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Abstract: Min-max model predictive controllers (MMMPC) have been proposed for 
the control of linear plants subject to bounded uncertainties. The implementation 
of MMMPC suffers a large computational burden due to the numerical optimization 
problem that has to be solved at every sampling time. This fact severely limits the 
class of processes in which this control is suitable. In this paper the use of a Neural 
Network (NN) to approximate the solution of the min-max problem is proposed. The 
number of inputs of the NN is determined by the order and time delay of the model 
together with the control horizon. For large time delays the number of inputs can be 
prohibitive. A modification to the basic formulation is proposed in order to avoid this 
later problem. Simulation and experimental results are given using a heat exchanger. 
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1. INTRODUCTION 

Mathematical models and specially control mod­
els, which have to be kept simple, can only de­
scribe the dynamics of the process in an approxi­
mately way. Most of the approaches used for mod­
eling uncertainties assume that there is a family 
of models and that the plant can be described 
exactly by one of the models belonging to the 
family. The approach considered here is global 
uncertainties. In this way, uncertainties will be 
considered to affect the I-step ahead prediction 
equation, i.e. the uncertainties will affect the pre­
diction capability of the model. The global uncer­
tainties approach can be found in (Camacho and 
Bordons, 1999) . A robust adaptive Min-Max MPC 
controller has been applied to a solar power plant 
in (Camacho and Berenguel, 1997) . 
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Min-Max control techniques have in common 
a great computational burden which limits the 
range of process to which can be applied to those 
with slow dynamics. Neural Networks have been 
used with success in Model Predictive Control 
(Arahal et al., 1998) . In this paper we present a 
way to implement Min-Max Predictive Controllers 
for linear plants using a Neural min-max solver. 

Another difficult arises when the plant has a large 
dead time. In this case we have to take into 
account the effect of past values of the control 
signal in the min-max optimization. We show here 
how to overcome this problem without loosing the 
robustness properties of Min-Max MPC and with 
only a gain of conservativeness in the control law. 

The paper is organized as follows : section 2 
presents the basic Min-Max MPC with bounded 



global uncertainties algorithm. Next the I\'eural 
min-max solver for plants without large delays 
is introduced. Section 3 is devoted to the Min­
l'vlax lVIPC with bounded global uncertainties al­
gorithm for plants with large delays. Section 5 
shows the application of the NN based M:V11\1PC 
to a heat exchanger and section 6 presents the 
conclusions. 

2. MI:\-MAX :\1PC 'VITH GLOBAL 
'CN CERTAINTIES 

The objective of MPC control is to compute the 
future control sequence u(t) , u(t+ 1) , .. . , u(t+ N -
1) in such a way that the optimal j-step ahead 
predictions yet + jlt) are driven close to the set 
point sequence wet), wet + 1), .. . , wet + N - 1) 
for the prediction horizon. The way in which the 
system will approach the desired trajectories will 
be indicated by a cost function J which depends 
on the presents and future control signals and 
uncertainties. 

When bounded uncertainties are considered ex­
plicitly, it would seem that a more robust con­
trol would be obtained if the controller tried to 
minimize the objective function J for the worst 
situation . That is, by solving the following min­
max problem: 

minmaxJ(O,u)=minJ*(u) (1) 
uEU ()E8 u EU 

where 0 represents the sequence of future uncer­
tainties and: 

J* (u) = max J (0 , u) 
() E0 

(2) 

being e = {O/~ ~ 0 ~ B} . The function to be 
minimized J* (u) is the maximum of the objective 
function J(O , u) which measures how well the 
process output follows the reference trajectories . 

Min-Max MPC can be formulated either in state 
space or using input-output description. The lat­
ter is used here since process with large dead 
time are easy to describe using transfer function 
representations. 

The most usual form of J(O , u) is a quadratic 
criterion: 

N 2 

J(O.u) = L (Yk+jlk - Wk+j)2 
j=N\ 

Nu 

+). L(~Uk+j-d2 
j = 1 

(3) 

where: ~ = 1 - Z-I ,NI and N2 define the begin­
ning and end of the cost horizon, Nu is the control 
horizon and Yk+j lk is the prediction output. Other 
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types of objective functions have been used in 
literature. In (Campo and lvlorari, 1987) a 00 - 00 

norm is used while in (Allwright, 1994) a 1 - 00 

norm is proposed. 

When a global uncertainties approach is used the 
way of modeling the uncertainties is to assume 
that all modeling errors are globalized in a vec­
tor of parameters, such that the plant can be 
described by the following family of models: 

y(t + 1) = J(y(t),u(t)) + O(t) (4) 

In (Camacho and Bordons, 1999) is shown that 
global uncertainties can be related to other types 
of uncertainties. When the model considered in 
(4) is linear it is common to choose a CARIMA 
model as prediction model (Camacho and Bor­
dons, 1999). 

The error concept present in a CARIMA model 
can be extended to consider explicitly the distur­
bances in the prediction model yielding: 

where A(Z-I) = ~A(Z- I) and O(t) E e. This 
prediction model will be referred as an integrated 
uncertainties prediction model (( Camacho and 
Bordons, 1999)). 

It is easy to see that the prediction model is an 
affine function of O(t) , which in turn leads to a 
function J(O, u) that is convex in the hypercube 
of O( t). That implies that the maximum of J (0 , u) 
is reached on one of the vertices of e. Also the 
ma.ximum is unique and it can be easily seen that 
function J* (u) is a piecewise quadratic function 
of u (Camacho and Bordons, 1999) . 

Using an integrated uncertainties prediction model 
allows to reject step disturbances but produces a 
continuos grow of the uncertainty band (Camacho 
and Bordons, 1999) and (Ramirez and Cama­
cho, 2000) . To have stable uncertainty bands while 
keeping the step response rejection the follow­
ing constraints to optimization have to be added 
(Ramirez and Camacho, 2000): 

[.fl ... f)f ~ T [O(t + 1) ... O(t + N 2 )( S [0 . .. e( 

where T is a lower triangular matrix of appropri­
ate dimension . 

3. 'VORST CASE PREDICTION OF 
DELAYED OUTPUTS i\lIN-?\1AX MPC 

The strategy used here to apply the Min-Max 
:vIPC to process with large dead time splits the 
problem in two stages: 



• Estimation of process output after the dead 
time. This is a prediction problem. 

• Min-Max :\iPC control law calculation for 
the process after the dead time, taking into 
account the uncertainty in the estimation of 
the process output up to the dead time. This 
is a control design problem. 

This strategy applied for a first order CARIMA 
prediction model can be formulated as the follow­
ing steps: 

• First, compute the bounds for y(k + d) and 
y(k+d-1): 

-I 

()k+d- l = max(Yk+d-l - Yk+d-l) 
() 

fl~+d-l = min(Yk+d- l - Yk+d - d 
() 

-I 

()k+d = max(Yk+d - Yk+d) 
() 

()~+d = min(Yk+d - Yk+d) - () 

where Yk+d-l y Yk+d are nominal values for 
Yk+d-l and Yk+d' 

• Second, obtain the control law solving the 
min-max problem for the nominal plant with­
out dead time using the following functional : 

!(Yk+d , Yk+d-l) = min max J(~U'()~+d'()) 
6 .. (}~+d ' O 

taking into account the uncertainties in the 
plant output for y(k + d) and y(k + d -
1), which have to be reflected in the future 
output predictions. Thus, the future output 
predicted will be: 

Yk+d+l = (1 + a)(Yk+d + ()~+d) - a(Yk+d-l 

+()~+d-l) + {}k+d+l 

(1 + a)Yk+d+l - a(Yk+d + ()~+d) 

It can be seen that the prediction model is an 
affine function of ()~+d-l '{}~+d as well of () . This 
implies that the maximum of J for ()~+d-l' ()~+d 
will be reach in one of the vertexes of the hyper­
cube {()~+d-l' ()~+d} ' The computational burden 
increment is the the same to an increment of two 
in the prediction horizon. 

This strategy is more conservative than a tradi­
tional Min-Max MPC in the sense that only the 
maximum and minimum values for y(k + d) and 
y(k + d - 1) are considered as starting points 
to the min-max optimization. To illustrate this 
point consider a process with a dead time of 
d = 6. In a traditional ~1in-Max MPC there is 
32 different possible values for Yk+d-l and 64 for 
Yk+d, which will be used as starting point for 
the rest of the optimization. With the strategy 
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presented here only two possible values for each of 
them are considered, which yields 4 combinations 
of the most extreme values of Yk+d-l and Yk+d · 
In addition two of the combinations are unreal­
istic , because there is no way to get the plant 
outputs equal to the nominal values of Yk+d - l 

and Yk+d plus {fl~+d-l ' e~+d} or {e~+d-l ' fl~+d}' 
Finally, two sources of uncertainty are considered 
in the prediction of the Yk+d+ 1 and Yk+d+2, i.e . the 
global uncertainty {}(t) and the bounds for Yk+d - l 

and Yk+d. 

To avoid this excess of conservatism only the 

combinations {fl~+d- l' fl~+d} and {e~+d-l' e~+d} 
are considered in the optimization which has the 
added benefit of halving the amount of vertexes 
to be considered to compute the max part of the 
min-max problem. 

The amount of time required to compute the 
control sequence can be further reduced by con­
sidering that for linear prediction models the su­
perposition principle holds, hence the part of the 
output prediction due to the uncertainty ()(t) can 
be separated from the part due to control ac­
tions. It can be easily seen that the bounds values 

{fl~+d-l , fl~+d} and {e~+d-l' e~+d} are indepen­
dent of the values of {Yk-l , Yk} and are also inde­
pendent of the past and future control actions. 
This considerations imply that the bounds for 
y(k+d) and y(k+d-1) have only to be computed 
once. 

Figure 1 illustrate the behaviour of a Min-Max 
MPC controller using this strategy compared with 
a traditional Min-Max MPC controller and a con­
ventional MPC controller, using the same values 
for control and prediction horizons and control ef­
fort weighting. For the Min-Max MPC controllers 
the bounds for the uncertainty were fl = .e. = -0.5 
and e = 0' = 0.5. The faster response over the 
traditional Min-Max MPC is due to the greater 
conservativeness of considering only the maximum 
and minimum values of Yk+d-l and Yk+d· 

Finally, it is noteworthy that this scheme is suit­
able for other implementations of Min-Max MPC 
even for the numerical one, with the benefit a 
reduced time of computation of the min-max so­
lution. 

4. NEURAL MIN-MAX SOLVER 

Artificial Neural Networks have been used with 
success in predictive control and identification 
(Arahal et al. , 1998), especially when non lin­
ear systems are considered. When linear systems 
\vithout taking into account uncertainties are con­
sidered there is no need to use a non linear es­
timation method like Neural Networks because 
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- MII"I-MallMPC 
- - Modified 'Jhn_Max MPC 

Fig. 1. Output of a l\lPC, l\Iin-:"lax I\IPC and 
fvIin-:\olax MPC modified controllers applied 
to the plant Yk+l = 0.9048Yk + 0.0128uk_6. 

efficient solutions exist in the form of closed for­
mulae (for the unconstrained case) or mathemati­
cal programming (constrained case, see (Camacho 
and Bordons, 1999)). However if uncertainties are 
taking into account there is no efficient numerical 
methods to handle problems like (1). In this case 
!'eural l'\etworks can be a good choice to apply 
this strategy to process with reasonably fast dy­
namics. 

The solution of the min-max problem can be pre­
computed for a number useful situations. A NN 
can be used to approximate function J* in (2) 
with mild assumptions about the smoothness of 
the approximated mapping. If this is done prop­
erly, then solving the min-max problem would 
only amount to just query the Nl\ for an output 
u = NN(x) to current input x where x is the 
process state and set point. This allows the :Vlin­
:"lax l\lPC use in real time in a larger class of 
process. 

Here we concentrate in a neural min-max solver 
for a first order plant using an integrated uncer­
tainties prediction model: 

Yk+l = (1 + a)Yk - aYk - l + bD.uk + e (5) 

The function min-max to be approximated . which 
will take the set point and the actual and past 
\'alues of process output as arguments, depends 
on the parameters of the plant as well of the 
parameters of the controller. 

Figure 2 shows the approximation error using a 
:'Iulti Layer Perceptron (:"lLP) with 10 neurons 
in the hidden layer when plant model parameters 
are a = b = 0.25 and controller parameters are 
Nu = 4, N2 = 8A = 0.5 , (J = 0.1, (i = -0.1 and the 
set point is 0.25. A set of patterns distributed on 
an uniform grid with a spacing of 0.05, making a 
total of 1681 patterns, was built. The :"ILP was 
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Fig. 2. Approximation error using a MLP with 10 
neurons in hidden layer for a controller with 
Nu = 4, N:l = 8). = 0.5, (J = 0.1,(i = -0.1 
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Fig. 3. Diagram of the Pilot Plant 
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trained using the Levenberg-:"hrquardt method 
and a final sum of squared errors of 0.105 was 
obtained . The trained :\ILP was used with a 
different set of patterns built with a spacing of 
0.08, and the errors obtained are shown in figure 2. 
The magnitude of errors is small enough to allov,' 
its real time use as shown for the heat exchanger 
in section 5. 

5. APPLICATIOl\ TO A HEAT EXCHA?\GER 

The controller presented in sections 4 and 3 has 
been applied to a heat exchanger which is part of 
a pilot plant. A diagram of the pilot plant which 
shows its main elements as \\'ell as the localization 
of the various instruments is given in Figure 3. 

The main elements are: 



• Feed circuit. The plant has two input pipes, 
a cold water one (which temperature is reg­
ulated by a cooling plant) and a hot water 
one (at about 70 QC) . The temperatures and 
the flows of the inputs are measured with 
thermocouples and orifice plates respectively, 
with controlled pneumatic valves for regulat­
ing the input flows. 

• Tank. It has a height of 1 m and an interior 
diameter of 20 cm, it is thermically insulated, 
and with an approximate volume of 31 l. In 
its interior there is a 15 kW electric resistor 
for heating, also an overflow pipe, an output 
pipe and another one for recirculating the 
water through the exchanger. 

• Recirculation circuit. The hot water in the 
tank can be cooled by entering cold water 
through the cooling circuit . This circuit is 
composed of a centrifugal pump that circu­
lates the hot water from the bottom of the 
tank through a tube bundle heat exchanger 
returning at a lower temperature at its top. 

The plant control elements are connected to 
a PMCIO unit operated under the ORSI Au­
tomazione CUBE control software. The PMCIO 
architecture allows to implement control algo­
rithms programmed in a PC using CUBE's ITER 
11 language. However the execution time is re­
stricted to 100 milliseconds and taking into ac­
count that PMCIO CPU is an old Intel 8086 it is 
clear that the min-max problem cannot be solved 
numerically in the PMCIO. So it is a suitable 
scenario to the neural network implementation 
described in this paper. 

Several predictive control strategies has been ap­
plied to the control loop V8 - TT4 . In (Camacho 
and Bordons, 1999) a precomputed linear GPC is 
applied. On the other hand nonlinear predictive 
control has been applied to this control loop in 
(Ramfrez et al., 1999) (in this work control actions 
were calculated in a PC, rather than the PMCI0 
unit) . 

A first order lineal model for the transfer func­
tion from V8 to TT4 has been obtained by 
step response. The initial conditions were V8 = 
50%, TT4 = 31.73°C, TT5 controlled with a PID 
around 50°C , constant tank level of 76.8% and the 
set point for the cooling plant to get TT2 around 
23.3°C. A step in the aperture of valve V8 from 
50% to 70% yields the following model: 

G(s) = 0.135 e-6s 
65 + 1 

(6) 

A CARPvlA model is obtained sampling model 6 
with a sampling time of 1 second (giving a delay 
d of 6) and the controllers parameters have been 
chosen to be Nu = 3,NJ = 7,N2 = No = 12, .\ = 
3.0,8 = 0.2 , ft = -0.2. To train the NN a set 
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of patterns were generated for set point values of 
32°C , 35°C and 37°C. A total of 36963 patterns 
were generated for the training set and 6627 for 
the test set. A MLP with 10 neurons in the hidden 
layer was trained using the Levenberg-Ylarquardt 
rule until the average error in both sets were under 
1.5%. 

The resulting controller was applied to the heat 
exchanger and some of the experimental results 
are depicted in figures 4 to 5. 

Figure 4 shows a set point tracking experiment. 
It is noteworthy that the set point is higher than 
the operating point considered for modeling the 
heat exchanger dynamics . The noisy output is 
due to the variations in the tank temperature 
(TT5) which is regulated by a local PI. Also it is 
noteworthy that the V8 aperture is not affected by 
fast TT5 changes, on the other hand V8 aperture 
follows TT2 changes and TT5 slow changes . 

Disturbance rejection is illustrated in figure 5. In 
this case the manual valve of cold water was closed 
for 15 and 20 seconds, causing the temperature to 
greatly deviate from the set point. The controller 
reacts by closing the recirculation valve V8 to 
low the temperature by having less hot water to 
be cooled. Opening again the valve is another 
disturbance and the controller has to open again 
the V8 valve to bring the temperature TT4 to the 
desired value. 

Finally a third experiment depicting a slow vari­
ation of plant dynamics is shown in figure 5. In 
this case, the tank temperature (TT5) was raised 
from the nominal point (50°C) to a point around 
70°C. It is clear that the controller is able to 
keep the output close to the set point as soon 
as the tank temperature reaches the new oper­
ating point. Meanwhile a small offset is observed 
as expected, because the uncertainty grows as a 
ramp and the integrated uncertainties MMMPC 
is formulated to reject step disturbances. 

6. CONCLUSIONS 

A Neural Min-Max MPC controller has been pro­
posed and applied to a pilot plant. Problems 
related to process delay have been tackled and 
discussed taking into account real time imple­
mentation requirements. The suitability of a NN 
approach has been discussed and brought to prac­
tice. Further investigations will be needed to in­
clude constraints and adaptive skills in the control 
strategy. 
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Fig. 5. Disturbance rejection experiment: a) set 
point and heat exchanger output tempera­
ture b) Valve V8 aperture, tank temperature 
TT5 and cold water temperature TT2 
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Fig. 6. Slow variation of plant dynamics experi­
ment: a) set point and heat exchanger output 
temperature b) Valve V8 aperture, tank tem­
perature TT5 and cold water temperature 
TT2 


