and is composed of a
dictionnary and a grammar. The second one contains
all the necessary knowledge to describe the system,
and can be divided into declarative and procedural
knowledge. The fIrst one concerns the different kinds
of entities that can be found in the system: classes:
(different kinds of objects present in the system),
objects (particular instances of the classes),
connections (topological relations between objects),
groupings (groups of objects related to each other by

414

their topology or their function) and measurements:
(sensors which allow for some relevant magnitudes of
the system to be known).

Procedural knowledge includes a set of functions that
represent the means through which the goals of the
system can be fulfIlled. These functions are related to
the different entities found in the system (classes,
objects, groupings) or to the whole system. A function
has the following components (Fig. 2):

• Goal (g): is the goal fulfIlled by the function.
• Prerequisites (r;): are conditions that the system

must necessary accomplish before applying the
means for the fulfl1lment of the goal of the function.
A prerequisite can be a condition on a state or the
value of a property.

• Means (my): are the operations whose execution
results in the fulflllment of the goal of the function.
They can be simple actions over objects or classes,
or other functions . In general there will exist some
sequences of means in parallel: some means will
execute at the same time, as they are independent,
while others will have to do it in sequence, as every
means depends on the result of another.

• Criteria (c): is the criteria whose accomplishment
implies that the goal of the function has been
fulfilled. It is a condition over the value of some
property, and will always be true provided that the
means have been correctly executed.

• Posterior actions (Pij): are operations that must be
executed once the goal of the function has been
fulfilled, in order to leave the system in a specific
state. They can be simple actions or functions.

~~.:,.

~ ~
Fig. 2 Representation of a function

P, P, -0
.... -0

.-.--6

The execution of a function may need the previous
execution of other functions that act as means of it, and
may launch the execution of other functions that act as
posterior actions of it. When executing a function, it
will be decomposed into its constituents until there are
any functions left, thus obtaining a network made of
simple actions and conditions that willl be called the
actions network.

2.2 Knowledge Representation

The elected formalism for the representation of
knowledge has been that of frames (Minsky, 1975).
This is due to the hierarchical organization of the
knowledge, at the declarative (hierarchical structure of
clases) and the procedural level (hierachical structure
of functions) . Thus the knowledge database will be
composed of class, object, grouping, measurement and
function frames .

3. TELEOPERATION OF THE MOBILE ROBOT

The system to which the prototype has been applied is
a Nomad 200 mobile robot (Nomadic, 1997) which
navigates in a partially structured environment. It is
composed of a base with a turret mounted on it. The
base has two driving and one steering wheel, allowing
forward and backwards translation movements and left
and right turning. The turret is capable of rotating 3600

over itself independently of the base. Fig. 3 shows a
photograph of the robot. The goal of the application is
to teleoperate the robot from a terminal, through which
it will be given commands in order to perfonn certain
tasks, such as walk to a named place or walk forward
avoiding all the obstacles it can fmd along its way.

Fig. 3 Photograph of the NOMAD robot

3.1 System description

The robot navigates in a partially structured
environment composed of walls, furniture, doors and
obstacles. Fig. 4 shows the different classes of objects.
The hierarchical structure of the defmed functions is
shown in Fig. 5. Level 0 corresponds to simple actions
over the robot. Functions begin in level 1 and increase
its complexity in upper levels. As an example, let it be
the level 2 function walk_watching. Its goal is to make
the robot walk forward avoiding the obstacles it can
fmd along its way. To do this the robot is asked to
walk forward. The bumpers are checked during this
movement; if a collision is detected, then the robot
stops, walks backwards a little bit (unwalk 100), walks
around the obstacle (surround_obstacle), and follows
its way (walk watching). The frame for this function is
shown in Table 1.

Fig. 4 Class structure of the robotic system

415

Fig. 5 Structure of the functions of the robotic system

Table 1 Frame for the function walk watching

NAME
DESCRIPTION
ASOC TYPE
ASOC NA..iV1E
PRE
MEANS
CRlTERIA
POST

walk_watching
walk forward avoiding obstacles
class
robot
o
(go)
bumper = 1
(stop, unwalk 100,
surround obstacle, walk watching)

3.2 Robot operation

The Nomad 200 robot can be operated in two ways.
The fIrst one consists in executing the programs which
control the robot in the robot itself, as it has its own
CPu. Programs are transferred to the robot through the
network, and are executed once they are inside it. The
second one consists of using the control system located
in another machine which is connected to the robot
through an ethemet radio link. This second way is
more desirable, as it allows to have a friendly
development system and a graphical simulation
environment which allows to test the programs before
executing them on the real robot.

Since the control software of the robot is located in a
different machine than the prototype is, it has to be
settled a method to communicate both machines in
order to send the commands to the robot and to receive
its state. For this purpose the sockets have been used.
A socket is a way of transferring information between
processes which execute under UNIX operating
system. Processes can execute in the same machine or
in different machines connected through a network, as
in this case, which is illustrated in Fig. 6.
Communication with sockets is based on the client­
server model. There are two server processes which
run in the machine where the robot control software is
located, and two client processes which are launched

by the prototype to send and receive information from
the robot. Fig. 7 shows the communications schema.

Fig. 6 Connection of the prototype to the Nomad robot

Fig. 7 Communication between prototype and robot

The two possible communication types are:

a) Execution of a command over the robot: the
prototype launches a client Cl which connects to
the server SI and sends the command, which is
translated and in turn sent to the robot for its
execution. The client updates the system
knowledge database and ends its execution.

b) Request for information about the robot: the
prototype launches a client C2 which connects to
the server S2 and receives the actual state of the
robot, with which it updates the system knowledge
database. Then it shows the user the requested
information and ends it execution.

Simple commands. Simple commands are those which
apply directly to an element or group of elements, and
can be divided into two cathegories: action execution
commands and information request commands. The
fIrst one includes commands with which the user
requests the execution of a specifIc action over an
object or set of objects. The following are examples of
this kind of commands:

> go ~he nomad r obot .
> accelerate.
> stop n omad .
> t urn right.

Action execution commands imply the performing of a
specifIc action over a specifIc object; the recognition
process of these commands consists of identifying the
action which has to be done and the object to which it
has to be applied. Once this has been done, it should be
checked whether the action can be applied to the
object, and if the actual state of the object allows for
the application of that action. If everything is correct,
the action will be executed, and the object will be set

416

to its new state.

Information request commands are those commands
with which the user ales for a specifIc information
about an object or a set of objects. For instance,

> show t he positi on o f the nomad r obot .
> show i ts veloci t y.

The requested information corresponds to the state or
property value of an object or grouping. The
recognition process of these commands consists of
identifying the object or grouping whose state or
property is to be known and, in this latter case, the
corresponding property, which must be a valid
property and must have an associated measurement.

Complex commands: actions network. Complex
commands are those that imply the execution of a plan
of actions in order to fulfill a specifIc goal. The plan of
actions is a sequence of simple actions over some
objects in a predetermined order, and is generated
from the knowledge stored in the system knowledge
database. Given a goal, there will exist in the
knowledge database at least a function which will have
this goal as its goal. The frame for this function will be
the starting point to generate the plan of actions which
allows to fulflll the command. Thus, the different
means, prerequisites and posterior actions of this frame
will be analysed one by one. Each means m · and

. . lj

postenor actIon Pi} from this function can be a simple
or complex command. Every prerequisite ri can be a
complex command or a condition over a state or the
value of a property. Simple and complex commands,
as well as conditions, have a structure that is
represented by a Petri Net (Silva, 1985). Each structure
has at least an input place and an output place. The
input place will be marked when the net is activated,
whereas the marking of the output place will mean the
ending of its traversal.

A simple command is represented by two places and
one transition (Fig. 8). The input place represents the
action to be executed over the object to which the
command is applied, and will be marked when the
command starts its execution. The transition represents
the state to which the object is to be taken, and will be
fIred when the action over it has been done. At this
moment the output place representing the fulflllment
of the simple command will be marked.

Fig. 8 Structure of a simple command and a condition

For complex commands there will exist in the
knowledge database another function whose goal
corresponds to that command, and that will have its
own means, prerequisites, criteria and posterior
actions. The network representing this function will be
a subnetwork of the one corresponding to the main

function, and should in turn be expanded, should there
have another complex command between its means,
prerequisites and posterior actions. Its structure is
shown in Fig. 9. There is an input place which will be
marked when the execution of the complex command
begins, and this mark will propagate automatically to
all the prerequisites. The output place of the net is the
goal place. When the marks reaches this place the goal
will be fulfilled, in spite of the end of the posterior
actionsPij·

Fig. 9 Structure of a complex command

Finally, a condition type prerequisite is represented by
two places and a transition, as it is shown in Fig. 8.
The input place will be marked when the evaluation of
the prerequisite starts. The transition represents the
desired state or property value, and will be fIred when
it has the adequate value, resulting in the marking of
the output place.

If every means, posterior action and prerequisite is
successively divided until there only are simple actions
and conditions, a network, the actions network, will
be obtained. Places in this network represent direct
actions over objects and transitions represent
conditions over the state of the objects or the value of
their properties. The initial marking corresponds to the
fIrst simple actions to be executed and the fIrst
conditions to be checked. The marks will propagate as
the transitions are fIred, as a result of the
accomplishment of the conditions, until the mark
reaches the goal place. Fig. 10 shows the generic
structure of an actions network.

r
&-i--- m"

--0
r

&+-- --0

r

&+-- --0

Fig. 10 Structure of an actions network

The goal will be fulfilled when the place g is marked.
In order for this to happen, condition c should be true
when all of its input places are marked. This will
happen once the corresponding means mij have been
accomplished. The initial marking of these means will
in turn depend on the marking of the ending places of
the prerequisites r j • On the other hand, once the goal g
has been fulfilled its output transition will be fIred
marking the input places of the posterior actions Pij.
The initial marking of the network will correspond to
the initial places of the prerequisites rj, and will
propagate towards the goal as transitions are fIred.

417

To summarise, in order for a goal to be fulfilled there
have to be accomplished, in the fIrst place, all the
requisites. These are, thus, necessary but not suffIcient
conditions for the fulfll1ment of the goa1. Once the
prerequisites are accomplished, the accomplishment of
every means results in the fulfillrnent of the goal,
provided that the criteria is true. The accomplishment
of the means plus the criteria is, therefore, the
necessary and suffIcient condition for the main goal to
be fulfilled. Finally, once the goal place has been
reached, the posterior actions will be executed.

3.3 Operation examples

As an example of simple commands a sequence of
actions over the robot is shown.

> where is nomad?
NOMAD IS CURRENTLY AT LABORATORY 1

> go nomad.
ROBOT NOMAD GOING

> turnright.
ROBOT NOMAD TURNING

> stop.
ROBOT NOMAD STOPPED

> turnleft.
ROBOT NOMAD TURNING

> go.
ROBOT NOMAD GOING

> turnright.
ROBOT NOMAD TURNING

> stop.
ROBOT NOMAD STOPPED

> where is nomad?
NOMAD IS CURRENTLY AT LABORATORY 2

> what is its velocity?
THE VALUE OF NOMAD'S VELOCITY IS 0

As an example of the execution of complex
commands, it is shown the execution of the goal
walk_watching, which consists in making the robot
walk forward avoiding possible obstacles. Fig. 11
shows the graphical representation of the frame
representing this function, which appeared in Table 1.
The function frames that are necessary to execute this
command are those of the function walk_watching
itself, the functions unwalk and surround_obstacle,
which appear as its posterior actions, the function
walk, which is a means of surround_obstacle, and the
function reset, which is a means of both walk and
unwalk functions. Fig. 12 shows the relation between
all this frames . Fig. 13 shows the simulation
environment window during the execution of the
complex command, and Fig. 14 represents the
generated actions network.

Fig. 11 Structure of the function walk_watching

..... --=--, ...

L:~~
I-> --

!---ri __

:;.o.>.OKO:
".., --. 1-
!'ii!: r-o' • ..m.1e"! _'ox - """" -""'-

j "",-",,",

- = ~
h "GfIC -- r-_'ox .' """-~

POOf --
Fig. 12 Frame structure for function walk_watching

4. CONCLUSIONS

This paper has shown the application of a natural
language interface to the teleoperation of a mobile
robot. The adequate description of the system
knowledge allows the user to perform high level
operations, which are decomposed in other lower-level
actions until there is a sequence of simple actions
which are executed over the robot, thus having a
telescopic vision of the system. The developed
prototype could be applied to simulate the execution of
goals. In order to do this, it suffices to simulate the
behaviour of the system through software and build the
plan of actions corresponding to the goal. If the plan is
successfully built, the goal can be achieved and could
be executed over the real system. In other case, a
different plan should be created. This way it is avoided
to start executing actions and reach a point in which no
more actions can be executed due to a prerequisite not
accomplished or an action that cannot be performed,
resulting in a half-executed plan and a goal not
achieved. This incomplete execution is a problem as it
could prevent the goal from being fulfilled with
another plan. To summarise, it has been developed a
tool which can simplify the operation of complex
interactive systems, as the mobile robot to which it has
been applied in this paper.

5. REFERENCES

Brown, M.K, B.M. Buntschuh and JG. Wilpon
(1992). SAM: A Perceptive Spoken Language
Understanding Robot, IEEE Transactions on
Systems, Man and Cybernetics, vol. 22, no. 6, pp.
1390-1402.

Harris, L.R (1977) A High Performance Natural
Language Processor for Data Base Query, A CM
SIGART Newsletter, vol. 61 .

Minsky, M (1975). A Framework for Representing
Knowledge, The Psychology of Computer Vision,
P.H. Winston, Ed, McGraw-Hill, pp. 211-277.

Nomadic Technologies Inc (1997). NOMAD
Language Reference Manual.

Gonzalez Romano, J.M, JA. Ternero and E.F.
Camacho (1991). Natural Language Interface for
Process Control Centers . Preprints 3rd IFAC
International Workshop on Artificial Intelligence in
Real Time Control, Napa (California).

418

••

~ --
• -- •

=adiiJ * * • i_UfiWMf §tEaM'.'
w,.- _: U (oOO<J(Q!;5O. -«>002~). l.R< __ o. o<lOOO3298)
Aetull JOl t tlOf'):
Enc:odw- ~~1.~on:
ec.p.., ~h .. : 1."IOC
p,...,iOFA'~: "<)
Lrl1tJ; OC\IOt'di ,...t. • .t" 0.1 l~t! ~l_ ~ 0.1 __ ,

Fig. 13 Execution of the goal walk_watching

Fig. 14 Actions network for the goal walk_watching

Gonzalez Romano, JM. and E.F. Camacho (1993) .
Goal-Oriented Man Machine Interface in Control.
Application to a Pilot Plant Preprints of the 12th
IFAC World Congress, pp. 455-458, Sydney
(Australia).

Gonzalez Romano, JM. and E.F. Camacho (1997a).
Utilizacion de un interfaz en lenguaje natural para la
realizacion de operaciones en centros de control de
redes electricas, VII Conferencia de la AEPIA
(CAEPIA '97), Malaga (Spain).

Gonzalez Romano, JM (1997b). Aplicacion del
lenguaje natural a la adquisicion de conocimientos y
operacion de sistemas complejos, Doctoral
dissertation, Univ. Sevilla.

Selfridge, M. and W. Vannoy (1986). A Natural
Language Interface to a Robot Assembly System,
IEEE Journal of Robotics and Automation, vol.
RA-2, no. 3, pp. 167-171.

Silva, M. (1985). Las Redes de Petri en la Automatica
y la Informatica , AC.

Torrance, M.C. (1994). Natural Communication with
Robots (doctoral dissertation), 'Massachusetts
Institute of Technology.

Winograd, T. (1972). Understanding Natural
Language, Academic Press.

